The combinatorics of monadic stability, monadic dependence, and related notions

Algomanet, Warsaw, September 9-13, 2024

Jan Dreier, TU Wien

Deletion-Flatness (Uniform Quasi-Wideness) (slightly informal)

A class $\mathcal C$ is deletion-flat if for every radius r, in every large set A we find a still-large set B that is r-independent after removing a set S of constantly many vertices.

Theorem [Něsetřil, Ossona de Mendez, 2011]

A class C is deletion-flat if and only if it is nowhere dense.

Theorem [Něsetřil, Ossona de Mendez, 2011]

A class C is deletion-flat if and only if it is nowhere dense.

Deletion-Flatness (formal)

A class $\mathcal C$ is deletion-flat if for every radius r there exists a constant k such that in every large set $A\subseteq V(G)$ with $G\in \mathcal C$ one can find a still-large set B, $|B|\geq U_{r,\mathcal C}(|A|)$ with the follwing property. After removing at most k vertices,

$$\forall b_1, b_2 \in B \ N_r(b_1) \cap N_r(b_2) = \emptyset.$$

What is it good for?

deltion-flatness \Rightarrow Splitter game

Dense Graphs

Can deletion-flatness handle cliques?

Dense Graphs

Can deletion-flatness handle cliques? How can we lift this notion to dense graphs?

Flips

Denote by $G \oplus F$ the graph obtained from G by complementing edges between pairs of vertices from F.

8

Flips

Denote by $G\oplus (P,Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P\times Q$.

9

Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class $\mathcal C$ is *flip-flat* if for every radius r, in every large set A we find a still-large set B that is r-independent after performing a set F of constantly many flips.

Theorem [D, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.

Theorem [D, Mählmann, Siebertz, Toruńczyk, 2022]

A class C is flip-flat if and only if it is monadically stable.

Flip-Flatness (formal)

A class $\mathcal C$ is *flip-flat* if for every radius r there exists a constant k such that in every large set $A\subseteq V(G)$ with $G\in \mathcal C$ one can find a still-large set B, $|B|\geq U_{r,\mathcal C}(|A|)$ with the follwing property. After performing at most k flips,

$$\forall b_1, b_2 \in B \ N_r(b_1) \cap N_r(b_2) = \emptyset.$$

What is it good for?

 $flip\text{-}flatness \Rightarrow Flipper\ game$

Monadic Dependence

Can flip-flatness handle ladders?

Monadic Dependence

Can flip-flatness handle ladders? How can we lift the notion to monadically dependent classes?

Flip-Breakability (slightly informal)

A class $\mathcal C$ is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B such that after k flips, $N_r(A) \cap N_r(B) = \varnothing$.

Flip-Breakability (slightly informal)

A class $\mathcal C$ is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B such that after k flips, $N_r(A) \cap N_r(B) = \varnothing$.

Theorem [Dreier, Mählmann, Toruńczyk, 2024]

A class $\mathcal C$ is flip-breakable if and only if it is monadically dependent.

Theorem [Dreier, Mählmann, Toruńczyk, 2024]

A class $\mathcal C$ is flip-breakable if and only if it is monadically dependent.

Flip-Breakability (formal)

A class $\mathcal C$ is *flip-breakable* if for every radius r there exists a constant k such that in every large set $S\subseteq V(G)$ with $G\in\mathcal C$ one can find a still-large sets A,B, $|A|,|B|\geq U_{r,\mathcal C}(|S|)$ with the follwing property. After performing at most k flips,

$$N_r(A) \cap N_r(B) = \emptyset.$$

1. We modify a graph using either flips or vertex deletions.

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken. flat: pairwise separated; broken: separated into two large sets

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken. flat: pairwise separated; broken: separated into two large sets
- 3. Separation means either distance-r or distance- ∞ .

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken. flat: pairwise separated; broken: separated into two large sets
- 3. Separation means either distance-r or distance- ∞ .

		flatness	breakability
dist-r	flip-	monadic stability	mon. dependence
	deletion-	nowhere denseness	
dist-∞	flip-		
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken. flat: pairwise separated; broken: separated into two large sets
- 3. Separation means either distance-r or distance- ∞ .

		flatness	breakability
dist-r	flip-	monadic stability	mon. dependence
	deletion-	nowhere denseness	nowhere denseness
$dist ext{-}\infty$	flip-		
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken. flat: pairwise separated; broken: separated into two large sets
- 3. Separation means either distance-r or distance- ∞ .

		flatness	breakability
dist-r	flip-	monadic stability	mon. dependence
	deletion-	nowhere denseness	nowhere denseness
$dist ext{-}\infty$	flip-	bd. shrubdepth	bd. cliquewidth
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken. flat: pairwise separated; broken: separated into two large sets
- 3. Separation means either distance-r or distance- ∞ .

		flatness	breakability
dist-r	flip-	monadic stability	mon. dependence
	deletion-	nowhere denseness	nowhere denseness
dist-∞	flip-	bd. shrubdepth	bd. cliquewidth
	deletion-	bd. treedepth	bd. treewidth

 $\begin{array}{l} {\rm star} \ r{\rm -crossing} \\ = r{\rm -subdivided} \ {\rm biclique} \end{array}$

Theorem [Dreier, Mählmann, Toruńczyk, 2024]

Let $\mathcal C$ be a graph class. Then $\mathcal C$ is monadically dependent if and only if for every $r\geq 1$ there exists $k\in\mathbb N$ such $\mathcal C$ excludes as induced subgraphs

- \bigcirc all layerwise flipped star r-crossings of order k,
- \bigcirc all layerwise flipped clique r-crossings of order k,
- \bigcirc all layerwise flipped half-graph r-crossings of order k,
- \bigcirc the comparability grid of order k.

Subgraphs

Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Let $\mathcal C$ be a graph class. Then $\mathcal C$ is monadically stable if and only if for every $r\geq 1$ there exists $k\in\mathbb N$ such $\mathcal C$ excludes as induced subgraphs

- \bigcirc all layerwise flipped star r-crossings of order k,
- \bigcirc all layerwise flipped clique r-crossings of order k,
- \bigcirc all semi-induced halfgraphs of order k

Summary

<u>E</u>xercises

Let $\mathcal C$ be a graph class satisfying for some k the "structure side" of the dichotomy we proved today.

Show that $\mathcal C$ is radius-1 flip-breakable.

Let $\mathcal C$ be a graph class satisfying for some k the "structure side" of the dichotomy we proved today.

Show that C is radius-1 flip-breakable.

A stronger structure property can be derived for monadically stable classes, which implies radius-1 flip-flatness.

Let C be a graph class. We say C is *weakly sparse* if there exists t such that no graph in C contains $K_{t,t}$ as a subgraph.

Let C be a graph class. We say C is *weakly sparse* if there exists t such that no graph in C contains $K_{t,t}$ as a subgraph.

Prove for a weakly sparse graph class C:

 ${\mathcal C}$ is nowhere dense if and only if ${\mathcal C}$ is monadically dependent.

Let C be a graph class. We say C is weakly sparse if there exists t such that no graph in C contains $K_{t,t}$ as a subgraph.

Prove for a weakly sparse graph class C:

 ${\mathcal C}$ is nowhere dense if and only if ${\mathcal C}$ is monadically dependent.

Break the statement down as follows:

- \bigcirc If $\mathcal C$ is not monadically dependent, then $\mathcal C$ is not nowhere dense.
- \bigcirc If ${\cal C}$ is not nowhere dense and weakly sparse, then ${\cal C}$ is not monadically dependent.