
The combinatorics of monadic stability, monadic
dependence, and related notions

Algomanet, Warsaw, September 9-13, 2024

Jan Dreier, TU Wien

1

Today’s Goal

Today, we want to prove the following milestone.

D, Mählmann, Siebertz, 2023
D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2024

Let C be a monadically stable graph class. There exists a func-
tion f such that for every FO formula φ and graphG ∈ C one
can decide whether G |= φ in time f(|φ|)n6.

2

Gaifman–Approach

|= q-formula?G

|=G

reduces to

∃x1, . . . , xsdist(xi, xj) ≥ 2r ∧ ω(xi)?
basic local sentence

We want a stronger mechanism with f(q) = q.

3

Gaifman–Approach

|= q-formula?

reduces to

G

|= f(q)-formula?G[Nf(q)(v1)] G[Nf(q)(vn)]. . .

|=G

reduces to

∃x1, . . . , xsdist(xi, xj) ≥ 2r ∧ ω(xi)?
basic local sentence

We want a stronger mechanism with f(q) = q.

3

Gaifman–Approach

|= q-formula?

reduces to

G

|= f(q)-formula?G[Nf(q)(v1)] G[Nf(q)(vn)]. . .

|=G

reduces to

∃x1, . . . , xsdist(xi, xj) ≥ 2r ∧ ω(xi)?
basic local sentence

We want a stronger mechanism with f(q) = q.

3

Gaifman–Approach

|= q-formula?

reduces to

G

|= f(q)-formula?G[Nf(q)(v1)] G[Nf(q)(vn)]. . .

|=G

reduces to

∃x1, . . . , xsdist(xi, xj) ≥ 2r ∧ ω(xi)?
basic local sentence

We want a stronger mechanism with f(q) = q.

3

q-types

Definition

Let q-type(G, v) be the set of all formulasφ of quantifier rank
at most q with G |= φ(v).

The number of (normalized) formulas of quantifier rank q and c
colors is bounded by some function f(q, c).

The number of q-types in graphs with c colors is bounded by 2f(q,c).

4

q-types

Definition

Let q-type(G, v) be the set of all formulasφ of quantifier rank
at most q with G |= φ(v).

The number of (normalized) formulas of quantifier rank q and c
colors is bounded by some function f(q, c).

The number of q-types in graphs with c colors is bounded by 2f(q,c).

4

q-types

Definition

Let q-type(G, v) be the set of all formulasφ of quantifier rank
at most q with G |= φ(v).

The number of (normalized) formulas of quantifier rank q and c
colors is bounded by some function f(q, c).

The number of q-types in graphs with c colors is bounded by 2f(q,c).

4

Algorithm Idea

Idea of Gajarský, Gorsky, Kreutzer (2020): Assume we want to
evaluate on a graph G with vertices v1, . . . , vn a formula
∃x ∀y φ(x, y) of quantifier rank q.

Then

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ G |= ∀y φ(v2, y) ∨ . . . ∨ G |= ∀y φ(vn, y).

Assume q-type(G, v1) = q-type(G, v2). In other words, for all
formulas ψ(x) of quantifier rank q, G |= ψ(v1) ⇐⇒ G |= ψ(v2).

In particular, G |= ∀y φ(v1, y) ⇐⇒ G |= ∀y φ(v2, y).
We only need to keep one “representative” of this type.

5

Algorithm Idea

Idea of Gajarský, Gorsky, Kreutzer (2020): Assume we want to
evaluate on a graph G with vertices v1, . . . , vn a formula
∃x ∀y φ(x, y) of quantifier rank q. Then

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ G |= ∀y φ(v2, y) ∨ . . . ∨ G |= ∀y φ(vn, y).

Assume q-type(G, v1) = q-type(G, v2). In other words, for all
formulas ψ(x) of quantifier rank q, G |= ψ(v1) ⇐⇒ G |= ψ(v2).

In particular, G |= ∀y φ(v1, y) ⇐⇒ G |= ∀y φ(v2, y).
We only need to keep one “representative” of this type.

5

Algorithm Idea

Idea of Gajarský, Gorsky, Kreutzer (2020): Assume we want to
evaluate on a graph G with vertices v1, . . . , vn a formula
∃x ∀y φ(x, y) of quantifier rank q. Then

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ G |= ∀y φ(v2, y) ∨ . . . ∨ G |= ∀y φ(vn, y).

Assume q-type(G, v1) = q-type(G, v2). In other words, for all
formulas ψ(x) of quantifier rank q, G |= ψ(v1) ⇐⇒ G |= ψ(v2).

In particular, G |= ∀y φ(v1, y) ⇐⇒ G |= ∀y φ(v2, y).
We only need to keep one “representative” of this type.

5

Algorithm Idea

Idea of Gajarský, Gorsky, Kreutzer (2020): Assume we want to
evaluate on a graph G with vertices v1, . . . , vn a formula
∃x ∀y φ(x, y) of quantifier rank q. Then

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ G |= ∀y φ(v2, y) ∨ . . . ∨ G |= ∀y φ(vn, y).

Assume q-type(G, v1) = q-type(G, v2). In other words, for all
formulas ψ(x) of quantifier rank q, G |= ψ(v1) ⇐⇒ G |= ψ(v2).

In particular, G |= ∀y φ(v1, y) ⇐⇒ G |= ∀y φ(v2, y).

We only need to keep one “representative” of this type.

5

Algorithm Idea

Idea of Gajarský, Gorsky, Kreutzer (2020): Assume we want to
evaluate on a graph G with vertices v1, . . . , vn a formula
∃x ∀y φ(x, y) of quantifier rank q. Then

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ G |= ∀y φ(v2, y) ∨ . . . ∨ G |= ∀y φ(vn, y).

Assume q-type(G, v1) = q-type(G, v2). In other words, for all
formulas ψ(x) of quantifier rank q, G |= ψ(v1) ⇐⇒ G |= ψ(v2).

In particular, G |= ∀y φ(v1, y) ⇐⇒ G |= ∀y φ(v2, y).
We only need to keep one “representative” of this type. 5

Local Types

Assume we have a fast blackbox algorithm to evaluate q-formulas
on 2q-balls of G. We can compute q-type(G[N2q(v)], v) for all
v ∈ V (G),

but it does not give us global the global q-type(G, v).

But it lets us distinguish global q-types!

Theorem (Siebertz, Toruńczyk)

Let G be a graph and a, b be two vertices with
distance more than 2q and

q-type(G[N2q(a)], a) =

q-type(G[N2q(b)], b).

Then
q-type(G, a) = q-type(G, b).

Let us ignore the distance requirement.

6

Local Types

Assume we have a fast blackbox algorithm to evaluate q-formulas
on 2q-balls of G. We can compute q-type(G[N2q(v)], v) for all
v ∈ V (G), but it does not give us global the global q-type(G, v).

But it lets us distinguish global q-types!

Theorem (Siebertz, Toruńczyk)

Let G be a graph and a, b be two vertices with
distance more than 2q and

q-type(G[N2q(a)], a) =

q-type(G[N2q(b)], b).

Then
q-type(G, a) = q-type(G, b).

Let us ignore the distance requirement.

6

Local Types

Assume we have a fast blackbox algorithm to evaluate q-formulas
on 2q-balls of G. We can compute q-type(G[N2q(v)], v) for all
v ∈ V (G), but it does not give us global the global q-type(G, v).

But it lets us distinguish global q-types!

Theorem (Siebertz, Toruńczyk)

Let G be a graph and a, b be two vertices with
distance more than 2q and

q-type(G[N2q(a)], a) =

q-type(G[N2q(b)], b).

Then
q-type(G, a) = q-type(G, b).

Let us ignore the distance requirement.

6

Local Types

Assume we have a fast blackbox algorithm to evaluate q-formulas
on 2q-balls of G. We can compute q-type(G[N2q(v)], v) for all
v ∈ V (G), but it does not give us global the global q-type(G, v).

But it lets us distinguish global q-types!

Theorem (Siebertz, Toruńczyk)

Let G be a graph and a, b be two vertices with
distance more than 2q and

q-type(G[N2q(a)], a) =

q-type(G[N2q(b)], b).

Then
q-type(G, a) = q-type(G, b).

Let us ignore the distance requirement.

6

Local Types

Assume we have a fast blackbox algorithm to evaluate q-formulas
on 2q-balls of G. We can compute q-type(G[N2q(v)], v) for all
v ∈ V (G), but it does not give us global the global q-type(G, v).

But it lets us distinguish global q-types!

Theorem (Siebertz, Toruńczyk) (simplified, but wrong)

Let G be a graph and a, b be two vertices with

q-type(G[N2q(a)], a) =

q-type(G[N2q(b)], b).

Then
q-type(G, a) = q-type(G, b).

Let us ignore the distance requirement.
6

Algorithm Idea

We want to evaluate on a graph G with vertices v1, . . . , vn a
formula ∃x ∀y φ(x, y) of quantifier rank q. Then

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ G |= ∀y φ(v2, y) ∨ . . . ∨ G |= ∀y φ(vn, y).

Assume q-type(G[N2q(v1)], v1) = q-type(G[N2q(v2)], v2). Then by
the previous theorem q-type(G, v1) = q-type(G, v2).

As argued before, G |= ∀y φ(v1, y) ⇐⇒ G |= ∀y φ(v2, y).
We only need to keep one “representative” of this local type.

7

Algorithm Idea

We want to evaluate on a graph G with vertices v1, . . . , vn a
formula ∃x ∀y φ(x, y) of quantifier rank q. Then

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ G |= ∀y φ(v2, y) ∨ . . . ∨ G |= ∀y φ(vn, y).

Assume q-type(G[N2q(v1)], v1) = q-type(G[N2q(v2)], v2). Then by
the previous theorem q-type(G, v1) = q-type(G, v2).

As argued before, G |= ∀y φ(v1, y) ⇐⇒ G |= ∀y φ(v2, y).
We only need to keep one “representative” of this local type.

7

Algorithm Idea

We want to evaluate on a graph G with vertices v1, . . . , vn a
formula ∃x ∀y φ(x, y) of quantifier rank q. Then

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ G |= ∀y φ(v2, y) ∨ . . . ∨ G |= ∀y φ(vn, y).

Assume q-type(G[N2q(v1)], v1) = q-type(G[N2q(v2)], v2). Then by
the previous theorem q-type(G, v1) = q-type(G, v2).

As argued before, G |= ∀y φ(v1, y) ⇐⇒ G |= ∀y φ(v2, y).

We only need to keep one “representative” of this local type.

7

Algorithm Idea

We want to evaluate on a graph G with vertices v1, . . . , vn a
formula ∃x ∀y φ(x, y) of quantifier rank q. Then

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ G |= ∀y φ(v2, y) ∨ . . . ∨ G |= ∀y φ(vn, y).

Assume q-type(G[N2q(v1)], v1) = q-type(G[N2q(v2)], v2). Then by
the previous theorem q-type(G, v1) = q-type(G, v2).

As argued before, G |= ∀y φ(v1, y) ⇐⇒ G |= ∀y φ(v2, y).
We only need to keep one “representative” of this local type.

7

Algorithm Idea

Build a small representative set of vertices S such that

{q-type(G[N2q(v)], v) | v ∈ S} = {q-type(G[N2q(v)], v) | v ∈ V (G)}.

As argued before, we can shorten our disjunction.

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ . . . ∨ G |= ∀y φ(vn, y)

The size of S is bounded by the number of q-types, which is
bounded by a function of q and the number of colors of the graph.

8

Algorithm Idea

Build a small representative set of vertices S such that

{q-type(G[N2q(v)], v) | v ∈ S} = {q-type(G[N2q(v)], v) | v ∈ V (G)}.

As argued before, we can shorten our disjunction.

G |= ∃x ∀y φ(x, y)

⇐⇒

G |= ∀y φ(v1, y) ∨ . . . ∨ G |= ∀y φ(vn, y)

The size of S is bounded by the number of q-types, which is
bounded by a function of q and the number of colors of the graph.

8

Algorithm Idea

Build a small representative set of vertices S such that

{q-type(G[N2q(v)], v) | v ∈ S} = {q-type(G[N2q(v)], v) | v ∈ V (G)}.

As argued before, we can shorten our disjunction.

G |= ∃x ∀y φ(x, y)

⇐⇒∨
v∈S

G |= ∀y φ(v, y)

The size of S is bounded by the number of q-types, which is
bounded by a function of q and the number of colors of the graph.

8

Algorithm Idea

Build a small representative set of vertices S such that

{q-type(G[N2q(v)], v) | v ∈ S} = {q-type(G[N2q(v)], v) | v ∈ V (G)}.

As argued before, we can shorten our disjunction.

G |= ∃x ∀y φ(x, y)

⇐⇒∨
v∈S

G |= ∀y φ(v, y)

The size of S is bounded by the number of q-types, which is
bounded by a function of q and the number of colors of the graph.

8

Algorithm Idea

We continue simplifying the formula∨
w∈S

G |= ∀y φ(w, y).

For every w ∈ S we rewrite

G |= ∀y φ(w, y)

⇐⇒

G |= φ(w, v1) ∧ . . . ∧ G |= φ(w, vn).

As before, we construct a set Sw such that

{q-type(G[N2r(v)], wv) | v ∈ Sw} = {q-type(G[N2r(v)], wv) | v ∈ V (G)}.

Continue like this until all quantifiers are replaced with
constant-length conjunctions and disjunctions.

9

Algorithm Idea

We continue simplifying the formula∨
w∈S

G |= ∀y φ(w, y).

For every w ∈ S we rewrite

G |= ∀y φ(w, y)

⇐⇒

G |= φ(w, v1) ∧ . . . ∧ G |= φ(w, vn).

As before, we construct a set Sw such that

{q-type(G[N2r(v)], wv) | v ∈ Sw} = {q-type(G[N2r(v)], wv) | v ∈ V (G)}.

Continue like this until all quantifiers are replaced with
constant-length conjunctions and disjunctions.

9

Algorithm Idea

We continue simplifying the formula∨
w∈S

G |= ∀y φ(w, y).

For every w ∈ S we rewrite

G |= ∀y φ(w, y)

⇐⇒

G |= φ(w, v1) ∧ . . . ∧ G |= φ(w, vn).

As before, we construct a set Sw such that

{q-type(G[N2r(v)], wv) | v ∈ Sw} = {q-type(G[N2r(v)], wv) | v ∈ V (G)}.

Continue like this until all quantifiers are replaced with
constant-length conjunctions and disjunctions.

9

Algorithm Idea

We continue simplifying the formula∨
w∈S

G |= ∀y φ(w, y).

For every w ∈ S we rewrite

G |= ∀y φ(w, y)

⇐⇒∧
v∈Sw

G |= φ(w, v)

As before, we construct a set Sw such that

{q-type(G[N2r(v)], wv) | v ∈ Sw} = {q-type(G[N2r(v)], wv) | v ∈ V (G)}.

Continue like this until all quantifiers are replaced with
constant-length conjunctions and disjunctions.

9

Algorithm Idea

We continue simplifying the formula∨
w∈S

∧
v∈Sw

G |= φ(w, v).

For every w ∈ S we rewrite

G |= ∀y φ(w, y)

⇐⇒∧
v∈Sw

G |= φ(w, v)

As before, we construct a set Sw such that

{q-type(G[N2r(v)], wv) | v ∈ Sw} = {q-type(G[N2r(v)], wv) | v ∈ V (G)}.

Continue like this until all quantifiers are replaced with
constant-length conjunctions and disjunctions.

9

Algorithm Idea

We continue simplifying the formula∨
w∈S

∧
v∈Sw

G |= φ(w, v).

For every w ∈ S we rewrite

G |= ∀y φ(w, y)

⇐⇒∧
v∈Sw

G |= φ(w, v)

As before, we construct a set Sw such that

{q-type(G[N2r(v)], wv) | v ∈ Sw} = {q-type(G[N2r(v)], wv) | v ∈ V (G)}.

Continue like this until all quantifiers are replaced with
constant-length conjunctions and disjunctions. 9

Quantifier-Rank Preserving Localization

|= q-formula?

reduces to

G

|= q-formula?G[N2q (v1)] G[N2q (vn)]. . .

(f(q, c) evaluations per 2q-ball)

10

Recursion

In monadically stable classes, the local parts are not yet simple
enough to directly evaluate formulas.

Instead, we

modify each local part by flipping a vertex set,
recurse into the modified local parts.

For monadically stable classes, this terminates after a bounded
number of steps with graphs consisting of single vertices, where
model-checking is trivial.

To show this, we need pursuit-evasion games.

11

Recursion

In monadically stable classes, the local parts are not yet simple
enough to directly evaluate formulas. Instead, we

modify each local part by flipping a vertex set,
recurse into the modified local parts.

For monadically stable classes, this terminates after a bounded
number of steps with graphs consisting of single vertices, where
model-checking is trivial.

To show this, we need pursuit-evasion games.

11

Recursion

In monadically stable classes, the local parts are not yet simple
enough to directly evaluate formulas. Instead, we

modify each local part by flipping a vertex set,
recurse into the modified local parts.

For monadically stable classes, this terminates after a bounded
number of steps with graphs consisting of single vertices, where
model-checking is trivial.

To show this, we need pursuit-evasion games.

11

Recursion

In monadically stable classes, the local parts are not yet simple
enough to directly evaluate formulas. Instead, we

modify each local part by flipping a vertex set,
recurse into the modified local parts.

For monadically stable classes, this terminates after a bounded
number of steps with graphs consisting of single vertices, where
model-checking is trivial.

To show this, we need pursuit-evasion games.

11

∞-Splitter Game

Treedepth can be characterized by a game
between Connector and Splitter.

∞-Splitter Game: In each round

Connector picks connected component
Splitter isolates a vertex

Splitter wins once a single
vertex is reached.

Characterization

A graph has treedepth ≤ d iff Splitter wins the ∞-Splitter
game in ≤ d− 1 rounds.

12

∞-Splitter Game

Treedepth can be characterized by a game
between Connector and Splitter.

∞-Splitter Game: In each round

Connector picks connected component
Splitter isolates a vertex

Splitter wins once a single
vertex is reached.

Characterization

A graph has treedepth ≤ d iff Splitter wins the ∞-Splitter
game in ≤ d− 1 rounds.

12

∞-Splitter Game

Splitter isolates a vertex

Treedepth can be characterized by a game
between Connector and Splitter.

∞-Splitter Game: In each round

Connector picks connected component
Splitter isolates a vertex

Splitter wins once a single
vertex is reached.

Characterization

A graph has treedepth ≤ d iff Splitter wins the ∞-Splitter
game in ≤ d− 1 rounds.

12

∞-Splitter Game

Connector picks
connected component

Treedepth can be characterized by a game
between Connector and Splitter.

∞-Splitter Game: In each round

Connector picks connected component
Splitter isolates a vertex

Splitter wins once a single
vertex is reached.

Characterization

A graph has treedepth ≤ d iff Splitter wins the ∞-Splitter
game in ≤ d− 1 rounds.

12

∞-Splitter Game

Splitter isolates a vertex

Treedepth can be characterized by a game
between Connector and Splitter.

∞-Splitter Game: In each round

Connector picks connected component
Splitter isolates a vertex

Splitter wins once a single
vertex is reached.

Characterization

A graph has treedepth ≤ d iff Splitter wins the ∞-Splitter
game in ≤ d− 1 rounds.

12

∞-Splitter Game

Connector picks
connected component

Treedepth can be characterized by a game
between Connector and Splitter.

∞-Splitter Game: In each round

Connector picks connected component
Splitter isolates a vertex

Splitter wins once a single
vertex is reached.

Characterization

A graph has treedepth ≤ d iff Splitter wins the ∞-Splitter
game in ≤ d− 1 rounds.

12

∞-Splitter Game

Splitter isolates a vertex

Treedepth can be characterized by a game
between Connector and Splitter.

∞-Splitter Game: In each round

Connector picks connected component
Splitter isolates a vertex

Splitter wins once a single
vertex is reached.

Characterization

A graph has treedepth ≤ d iff Splitter wins the ∞-Splitter
game in ≤ d− 1 rounds.

12

∞-Splitter Game

Connector picks
connected component

Treedepth can be characterized by a game
between Connector and Splitter.

∞-Splitter Game: In each round

Connector picks connected component
Splitter isolates a vertex

Splitter wins once a single
vertex is reached.

Characterization

A graph has treedepth ≤ d iff Splitter wins the ∞-Splitter
game in ≤ d− 1 rounds.

12

∞-Splitter Game

Connector wins

Treedepth can be characterized by a game
between Connector and Splitter.

∞-Splitter Game: In each round

Connector picks connected component
Splitter isolates a vertex

Splitter wins once a single
vertex is reached.

Characterization

A graph has treedepth ≤ d iff Splitter wins the ∞-Splitter
game in ≤ d− 1 rounds.

12

∞-Splitter Game

Connector wins

Treedepth can be characterized by a game
between Connector and Splitter.

∞-Splitter Game: In each round

Connector picks connected component
Splitter isolates a vertex

Splitter wins once a single
vertex is reached.

Characterization

A graph has treedepth ≤ d iff Splitter wins the ∞-Splitter
game in ≤ d− 1 rounds.

12

r-Splitter Game

Here, the connected components get simpler over time, if we
isolate vertices. But we only need the r-neighborhoods to get
simpler!

r-Splitter Game: In each round

Connector picks a subgraph with radius r (an r-ball)
Splitter isolates a vertex

Splitter wins once a single vertex is reached.
Grohe, Kreuzer, Siebertz

A class of graphs C is nowhere dense ⇔

∀r∃d such that Splitter wins the radius-r game on all graphs
from C in d rounds.

13

r-Splitter Game

Here, the connected components get simpler over time, if we
isolate vertices. But we only need the r-neighborhoods to get
simpler!

r-Splitter Game: In each round

Connector picks a subgraph with radius r (an r-ball)
Splitter isolates a vertex

Splitter wins once a single vertex is reached.

Grohe, Kreuzer, Siebertz

A class of graphs C is nowhere dense ⇔

∀r∃d such that Splitter wins the radius-r game on all graphs
from C in d rounds.

13

r-Splitter Game

Here, the connected components get simpler over time, if we
isolate vertices. But we only need the r-neighborhoods to get
simpler!

r-Splitter Game: In each round

Connector picks a subgraph with radius r (an r-ball)
Splitter isolates a vertex

Splitter wins once a single vertex is reached.
Grohe, Kreuzer, Siebertz

A class of graphs C is nowhere dense ⇔

∀r∃d such that Splitter wins the radius-r game on all graphs
from C in d rounds.

13

Example Play of 2-Splitter Game

14

Example Play of 2-Splitter Game

Connector picks 2-ball

14

Example Play of 2-Splitter Game

Connector picks 2-ball

Splitter isolates vertex

14

Example Play of 2-Splitter Game

Connector picks 2-ball

Splitter isolates vertex

Connector picks 2-ball

14

Example Play of 2-Splitter Game

Connector picks 2-ball

Splitter isolates vertex

Connector picks 2-ball

Splitter isolates vertex

14

Example Play of 2-Splitter Game

Connector picks 2-ball

Splitter isolates vertex

Connector picks 2-ball

Splitter isolates vertex

Connector picks 2-ball

14

Example Play of 2-Splitter Game

Connector picks 2-ball

Splitter isolates vertex

Connector picks 2-ball

Splitter isolates vertex

Connector picks 2-ball

[...]
14

Example Play of 2-Splitter Game

Connector picks 2-ball

Splitter isolates vertex

Connector picks 2-ball

Splitter isolates vertex

Connector picks 2-ball

[...]
Single vertex: Splitter wins 14

Cliques

How long does it take Flipper to win the radius-r game on a clique
of size n?

Too long.

15

Cliques

How long does it take Flipper to win the radius-r game on a clique
of size n? Too long.

15

Flips

Denote by G⊕ F the graph obtained from G by complementing
edges between pairs of vertices from F .

16

Flips

Denote by G⊕ F the graph obtained from G by complementing
edges between pairs of vertices from F .

F

G

16

Flips

Denote by G⊕ F the graph obtained from G by complementing
edges between pairs of vertices from F .

F

G G⊕ F

flip F

F

16

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F

2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game

The radius-r Flipper game is played on a graph G1. In round i

1. Flipper chooses a flip set F
2. Connector chooses Gi+1 as a radius-r ball in Gi ⊕ F .

Flipper wins once Gi has size 1.

Example play of the radius-2 Flipper game:

17

Flipper Game and Monadic Stability

Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, Toruńczyk, 2023

A class of graphs C is monadically stable ⇔

∀r∃d such that Flipper wins the radius-r game on all graphs
from C in d rounds.

Moreover, Flipper’s moves can be computed in time O(n2).

18

Flipper Game and Monadic Stability

Gajarský, Mählmann, McCarty, Ohlmann, Pilipczuk, Przybyszewski, Siebertz, Sokołowski, Toruńczyk, 2023

A class of graphs C is monadically stable ⇔

∀r∃d such that Flipper wins the radius-r game on all graphs
from C in d rounds.

Moreover, Flipper’s moves can be computed in time O(n2).

18

Guiding the Recursion with Splitter Games

. . .

2q-localize
round 1G

G[N2q (v1)] G[N2q (vn)]

|= q-formula?

|= q-formula?

Nodes in our recursion tree are positions of the 2q-splitter game!

19

Guiding the Recursion with Splitter Games

. . .

2q-localize

flip
. . .

round 1

round 2

G |= q-formula?

|= q-formula?

Nodes in our recursion tree are positions of the 2q-splitter game! 19

Guiding the Recursion with Splitter Games

. . .

2q-localize

flip
. . .

round 1

round 2

G

|= E(x, y) |=
E(x, y)⊕

(blue(x) ∧ blue(y))⇐⇒

Update q-formulas by replacing each edge relation:

|= q-formula?

|= q-formula?

|= q-formula?

Give flip-set F a new color.

Nodes in our recursion tree are positions of the 2q-splitter game! 19

Guiding the Recursion with Splitter Games

. . .

2q-localize

flip
. . .

2q-localize

round 1

round 2

G |= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?2q-ball 2q-ball 2q-ball 2q-ball

Nodes in our recursion tree are positions of the 2q-splitter game! 19

Guiding the Recursion with Splitter Games

. . .

2q-localize

flip
. . .

. . .

2q-localize

flip
. . .

. . .

. . .

. . .

. . .

round 1

round 2

round 3

G |= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

Nodes in our recursion tree are positions of the 2q-splitter game! 19

Guiding the Recursion with Splitter Games

. . .

2q-localize

flip
. . .

. . .

2q-localize

flip
. . .

. . .

. . .

. . .

. . .

round 1

round 2

round 3

round d

[. . .]

G |= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

Once we reach single vertices, we are done. 19

Guiding the Recursion with Splitter Games

. . .

2q-localize

flip
. . .

. . .

2q-localize

flip
. . .

. . .

. . .

. . .

. . .

round 1

round 2

round 3

round d

[. . .]

G |= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

Why is it important that the quantifier-rank is preserved? 19

There is just one problem...

We evaluate a formula on a graph by recursing into all 2q-balls of
that graph. If we do it naively, the running time explodes:

20

Recursion Trees are Large

sum: n verticesn

Recursion into all 2q-balls.

In a graph with n vertices, it may be that∑
v∈V (G) |N2q(v)| = n2. The recursion tree grows fast, even if we

apply flips in between. In the end, it may contain graphs whose
number of vertices sum up to nd. This does not lead to an FPT run
time. We instead group recursive calls together using neighborhood
covers.

21

Recursion Trees are Large

. . .

sum: n verticesn

O(n) O(n) sum: O(n2) vertices

localize
and flip

Recursion into all 2q-balls. In a graph with n vertices, it may be that∑
v∈V (G) |N2q(v)| = n2.

The recursion tree grows fast, even if we
apply flips in between. In the end, it may contain graphs whose
number of vertices sum up to nd. This does not lead to an FPT run
time. We instead group recursive calls together using neighborhood
covers.

21

Recursion Trees are Large

. . .

sum: n vertices

sum: O(n3) vertices

n

O(n) O(n) sum: O(n2) vertices

O(n) O(n) O(n) O(n).

localize
and flip

localize
and flip

Recursion into all 2q-balls. In a graph with n vertices, it may be that∑
v∈V (G) |N2q(v)| = n2. The recursion tree grows fast, even if we

apply flips in between.

In the end, it may contain graphs whose
number of vertices sum up to nd. This does not lead to an FPT run
time. We instead group recursive calls together using neighborhood
covers.

21

Recursion Trees are Large

. . .

sum: n vertices

sum: O(n3) vertices

sum: O(nd) vertices
[. . .]

n

O(n) O(n) sum: O(n2) vertices

O(n) O(n) O(n) O(n).

localize
and flip

localize
and flip

localize
and flip

Recursion into all 2q-balls. In a graph with n vertices, it may be that∑
v∈V (G) |N2q(v)| = n2. The recursion tree grows fast, even if we

apply flips in between. In the end, it may contain graphs whose
number of vertices sum up to nd. This does not lead to an FPT run
time.

We instead group recursive calls together using neighborhood
covers.

21

Recursion Trees are Large

. . .

sum: n vertices

sum: O(n3) vertices

sum: O(nd) vertices
[. . .]

n

O(n) O(n) sum: O(n2) vertices

O(n) O(n) O(n) O(n).

localize
and flip

localize
and flip

localize
and flip

Recursion into all 2q-balls. In a graph with n vertices, it may be that∑
v∈V (G) |N2q(v)| = n2. The recursion tree grows fast, even if we

apply flips in between. In the end, it may contain graphs whose
number of vertices sum up to nd. This does not lead to an FPT run
time. We instead group recursive calls together using neighborhood
covers. 21

Neighborhood Covers

1-neigbhorhood cover with degree 2

We say an r-ball is a subgraph with radius r. An r-neighborhood
cover with overlap ∆ in a graph G is a collection of sets
C1, . . . , Cl ⊆ V (G) such that

every r-ball of G is contained in some Ci,
every Ci is contained in some 4r-ball of G,
every vertex of G is contained in at most ∆ many Ci.

D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2024

Let C be a monadically stable graph class. For every r ∈ N
and ε > 0 there exists c, such that every n-vertex G ∈ C has
an r-neighborhood cover with overlap c · nε.

Then in particular,
∑l

i=1 |Ci| ≤ n · c · nε.

22

Neighborhood Covers

1-neigbhorhood cover with degree 2

We say an r-ball is a subgraph with radius r. An r-neighborhood
cover with overlap ∆ in a graph G is a collection of sets
C1, . . . , Cl ⊆ V (G) such that

every r-ball of G is contained in some Ci,
every Ci is contained in some 4r-ball of G,
every vertex of G is contained in at most ∆ many Ci.

D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2024

Let C be a monadically stable graph class. For every r ∈ N
and ε > 0 there exists c, such that every n-vertex G ∈ C has
an r-neighborhood cover with overlap c · nε.

Then in particular,
∑l

i=1 |Ci| ≤ n · c · nε.

22

Neighborhood Covers

1-neigbhorhood cover with degree 2

We say an r-ball is a subgraph with radius r. An r-neighborhood
cover with overlap ∆ in a graph G is a collection of sets
C1, . . . , Cl ⊆ V (G) such that

every r-ball of G is contained in some Ci,
every Ci is contained in some 4r-ball of G,
every vertex of G is contained in at most ∆ many Ci.

D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2024

Let C be a monadically stable graph class. For every r ∈ N
and ε > 0 there exists c, such that every n-vertex G ∈ C has
an r-neighborhood cover with overlap c · nε.

Then in particular,
∑l

i=1 |Ci| ≤ n · c · nε.

22

Algorithm Idea using Neighborhood Covers

We just saw that recursing into the r-neighborhood of every vertex
is too expensive. Instead, we will “aggregate” some computations
by recursing only into r-neighborhood covers.

We aim for the following recursive calls:

23

Algorithm Idea using Neighborhood Covers

We just saw that recursing into the r-neighborhood of every vertex
is too expensive. Instead, we will “aggregate” some computations
by recursing only into r-neighborhood covers.

We aim for the following recursive calls:

23

Algorithm Idea using Neighborhood Covers

|= q-formula?

reduces to

G

|= q-formula?G[C1] G[Cl]. . .

(f(q, c) evaluations perG[Ci])

where C1, . . . , Cl is an r-neighborhood cover ofG with r := 12q · (2q + 1)2

Each G[Ci] has radius at most 4r, so these still are “localization
moves” in the 4r-Flipper game, bounding the recursion depth.

To get an idea of the run time of such a recursion, let us count the
summed number of vertices per level.

24

Algorithm Idea using Neighborhood Covers

|= q-formula?

reduces to

G

|= q-formula?G[C1] G[Cl]. . .

(f(q, c) evaluations perG[Ci])

where C1, . . . , Cl is an r-neighborhood cover ofG with r := 12q · (2q + 1)2

Each G[Ci] has radius at most 4r, so these still are “localization
moves” in the 4r-Flipper game, bounding the recursion depth.

To get an idea of the run time of such a recursion, let us count the
summed number of vertices per level.

24

Algorithm Idea using Neighborhood Covers

|= q-formula?

reduces to

G

|= q-formula?G[C1] G[Cl]. . .

(f(q, c) evaluations perG[Ci])

where C1, . . . , Cl is an r-neighborhood cover ofG with r := 12q · (2q + 1)2

Each G[Ci] has radius at most 4r, so these still are “localization
moves” in the 4r-Flipper game, bounding the recursion depth.

To get an idea of the run time of such a recursion, let us count the
summed number of vertices per level. 24

Small Recursion Trees using Neighborhood Covers

n verticesn

Assume we recurse into r-neighborhood covers with
∑l

i=1 |Cl| = n1+ε.

The vertices in level i sum up to n(1+ε)i .
Set ε > 0 for example such that n(1+ε)d ≤ n1.0001.

25

Small Recursion Trees using Neighborhood Covers

. . .

n verticesn

|C1| |Cl|
∑l

i=1 |Ci| = n1+ε vertices

localize
and flip

Assume we recurse into r-neighborhood covers with
∑l

i=1 |Cl| = n1+ε.

The vertices in level i sum up to n(1+ε)i .
Set ε > 0 for example such that n(1+ε)d ≤ n1.0001.

25

Small Recursion Trees using Neighborhood Covers

. . .

n verticesn

|C1| |Cl|
∑l

i=1 |Ci| = n1+ε vertices

.

≤ |C1|1+ε vertices ≤ |Cl|1+ε vertices
︸ ︷︷ ︸ ︸ ︷︷ ︸

localize
and flip

localize
and flip

Assume we recurse into r-neighborhood covers with
∑l

i=1 |Cl| = n1+ε.

The vertices in level i sum up to n(1+ε)i .
Set ε > 0 for example such that n(1+ε)d ≤ n1.0001.

25

Small Recursion Trees using Neighborhood Covers

. . .

n verticesn

|C1| |Cl|
∑l

i=1 |Ci| = n1+ε vertices

.

≤ |C1|1+ε vertices ≤ |Cl|1+ε vertices

≤
∑l

i=1 |Ci|1+ε vertices

︸ ︷︷ ︸ ︸ ︷︷ ︸

localize
and flip

localize
and flip

Assume we recurse into r-neighborhood covers with
∑l

i=1 |Cl| = n1+ε.

The vertices in level i sum up to n(1+ε)i .
Set ε > 0 for example such that n(1+ε)d ≤ n1.0001.

25

Small Recursion Trees using Neighborhood Covers

. . .

n verticesn

|C1| |Cl|
∑l

i=1 |Ci| = n1+ε vertices

.

≤ |C1|1+ε vertices ≤ |Cl|1+ε vertices

≤
∑l

i=1 |Ci|1+ε vertices
≤
(∑l

i=1 |Ci|
)1+ε︸ ︷︷ ︸ ︸ ︷︷ ︸

localize
and flip

localize
and flip

Assume we recurse into r-neighborhood covers with
∑l

i=1 |Cl| = n1+ε.

The vertices in level i sum up to n(1+ε)i .
Set ε > 0 for example such that n(1+ε)d ≤ n1.0001.

25

Small Recursion Trees using Neighborhood Covers

. . .

n verticesn

|C1| |Cl|
∑l

i=1 |Ci| = n1+ε vertices

.

≤ |C1|1+ε vertices ≤ |Cl|1+ε vertices

≤
∑l

i=1 |Ci|1+ε vertices
≤
(∑l

i=1 |Ci|
)1+ε

≤
(
n1+ε

)1+ε︸ ︷︷ ︸ ︸ ︷︷ ︸

localize
and flip

localize
and flip

Assume we recurse into r-neighborhood covers with
∑l

i=1 |Cl| = n1+ε.

The vertices in level i sum up to n(1+ε)i .
Set ε > 0 for example such that n(1+ε)d ≤ n1.0001.

25

Small Recursion Trees using Neighborhood Covers

. . .

n verticesn

|C1| |Cl|
∑l

i=1 |Ci| = n1+ε vertices

.

≤ |C1|1+ε vertices ≤ |Cl|1+ε vertices

≤
∑l

i=1 |Ci|1+ε vertices
≤
(∑l

i=1 |Ci|
)1+ε

≤
(
n1+ε

)1+ε

≤ n(1+ε)2 vertices

︸ ︷︷ ︸ ︸ ︷︷ ︸

localize
and flip

localize
and flip

Assume we recurse into r-neighborhood covers with
∑l

i=1 |Cl| = n1+ε.
The vertices in level i sum up to n(1+ε)i .

Set ε > 0 for example such that n(1+ε)d ≤ n1.0001.

25

Small Recursion Trees using Neighborhood Covers

. . .

n vertices

≤ n(1+ε)d vertices
[. . .]

n

|C1| |Cl|
∑l

i=1 |Ci| = n1+ε vertices

.

≤ |C1|1+ε vertices ≤ |Cl|1+ε vertices

≤
∑l

i=1 |Ci|1+ε vertices
≤
(∑l

i=1 |Ci|
)1+ε

≤
(
n1+ε

)1+ε

≤ n(1+ε)2 vertices

︸ ︷︷ ︸ ︸ ︷︷ ︸

localize
and flip

localize
and flip

localize
and flip

Assume we recurse into r-neighborhood covers with
∑l

i=1 |Cl| = n1+ε.
The vertices in level i sum up to n(1+ε)i .

Set ε > 0 for example such that n(1+ε)d ≤ n1.0001.

25

Small Recursion Trees using Neighborhood Covers

. . .

n vertices

≤ n(1+ε)d vertices
[. . .]

n

|C1| |Cl|
∑l

i=1 |Ci| = n1+ε vertices

.

≤ |C1|1+ε vertices ≤ |Cl|1+ε vertices

≤
∑l

i=1 |Ci|1+ε vertices
≤
(∑l

i=1 |Ci|
)1+ε

≤
(
n1+ε

)1+ε

≤ n(1+ε)2 vertices

︸ ︷︷ ︸ ︸ ︷︷ ︸

localize
and flip

localize
and flip

localize
and flip

Assume we recurse into r-neighborhood covers with
∑l

i=1 |Cl| = n1+ε.
The vertices in level i sum up to n(1+ε)i .
Set ε > 0 for example such that n(1+ε)d ≤ n1.0001. 25

Updating the Localization Routine

We need to update our localization routine to be faster.

We previously evaluated a formula by

recursing into the 2q-neighborhoods of every vertex,
and picking a small representative set of vertices.

Instead, we

recurse into the neighborhood covers only,
and pick a small representative set of neighborhood covers.

26

Updating the Localization Routine

We need to update our localization routine to be faster.

We previously evaluated a formula by

recursing into the 2q-neighborhoods of every vertex,
and picking a small representative set of vertices.

Instead, we

recurse into the neighborhood covers only,
and pick a small representative set of neighborhood covers.

26

Updating the Localization Routine

We need to update our localization routine to be faster.

We previously evaluated a formula by

recursing into the 2q-neighborhoods of every vertex,
and picking a small representative set of vertices.

Instead, we

recurse into the neighborhood covers only,
and pick a small representative set of neighborhood covers.

26

Algorithm Idea using Neighborhood Covers

Assume we want to evaluate on a graph G with a 2q-neighborhood
cover C1, . . . , Cl the formula ∃x φ(x) of quantifier rank q.

Let Vi be
all vertices v with N2q(v) ⊆ Ci. Since V1 ∪ · · · ∪ Vl = V (G),

G |= ∃x φ(x)

⇐⇒

G |= ∃x ∈ V1φ(x)∨ G |= ∃x ∈ V2 φ(x) ∨ . . . ∨G |= ∃x ∈ Vl φ(x).

Assume we know G |= ∃x ∈ V1 φ(x) ⇐⇒ G |= ∃x ∈ V2 φ(x).
We only need to keep one “representative”.

27

Algorithm Idea using Neighborhood Covers

Assume we want to evaluate on a graph G with a 2q-neighborhood
cover C1, . . . , Cl the formula ∃x φ(x) of quantifier rank q. Let Vi be
all vertices v with N2q(v) ⊆ Ci.

Since V1 ∪ · · · ∪ Vl = V (G),

G |= ∃x φ(x)

⇐⇒

G |= ∃x ∈ V1φ(x)∨ G |= ∃x ∈ V2 φ(x) ∨ . . . ∨G |= ∃x ∈ Vl φ(x).

Assume we know G |= ∃x ∈ V1 φ(x) ⇐⇒ G |= ∃x ∈ V2 φ(x).
We only need to keep one “representative”.

27

Algorithm Idea using Neighborhood Covers

Assume we want to evaluate on a graph G with a 2q-neighborhood
cover C1, . . . , Cl the formula ∃x φ(x) of quantifier rank q. Let Vi be
all vertices v with N2q(v) ⊆ Ci. Since V1 ∪ · · · ∪ Vl = V (G),

G |= ∃x φ(x)

⇐⇒

G |= ∃x ∈ V1φ(x)∨ G |= ∃x ∈ V2 φ(x) ∨ . . . ∨G |= ∃x ∈ Vl φ(x).

Assume we know G |= ∃x ∈ V1 φ(x) ⇐⇒ G |= ∃x ∈ V2 φ(x).
We only need to keep one “representative”.

27

Algorithm Idea using Neighborhood Covers

Assume we want to evaluate on a graph G with a 2q-neighborhood
cover C1, . . . , Cl the formula ∃x φ(x) of quantifier rank q. Let Vi be
all vertices v with N2q(v) ⊆ Ci. Since V1 ∪ · · · ∪ Vl = V (G),

G |= ∃x φ(x)

⇐⇒

G |= ∃x ∈ V1φ(x)∨ G |= ∃x ∈ V2 φ(x) ∨ . . . ∨G |= ∃x ∈ Vl φ(x).

Assume we know G |= ∃x ∈ V1 φ(x) ⇐⇒ G |= ∃x ∈ V2 φ(x).

We only need to keep one “representative”.

27

Algorithm Idea using Neighborhood Covers

Assume we want to evaluate on a graph G with a 2q-neighborhood
cover C1, . . . , Cl the formula ∃x φ(x) of quantifier rank q. Let Vi be
all vertices v with N2q(v) ⊆ Ci. Since V1 ∪ · · · ∪ Vl = V (G),

G |= ∃x φ(x)

⇐⇒

G |= ∃x ∈ V1φ(x)∨ G |= ∃x ∈ V2 φ(x) ∨ . . . ∨G |= ∃x ∈ Vl φ(x).

Assume we know G |= ∃x ∈ V1 φ(x) ⇐⇒ G |= ∃x ∈ V2 φ(x).
We only need to keep one “representative”.

27

Algorithm Idea using Neighborhood Covers

Assume we want to evaluate on a graph G with a 2q-neighborhood
cover C1, . . . , Cl the formula ∃x φ(x) of quantifier rank q. Let Vi be
all vertices v with N2q(v) ⊆ Ci. Since V1 ∪ · · · ∪ Vl = V (G),

G |= ∃x φ(x)

⇐⇒

G |= ∃x ∈ V1φ(x)∨ G |= ∃x ∈ V2 φ(x) ∨ . . . ∨G |= ∃x ∈ Vl φ(x).

Assume we know G |= ∃x ∈ V1 φ(x) ⇐⇒ G |= ∃x ∈ V2 φ(x).
We only need to keep one “representative”.

27

Algorithm Idea using Neighborhood Covers

|= q-formula?

reduces to

G

|= q-formula?G[C1] G[Cl]. . .

(f(q, c) evaluations perG[Ci])

where C1, . . . , Cl is an r-neighborhood cover ofG with r := 12q · (2q + 1)2

28

Updated Branching

. . .

2r-localize
round 1

G[C1] G[Cl]

|= q-formula?

|= q-formula?

29

Updated Branching

. . .

2r-localize
round 1

G[C1] G[Cl]

evaluations perG[Ci]:
f(q, c)

vertex sum:
f(q, c) · n1+ε

|= q-formula?

|= q-formula?

29

Updated Branching

. . .

2r-localize

flip
. . .

round 1

round 2

|= q-formula?

|= q-formula?

|= q-formula?

29

Updated Branching

. . .

2r-localize

flip
. . .

round 1

round 2

|= q-formula?

|= q-formula?

|= q-formula?

|= E(x, y) |=
E(x, y)⊕

(blue(x) ∧ blue(y))⇐⇒

Update q-formulas by replacing each edge relation:
Give flip-set F a new color.

|= E(x, y) |=
E(x, y)⊕

(blue(x) ∧ blue(y))⇐⇒

Update q-formulas by replacing each edge relation:
Give flip-set F a new color.

29

Updated Branching

. . .

2r-localize

flip
. . .

2r-localize

round 1

round 2

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

29

Updated Branching

. . .

2r-localize

flip
. . .

2r-localize

round 1

round 2

vertex sum:
f ′(q, c) · n(1+ε)2

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

29

Updated Branching

|= q-formula?

. . .

2r-localize

flip
. . .

. . .

2r-localize

flip
. . .

. . .

. . .

. . .

. . .

round 1

round 2

round 3

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

29

Updated Branching

|= q-formula?

|= q-formula?

. . .

2r-localize

flip
. . .

. . .

2r-localize

flip
. . .

. . .

. . .

. . .

. . .

round 1

round 2

round 3

round d

[. . .]

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

29

Updated Branching

|= q-formula?

|= q-formula?

. . .

2r-localize

flip
. . .

. . .

2r-localize

flip
. . .

. . .

. . .

. . .

. . .

round 1

round 2

round 3

round d

[. . .]
vertex sum:

f ′′(q, c) · n(1+ε)d

pick ε such that this is
f ′′(q, c) · n1.001

|= q-formula?

|= q-formula?

|= q-formula?

|= q-formula?

29

Summary

This completes the proof (sketch) of the theorem.

D, Mählmann, Siebertz, 2023
D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2024

Let C be a monadically stable graph class. There exists a func-
tion f such that for every FO formula φ and graphG ∈ C one
can decide whether G |= φ in time f(|φ|)n6.

30

Summary

In summary, we used three ingredients.

The local types help use localize while preserving the
quantifier-rank (and thus the radius of the Flipper game).

The Flipper game bounds the depth of the recursion tree.

The neighborhood covers bound the size of the recursion tree.

31

Summary

In summary, we used three ingredients.

The local types help use localize while preserving the
quantifier-rank (and thus the radius of the Flipper game).

The Flipper game bounds the depth of the recursion tree.

The neighborhood covers bound the size of the recursion tree.

31

Summary

In summary, we used three ingredients.

The local types help use localize while preserving the
quantifier-rank (and thus the radius of the Flipper game).

The Flipper game bounds the depth of the recursion tree.

The neighborhood covers bound the size of the recursion tree.

31

Summary

In summary, we used three ingredients.

The local types help use localize while preserving the
quantifier-rank (and thus the radius of the Flipper game).

The Flipper game bounds the depth of the recursion tree.

The neighborhood covers bound the size of the recursion tree.

31

Prove that the following are functionally equivalent.

A constant number of flips.
A constant number of pairwise flips.
A flip based on a partition into a constant number of parts.

32

Prove that every nowhere dense graph class is monadically stable.

Prove: If Splitter can win the radius-r Splitter game in d rounds,
then Flipper can win the radius-r Flipper game in 3d rounds.

33

Prove that every nowhere dense graph class is monadically stable.

Prove: If Splitter can win the radius-r Splitter game in d rounds,
then Flipper can win the radius-r Flipper game in 3d rounds.

33

Prove directly: First-order model-checking is fpt on the class of
log(n) subdivisions of graphs of size n.

34

Prove that Connector has a winning strategy for the radius-2
Flipper game to play for Θ(log(n)) rounds on ladders of length n.

35

Show that every class of bounded degree has neighborhood
covers with bounded overlap.

Show that every tree has radius-1 neighborhood covers with
overlap at most three.

A graph class has subpolynomial degree if the degree of every
n-vertex graph is bounded by f(ϵ)nϵ for every ϵ > 0. Prove
that such a class has neighborhood covers with subpolynomial
overlap.

36

Show that every class of bounded degree has neighborhood
covers with bounded overlap.

Show that every tree has radius-1 neighborhood covers with
overlap at most three.

A graph class has subpolynomial degree if the degree of every
n-vertex graph is bounded by f(ϵ)nϵ for every ϵ > 0. Prove
that such a class has neighborhood covers with subpolynomial
overlap.

36

Show that every class of bounded degree has neighborhood
covers with bounded overlap.

Show that every tree has radius-1 neighborhood covers with
overlap at most three.

A graph class has subpolynomial degree if the degree of every
n-vertex graph is bounded by f(ϵ)nϵ for every ϵ > 0. Prove
that such a class has neighborhood covers with subpolynomial
overlap.

36

Normalize first-order formulas such that the number of formulas
with quantifier rank q and c colors is bounded by some function
f(q, c).

37

