
The combinatorics of monadic stability, monadic
dependence, and related notions

Algomanet, Warsaw, September 9-13, 2024

Jan Dreier, TU Wien

1

Understanding Monadic Stability and

Monadic Dependence via

logic,

combinatorics, and

algorithms.

2

Map of the Universe

Figure by Michał Pilipczuk
3

Schedule

Monday morning: meta-theorems, logic, nowhere dense
(+exercises)

Monday afternoon: monadic stability and monadic
dependence (+exercises)

Tuesday morning: first-order model-checking
Tuesday afternoon: exercises
Wednesday morning: Ramsey and forbidden subgraphs
Wednesday afternoon: exercises
Thursday morning: neighborhood complexity and

neighborhood covers
Thursday afternoon: exercises
Friday morning: pursuit-evasion games and flip-width
Friday afternoon: exercises

4

Schedule

Monday morning: meta-theorems, logic, nowhere dense
(+exercises)

Monday afternoon: monadic stability and monadic
dependence (+exercises)

Tuesday morning: first-order model-checking
Tuesday afternoon: exercises
Wednesday morning: Ramsey and forbidden subgraphs
Wednesday afternoon: exercises
Thursday morning: neighborhood complexity and

neighborhood covers
Thursday afternoon: exercises
Friday morning: pursuit-evasion games and flip-width
Friday afternoon: exercises

4

Schedule

Monday morning: meta-theorems, logic, nowhere dense
(+exercises)

Monday afternoon: monadic stability and monadic
dependence (+exercises)

Tuesday morning: first-order model-checking

Tuesday afternoon: exercises
Wednesday morning: Ramsey and forbidden subgraphs
Wednesday afternoon: exercises
Thursday morning: neighborhood complexity and

neighborhood covers
Thursday afternoon: exercises
Friday morning: pursuit-evasion games and flip-width
Friday afternoon: exercises

4

Schedule

Monday morning: meta-theorems, logic, nowhere dense
(+exercises)

Monday afternoon: monadic stability and monadic
dependence (+exercises)

Tuesday morning: first-order model-checking
Tuesday afternoon: exercises

Wednesday morning: Ramsey and forbidden subgraphs
Wednesday afternoon: exercises
Thursday morning: neighborhood complexity and

neighborhood covers
Thursday afternoon: exercises
Friday morning: pursuit-evasion games and flip-width
Friday afternoon: exercises

4

Schedule

Monday morning: meta-theorems, logic, nowhere dense
(+exercises)

Monday afternoon: monadic stability and monadic
dependence (+exercises)

Tuesday morning: first-order model-checking
Tuesday afternoon: exercises
Wednesday morning: Ramsey and forbidden subgraphs

Wednesday afternoon: exercises
Thursday morning: neighborhood complexity and

neighborhood covers
Thursday afternoon: exercises
Friday morning: pursuit-evasion games and flip-width
Friday afternoon: exercises

4

Schedule

Monday morning: meta-theorems, logic, nowhere dense
(+exercises)

Monday afternoon: monadic stability and monadic
dependence (+exercises)

Tuesday morning: first-order model-checking
Tuesday afternoon: exercises
Wednesday morning: Ramsey and forbidden subgraphs
Wednesday afternoon: exercises

Thursday morning: neighborhood complexity and
neighborhood covers

Thursday afternoon: exercises
Friday morning: pursuit-evasion games and flip-width
Friday afternoon: exercises

4

Schedule

Monday morning: meta-theorems, logic, nowhere dense
(+exercises)

Monday afternoon: monadic stability and monadic
dependence (+exercises)

Tuesday morning: first-order model-checking
Tuesday afternoon: exercises
Wednesday morning: Ramsey and forbidden subgraphs
Wednesday afternoon: exercises
Thursday morning: neighborhood complexity and

neighborhood covers

Thursday afternoon: exercises
Friday morning: pursuit-evasion games and flip-width
Friday afternoon: exercises

4

Schedule

Monday morning: meta-theorems, logic, nowhere dense
(+exercises)

Monday afternoon: monadic stability and monadic
dependence (+exercises)

Tuesday morning: first-order model-checking
Tuesday afternoon: exercises
Wednesday morning: Ramsey and forbidden subgraphs
Wednesday afternoon: exercises
Thursday morning: neighborhood complexity and

neighborhood covers
Thursday afternoon: exercises

Friday morning: pursuit-evasion games and flip-width
Friday afternoon: exercises

4

Schedule

Monday morning: meta-theorems, logic, nowhere dense
(+exercises)

Monday afternoon: monadic stability and monadic
dependence (+exercises)

Tuesday morning: first-order model-checking
Tuesday afternoon: exercises
Wednesday morning: Ramsey and forbidden subgraphs
Wednesday afternoon: exercises
Thursday morning: neighborhood complexity and

neighborhood covers
Thursday afternoon: exercises
Friday morning: pursuit-evasion games and flip-width

Friday afternoon: exercises

4

Schedule

Monday morning: meta-theorems, logic, nowhere dense
(+exercises)

Monday afternoon: monadic stability and monadic
dependence (+exercises)

Tuesday morning: first-order model-checking
Tuesday afternoon: exercises
Wednesday morning: Ramsey and forbidden subgraphs
Wednesday afternoon: exercises
Thursday morning: neighborhood complexity and

neighborhood covers
Thursday afternoon: exercises
Friday morning: pursuit-evasion games and flip-width
Friday afternoon: exercises 4

Overview

Topics we will touch:

parameterized complexity

first-order logic
treewidth, treedepth, cliquewidth, etc.
nowhere dense classes
twin-width
monadic stability/dependence

5

Overview

Topics we will touch:

parameterized complexity
first-order logic

treewidth, treedepth, cliquewidth, etc.
nowhere dense classes
twin-width
monadic stability/dependence

5

Overview

Topics we will touch:

parameterized complexity
first-order logic
treewidth, treedepth, cliquewidth, etc.

nowhere dense classes
twin-width
monadic stability/dependence

5

Overview

Topics we will touch:

parameterized complexity
first-order logic
treewidth, treedepth, cliquewidth, etc.
nowhere dense classes

twin-width
monadic stability/dependence

5

Overview

Topics we will touch:

parameterized complexity
first-order logic
treewidth, treedepth, cliquewidth, etc.
nowhere dense classes
twin-width

monadic stability/dependence

5

Overview

Topics we will touch:

parameterized complexity
first-order logic
treewidth, treedepth, cliquewidth, etc.
nowhere dense classes
twin-width
monadic stability/dependence

5

MOTIVATION

An Example

INDEPENDENTSET

Input: Graph G and number k
Question: Are there k pairwise non-adjacent vertices in G?

INDEPENDENTSET is NP-complete

7

An Example

INDEPENDENTSET

Input: Graph G and number k
Question: Are there k pairwise non-adjacent vertices in G?

INDEPENDENTSET is NP-complete

7

Planar Graphs

Does it help to restrict the input to certain “well-behaved” graphs?
For example planar graphs?

INDEPENDENTSET is NP-complete on planar graphs.

8

Planar Graphs

Does it help to restrict the input to certain “well-behaved” graphs?
For example planar graphs?

INDEPENDENTSET is NP-complete on planar graphs.

8

Parameterized Complexity

Assign each instance a number, called the parameter. We hope that

we can solve the instance if the parameter is small,
interesting instances have a small parameter.

NP-hard problems may still be tractable for small parameter
values!

9

Parameterized Independent Set

PARAMETERIZED INDEPENDENTSET

Input: Graph G and integer k
Parameter: k

Question: Does G have an independent set of size k?

A parameterized problem is fixed parameter tractable (fpt) if
instances with parameter k and size n can be solved in time f(k)nc

(for some fixed function f and constant c).

Is PARAMETERIZED INDEPENDENTSET fixed parameter tractable?

10

Parameterized Hardness

The best known algorithm takes time nΘ(k).

for v1 ∈ V

for v2 ∈ V

. . .
for vk ∈ V

check if v1, . . . , vk is an IS of size k

This is optimal (under certain complexity assumptions).

PARAMETERIZED INDEPENDENTSET is not fixed parameter
tractable (unless FPT = W[1]).

11

Parameterized Hardness

The best known algorithm takes time nΘ(k).

for v1 ∈ V

for v2 ∈ V

. . .
for vk ∈ V

check if v1, . . . , vk is an IS of size k

This is optimal (under certain complexity assumptions).

PARAMETERIZED INDEPENDENTSET is not fixed parameter
tractable (unless FPT = W[1]).

11

Parameterized Hardness

The best known algorithm takes time nΘ(k).

for v1 ∈ V

for v2 ∈ V

. . .
for vk ∈ V

check if v1, . . . , vk is an IS of size k

This is optimal (under certain complexity assumptions).

PARAMETERIZED INDEPENDENTSET is not fixed parameter
tractable (unless FPT = W[1]).

11

Independent Set on Planar Graphs

How about parameterized independent set on planar graphs?

PARAMETERIZED INDEPENDENTSET is fixed parameter
tractable on planar graphs.

12

Independent Set on Planar Graphs

How about parameterized independent set on planar graphs?

PARAMETERIZED INDEPENDENTSET is fixed parameter
tractable on planar graphs.

12

Independent Set on Planar Graphs

We want to find an independent set of size k.

In planar graphs there is always a vertex v with degree ≤ 5.
At least one vertex w from N(v) is in a maximal independent

set.
We guess w, place w in solution and remove N(w).
Then find a solution of size k − 1 in remaining graph.

13

Independent Set on Planar Graphs

We want to find an independent set of size k.
In planar graphs there is always a vertex v with degree ≤ 5.

At least one vertex w from N(v) is in a maximal independent
set.

We guess w, place w in solution and remove N(w).
Then find a solution of size k − 1 in remaining graph.

v

13

Independent Set on Planar Graphs

We want to find an independent set of size k.
In planar graphs there is always a vertex v with degree ≤ 5.
At least one vertex w from N(v) is in a maximal independent

set.

We guess w, place w in solution and remove N(w).
Then find a solution of size k − 1 in remaining graph.

one of them
w

v

13

Independent Set on Planar Graphs

We want to find an independent set of size k.
In planar graphs there is always a vertex v with degree ≤ 5.
At least one vertex w from N(v) is in a maximal independent

set.
We guess w, place w in solution and remove N(w).

Then find a solution of size k − 1 in remaining graph.

w

13

Independent Set on Planar Graphs

We want to find an independent set of size k.
In planar graphs there is always a vertex v with degree ≤ 5.
At least one vertex w from N(v) is in a maximal independent

set.
We guess w, place w in solution and remove N(w).
Then find a solution of size k − 1 in remaining graph.

w

13

Algorithm

IS(G, k):
if G is empty return k == 0

find vertex v with degree ≤ 5 in G

for all w ∈ N(v):
if IS(G \N(w), k − 1) return True

return False

This solves PARAMETERIZED INDEPENDENTSET on planar graphs in
time O(6kn).

14

Conclusion

INDEPENDENTSET is hard even if we

consider only planar graphs, or
parameterize by the solution size.

But the problem becomes tractable if we both

consider only planar graphs, and
parameterize by the solution size.

15

Conclusion

INDEPENDENTSET is hard even if we

consider only planar graphs, or
parameterize by the solution size.

But the problem becomes tractable if we both

consider only planar graphs, and
parameterize by the solution size.

15

Other Problems?

Is parameterized Dominating Set FPT on planar graphs?
Is parameterized Clique FPT on bounded genus graphs?
. . .

We would like a single mechanism that answers these and similar
questions.

16

Algorithmic Meta-Theorems

Algorithmic Meta-Theorems:

“All Problems expressible in Logic L can be solved efficiently on graph
classes with property P ”

Our Goal:

L is first-order logic
P are monadically dependent graph classes

17

Algorithmic Meta-Theorems

Algorithmic Meta-Theorems:

“All Problems expressible in Logic L can be solved efficiently on graph
classes with property P ”

Our Goal:

L is first-order logic
P are monadically dependent graph classes

17

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph ↔ structure

induced subgraph ↔ substructure
vertex ↔ element
all vertices of a graph ↔ universe of the structure
adjacency ↔ binary relation
colors ↔ unary relation

18

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph ↔ structure
induced subgraph ↔ substructure

vertex ↔ element
all vertices of a graph ↔ universe of the structure
adjacency ↔ binary relation
colors ↔ unary relation

18

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph ↔ structure
induced subgraph ↔ substructure

vertex ↔ element
all vertices of a graph ↔ universe of the structure
adjacency ↔ binary relation
colors ↔ unary relation

18

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph ↔ structure
induced subgraph ↔ substructure
vertex ↔ element
all vertices of a graph ↔ universe of the structure

adjacency ↔ binary relation
colors ↔ unary relation

18

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph ↔ structure
induced subgraph ↔ substructure
vertex ↔ element
all vertices of a graph ↔ universe of the structure
adjacency ↔ binary relation

colors ↔ unary relation

18

Logic vs Graph-Theory

Graph-theorists and logicans use different languages:

graph ↔ structure
induced subgraph ↔ substructure
vertex ↔ element
all vertices of a graph ↔ universe of the structure
adjacency ↔ binary relation
colors ↔ unary relation

18

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {E, c1, c2, . . . } where

◦ the universe are the vertices
◦ E denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

19

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {E, c1, c2, . . . } where

◦ the universe are the vertices
◦ E denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

19

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {E, c1, c2, . . . } where

◦ the universe are the vertices
◦ E denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

19

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {E, c1, c2, . . . } where

◦ the universe are the vertices

◦ E denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

19

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {E, c1, c2, . . . } where

◦ the universe are the vertices
◦ E denotes the binary adjacency relation between vertices

◦ ci denotes the unary relation “the vertex is colored with color i”

19

Graphs as Structures

Logic works on structures. We can easily see graphs as structures.

Each structure has a signature τ : a set of relational symbols
with given arities.

We interpret colored undirected graphs as τ-structures with
τ = {E, c1, c2, . . . } where

◦ the universe are the vertices
◦ E denotes the binary adjacency relation between vertices
◦ ci denotes the unary relation “the vertex is colored with color i”

19

Example

This graph is a structure G with

universe V = {a, b, c}
symmetrical binary relation

E := {(a, b), (b, a), (b, c), (c, b), (a, c), (c, a)}
unary relations c1 := {a}, c2 := {c}

a

cb 20

First-Order Logic

For a given signature τ , first-order logic has . . .

element-variables (x, y, z, . . .)
the equality relation = as well as the relations from τ .
quantifiers ∃ and ∀, as well as operators ∧, ∨ and ¬

We mostly work on colored undirected graphs with
τ = {E, c1, c2, . . . }.

21

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

22

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

22

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

22

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

22

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

22

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

The number of vertices is even.

No.
The graph is connected. No.

22

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

The number of vertices is even. No.

The graph is connected. No.

22

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

The number of vertices is even. No.
The graph is connected.

No.

22

Expressiveness

Can these properties be expressed in FO logic?

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

The number of vertices is even. No.
The graph is connected. No.

22

Central Problem

First-Order Model-Checking

Input: Graph G and first-order sentence φ

Question: G |= φ?

23

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-hard.

Proof: Reduction from Independent Set.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

It is reasonable to assume that the length of the formula is small
compared to the size of the graph. Parameterize by |φ|.

24

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-hard.

Proof: Reduction from Independent Set.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

It is reasonable to assume that the length of the formula is small
compared to the size of the graph. Parameterize by |φ|.

24

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-hard.

Proof: Reduction from Independent Set.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

It is reasonable to assume that the length of the formula is small
compared to the size of the graph. Parameterize by |φ|.

24

Complexity

Theorem (Vardi 1982)

The model-checking problem is PSPACE-complete.

FO model-checking on planar graphs in NP-hard.

Proof: Reduction from Independent Set.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

It is reasonable to assume that the length of the formula is small
compared to the size of the graph. Parameterize by |φ|.

24

Parameterized Complexity (Upper Bound)

Theorem

One can decide whether G |= φ in time O(|G||φ|).

25

Evaluation Trees

Proof: Construct an evaluation tree of size O(|G||φ|).

∃x∀y∃zϕ(x, y, z)

. . .v1 v2 v3 vn
∀y∃zϕ(v3, y, z)

. . .v1 v2 v3 vn
∃zϕ(v3, v3, z)

. . .v1 v2 v3 vn
ϕ(v3, v3, v3) 26

Parameterized Complexity (Lower Bound)

Conjecture (based on SETH)

One cannot decide whether G |= φ in time O(|G|q−1−ε) for
any ε > 0 where q is the number of quantifiers of φ.

The previous algorithm is probably more or less optimal.

A faster model-checking algorithm would lead to an unexpected
faster algorithm for many hard problems.

On certain graph classes, we can do much better though.

27

First-Order Logic

Target Statement

Let C be a “well-behaved” graph class. For an FO formula φ

and graph G ∈ C one can decide whether G |= φ in time
f(|φ|)n10 for some function f .

Examples of “well-behaved” classes:

bounded degree
planar graphs
. . .

28

First-Order Logic

Target Statement

Let C be a “well-behaved” graph class. For an FO formula φ

and graph G ∈ C one can decide whether G |= φ in time
f(|φ|)n10 for some function f .

Examples of “well-behaved” classes:

bounded degree
planar graphs
. . .

28

Expressiveness

Every problem expressible in first-order logic . . .

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

. . . can be solved in time f(k) · n10 on well-behaved graph classes.

29

Expressiveness

Every problem expressible in first-order logic . . .

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

. . . can be solved in time f(k) · n10 on well-behaved graph classes.

29

Expressiveness

Every problem expressible in first-order logic . . .

There exists an independent set of size k.

∃x1 . . . ∃xk
∧
i ̸=j

¬E(xi, xj) ∧ ¬xi = xj

There exists a dominating set of size k.

∃x1 . . . ∃xk ∀y
∨
i

E(y, xi) ∨ y = xi

. . . can be solved in time f(k) · n10 on well-behaved graph classes.
29

Exercise

Does the algorithic meta-theorem give an fpt algorithm for the
following problem?

Input: SAT-instance with planar incidence graph, k ∈ N.
Parameter: k.
Question: is there a satisfying assignment with at most k

variables set to true?

30

Exercise

Does the algorithic meta-theorem give an fpt algorithm for the
following problem?

Input: a planar graph G, and k ∈ N.
Parameter: k.
Is there a dominating set of size at most k that induces a

connected subgraph?

31

Exercise

Does the algorithic meta-theorem give an fpt algorithm for the
following problem?

Input: a planar graph G, and k, d ∈ N.
Parameter: k.
Is it possible to remove k vertices such that every vertex has

degree at most d?

32

First-Order Logic

What other graph classes are “well-behaved”?

33

Many Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

Figure by Felix Reidl
34

Milestones

Theorem (Grohe, Kreutzer, Siebertz 2017)

For a graph class C that is closed under subgraphs holds:
C is nowhere dense iff the first-order model-checking prob-
lem on C is FPT (assuming FPT ̸= AW[∗]).

Bounded Degree Model Checking: Seese, 1996
Planar Model Checking: Flum, Grohe 2001
Bounded Expansion Model Checking: Dvořák, Král, Thomas, 2010
Nowhere Dense Model Checking: Grohe, Kreutzer, Siebertz, 2017

35

Nowhere Dense

Nešetřil, Ossona de Mendez

A graph class C is nowhere dense if for every r ∈ N there ex-
ists k ∈ N such that no graph in C contains the r-subdivided
clique of size k as a subgraph.

Let C be nowhere dense. Prove that there exists t such that no
graph in C contains the biclique Kt,t as a subgraph.

Prove that the class of half-graphs is not nowhere dense.

Prove that the class of trees is nowhere dense

Prove that every class of bounded degree is nowhere dense.

36

Nowhere Dense

Nešetřil, Ossona de Mendez

A graph class C is nowhere dense if for every r ∈ N there ex-
ists k ∈ N such that no graph in C contains the r-subdivided
clique of size k as a subgraph.

Let C be nowhere dense. Prove that there exists t such that no
graph in C contains the biclique Kt,t as a subgraph.

Prove that the class of half-graphs is not nowhere dense.

Prove that the class of trees is nowhere dense

Prove that every class of bounded degree is nowhere dense.

36

Nowhere Dense

Nešetřil, Ossona de Mendez

A graph class C is nowhere dense if for every r ∈ N there ex-
ists k ∈ N such that no graph in C contains the r-subdivided
clique of size k as a subgraph.

Let C be nowhere dense. Prove that there exists t such that no
graph in C contains the biclique Kt,t as a subgraph.

Prove that the class of half-graphs is not nowhere dense.

Prove that the class of trees is nowhere dense

Prove that every class of bounded degree is nowhere dense.

36

Nowhere Dense

Nešetřil, Ossona de Mendez

A graph class C is nowhere dense if for every r ∈ N there ex-
ists k ∈ N such that no graph in C contains the r-subdivided
clique of size k as a subgraph.

Let C be nowhere dense. Prove that there exists t such that no
graph in C contains the biclique Kt,t as a subgraph.

Prove that the class of half-graphs is not nowhere dense.

Prove that the class of trees is nowhere dense

Prove that every class of bounded degree is nowhere dense.

36

Nowhere Dense

Nešetřil, Ossona de Mendez

A graph class C is nowhere dense if for every r ∈ N there ex-
ists k ∈ N such that no graph in C contains the r-subdivided
clique of size k as a subgraph.

Let C be nowhere dense. Prove that there exists t such that no
graph in C contains the biclique Kt,t as a subgraph.

Prove that the class of half-graphs is not nowhere dense.

Prove that the class of trees is nowhere dense

Prove that every class of bounded degree is nowhere dense. 36

Many Sparse Graph Classes

Star forests

Bounded treedepth

Bounded treewidth

Excluding a minor

Excluding a
topological minor

Bounded expansion

Outerplanar

Planar

Bounded
genus

Linear forests

Bounded degree

Locally bounded
treewidth

Locally excluding
a minor

Forests

r

rr

∇∇ Locally bounded
expansion

Nowhere dense

∇∇
r

ωω

Figure by Felix Reidl
37

CAN WE GO BEYOND NOWHERE
DENSE?

Classes with FPT first-order model-checking?

nowhere
dense

39

Classes with FPT first-order model-checking?

nowhere
dense

complements
of nowhere
dense

39

Complements

Ḡ |= ϕ

First-order model-checking is fpt on complements of nowhere
dense classes by reduction.

40

Complements

Ḡ |= ϕG |= ϕ̄

⇔

First-order model-checking is fpt on complements of nowhere
dense classes by reduction.

40

Complements

Ḡ |= ϕG |= ϕ̄

obtain ϕ̄ from
ϕ by swapping
∼ and 6∼

⇔

First-order model-checking is fpt on complements of nowhere
dense classes by reduction.

40

Classes with FPT first-order model-checking?

nowhere
dense

complements
of nowhere
dense

41

Classes with FPT first-order model-checking?

nowhere
dense

complements
of nowhere
dense

structurally
nowhere
dense

41

Fully Bipartite Graphs

G |= ϕ

...
...

Can we do fpt model-checking on the class of fully bipartite
graphs?

42

Fully Bipartite Graphs

G |= ϕ

...
...

...
...

G′ |= ϕ′

Can we do fpt model-checking on the class of fully bipartite
graphs?

42

Fully Bipartite Graphs

G |= ϕ

⇔

obtain ϕ′ from
ϕ by replacing

x∼y with
dist(x, y) = 3

...
...

...
...

G′ |= ϕ′

Can we do fpt model-checking on the class of fully bipartite
graphs?

42

Fully Bipartite Graphs

G |= ϕ

⇔

obtain ϕ′ from
ϕ by replacing

x∼y with
dist(x, y) = 3

...
...

...
...

G′ |= ϕ′
also restrict
quantifiers to
black vertices

Can we do fpt model-checking on the class of fully bipartite
graphs?

42

Transductions (see board)

φ-transduction: color vertices + apply φ + take induced subgraph

φ

φ(x, y) := Red(x) ∧ Red(y) ∧ dist(x, y) = 3

A class D is a transduction of a class C if there exists φ such
that every graph in D is a φ-transduction of some graph in C.

43

Transductions

The class of subdivided cliques transduces the class of all graphs.

44

Transductions

The class of subdivided cliques transduces the class of all graphs.

44

Transductions

The class of subdivided cliques transduces the class of all graphs.

44

Transductions

The class of subdivided cliques transduces the class of all graphs.

44

Transductions

The class of subdivided cliques transduces the class of all graphs.

44

Tractable Classes

Gajarský, Kreutzer, Něsetřil, Ossona de Mendez, Pilipczuk, Siebertz, Toruńczyk, 2018.
Něsetřil, Ossona de Mendez, 2016

A class is structurally nowhere dense, if it is a transduction of a
nowhere dense graph class.

D, Mählmann, Siebertz, 2023

The first-order model-checking problem on C is FPT on struc-
turally nowhere dense graph classes.

45

Classes with FPT first-order model-checking?

nowhere
dense

complements
of nowhere
dense

structurally
nowhere
dense

46

Classes with FPT first-order model-checking?

nowhere
dense

complements
of nowhere
dense

structurally
nowhere
dense

monadically
stable 46

Monadic Stability/Dependence
Baldwin, Shelah, 1985

A class is monadically stable, if it does not transduce the class
of all half-graphs.

A class is monadically dependent, if it does not transduce the
class of all graphs.

Adler, Adler

Every structurally nowhere dense class is monadically stable.

D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk 2024

Let C be monadically stable. The first-order model-checking
problem is FPT on C.

47

Monadic Stability/Dependence
Baldwin, Shelah, 1985

A class is monadically stable, if it does not transduce the class
of all half-graphs.

A class is monadically dependent, if it does not transduce the
class of all graphs.

Adler, Adler

Every structurally nowhere dense class is monadically stable.

D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk 2024

Let C be monadically stable. The first-order model-checking
problem is FPT on C.

47

Monadic Stability/Dependence
Baldwin, Shelah, 1985

A class is monadically stable, if it does not transduce the class
of all half-graphs.

A class is monadically dependent, if it does not transduce the
class of all graphs.

Adler, Adler

Every structurally nowhere dense class is monadically stable.

D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk 2024

Let C be monadically stable. The first-order model-checking
problem is FPT on C. 47

Classes with FPT first-order model-checking?

nowhere
dense

complements
of nowhere
dense

structurally
nowhere
dense

monadically
stable 48

Classes with FPT first-order model-checking?

nowhere
densetreewidth

cliquewidth

complements
of nowhere
dense

twinwidth

structurally
nowhere
dense

monadically
stable 48

Twinwidth

c

b

a d

e

f

g

You already know normal graphs.

In trigraphs there are additional red error edges.

49

Twinwidth

c

b

a d

e

f

g

You already know normal graphs.

In trigraphs there are additional red error edges.

49

Contraction

a b

→
→
→
→
→

We can contract two (not neccessarily adjacent)
vertices a and b. The edges of the new vertex ab
follow this table.

50

Contraction

a bab

→
→
→
→
→

We can contract two (not neccessarily adjacent)
vertices a and b. The edges of the new vertex ab
follow this table.

50

Contraction Sequences

c

b

a d

e

f

g

→
→
→
→
→

A contraction sequence is a sequence of contractions until only a
single vertex is left.

Example by Édouard Bonnet 51

Contraction Sequences

c

b

a d

ge

f

ef

→
→
→
→
→

A contraction sequence is a sequence of contractions until only a
single vertex is left.

Example by Édouard Bonnet 51

Contraction Sequences

c

b

a d

g
ef

→
→
→
→
→

A contraction sequence is a sequence of contractions until only a
single vertex is left.

Example by Édouard Bonnet 51

Contraction Sequences

c

b g
ef

a dad

→
→
→
→
→

A contraction sequence is a sequence of contractions until only a
single vertex is left.

Example by Édouard Bonnet 51

Contraction Sequences

c

b g
ef

ad

→
→
→
→
→

A contraction sequence is a sequence of contractions until only a
single vertex is left.

Example by Édouard Bonnet 51

Contraction Sequences

c

gbef

ad

→
→
→
→
→

A contraction sequence is a sequence of contractions until only a
single vertex is left.

Example by Édouard Bonnet 51

Contraction Sequences

c

bef

adg

→
→
→
→
→

A contraction sequence is a sequence of contractions until only a
single vertex is left.

Example by Édouard Bonnet 51

Contraction Sequences

bcef

adg

→
→
→
→
→

A contraction sequence is a sequence of contractions until only a
single vertex is left.

Example by Édouard Bonnet 51

Contraction Sequences

abcdefg

→
→
→
→
→

A contraction sequence is a sequence of contractions until only a
single vertex is left.

Example by Édouard Bonnet 51

Contraction Sequences

c

b

a d

e

f

g

→
→
→
→
→

Bonnet, Kim, Thomassé, Watrigant 2021

Twinwidth: Smallest integer d such there is a contraction se-
quence where the red degree is at all times at most d.

52

Contraction Sequences

c

b

a d

ge

f

ef

→
→
→
→
→

Bonnet, Kim, Thomassé, Watrigant 2021

Twinwidth: Smallest integer d such there is a contraction se-
quence where the red degree is at all times at most d.

52

Contraction Sequences

c

b

a d

g
ef

→
→
→
→
→

Bonnet, Kim, Thomassé, Watrigant 2021

Twinwidth: Smallest integer d such there is a contraction se-
quence where the red degree is at all times at most d.

52

Contraction Sequences

c

b g
ef

a dad

→
→
→
→
→

Bonnet, Kim, Thomassé, Watrigant 2021

Twinwidth: Smallest integer d such there is a contraction se-
quence where the red degree is at all times at most d.

52

Contraction Sequences

c

b g
ef

ad

→
→
→
→
→

Bonnet, Kim, Thomassé, Watrigant 2021

Twinwidth: Smallest integer d such there is a contraction se-
quence where the red degree is at all times at most d.

52

Contraction Sequences

c

gbef

ad

→
→
→
→
→

Bonnet, Kim, Thomassé, Watrigant 2021

Twinwidth: Smallest integer d such there is a contraction se-
quence where the red degree is at all times at most d.

52

Contraction Sequences

c

bef

adg

→
→
→
→
→

Bonnet, Kim, Thomassé, Watrigant 2021

Twinwidth: Smallest integer d such there is a contraction se-
quence where the red degree is at all times at most d.

52

Contraction Sequences

bcef

adg

→
→
→
→
→

Bonnet, Kim, Thomassé, Watrigant 2021

Twinwidth: Smallest integer d such there is a contraction se-
quence where the red degree is at all times at most d.

52

Contraction Sequences

abcdefg

→
→
→
→
→

Bonnet, Kim, Thomassé, Watrigant 2021

Twinwidth: Smallest integer d such there is a contraction se-
quence where the red degree is at all times at most d.

52

Classes of Bounded Twinwidth

The following classes have bounded twinwidth

planar graphs,
classes with bounded cliquewidth.

The following classes do not have bounded twinwidth

graphs with degree three.

53

Classes of Bounded Twinwidth

The following classes have bounded twinwidth

planar graphs,
classes with bounded cliquewidth.

The following classes do not have bounded twinwidth

graphs with degree three.

53

Twinwidth of Trees

Trees have twinwidth at most two. Strategy:

When possible
contract twin leafs. Otherwise contract a deepest leaf with its
parent.

54

Twinwidth of Trees

Trees have twinwidth at most two. Strategy: When possible
contract twin leafs.

Otherwise contract a deepest leaf with its
parent.

54

Twinwidth of Trees

Trees have twinwidth at most two. Strategy: When possible
contract twin leafs. Otherwise contract a deepest leaf with its
parent.

54

Twinwidth of Trees

Trees have twinwidth at most two. Strategy: When possible
contract twin leafs. Otherwise contract a deepest leaf with its
parent.

54

Twinwidth of Trees

Trees have twinwidth at most two. Strategy: When possible
contract twin leafs. Otherwise contract a deepest leaf with its
parent.

54

Twinwidth of Trees

Trees have twinwidth at most two. Strategy: When possible
contract twin leafs. Otherwise contract a deepest leaf with its
parent.

54

Twinwidth of Trees

Trees have twinwidth at most two. Strategy: When possible
contract twin leafs. Otherwise contract a deepest leaf with its
parent.

54

Twinwidth of Trees

Trees have twinwidth at most two. Strategy: When possible
contract twin leafs. Otherwise contract a deepest leaf with its
parent.

54

Twinwidth of Trees

Trees have twinwidth at most two. Strategy: When possible
contract twin leafs. Otherwise contract a deepest leaf with its
parent.

54

Twinwidth of Trees

Trees have twinwidth at most two. Strategy: When possible
contract twin leafs. Otherwise contract a deepest leaf with its
parent.

54

Twinwidth of Trees

Trees have twinwidth at most two. Strategy: When possible
contract twin leafs. Otherwise contract a deepest leaf with its
parent.

54

First-Order Model-Checking

So far, nobody knows how to compute (approximate) contraction
sequences of graphs with bounded twinwidth.

But once we do,
model-checking is fpt.

Bonnet, Kim, Thomassé, Watrigant 2021

Let C be a class of bounded twinwidth. Then first-order
model-checking is fpt on C, if one is additionally provided a
contraction sequence of bounded twinwidth.

55

First-Order Model-Checking

So far, nobody knows how to compute (approximate) contraction
sequences of graphs with bounded twinwidth. But once we do,
model-checking is fpt.

Bonnet, Kim, Thomassé, Watrigant 2021

Let C be a class of bounded twinwidth. Then first-order
model-checking is fpt on C, if one is additionally provided a
contraction sequence of bounded twinwidth.

55

First-Order Model-Checking

So far, nobody knows how to compute (approximate) contraction
sequences of graphs with bounded twinwidth. But once we do,
model-checking is fpt.

Bonnet, Kim, Thomassé, Watrigant 2021

Let C be a class of bounded twinwidth. Then first-order
model-checking is fpt on C, if one is additionally provided a
contraction sequence of bounded twinwidth.

55

Classes with FPT first-order model-checking?

nowhere
densetreewidth

cliquewidth

complements
of nowhere
dense

twinwidth

structurally
nowhere
dense

monadically
stable

A graph class C is monadically dependent if every transduction
D of C is not the class of all graphs.

Main Conjecture

For every graph class C that is closed under subgraphs holds:
First-order model-checking is fpt on C iff C is monadically de-
pendent.

56

Classes with FPT first-order model-checking?

nowhere
densetreewidth

cliquewidth

complements
of nowhere
dense

twinwidth

structurally
nowhere
dense

monadically
dependent

monadically
stable

A graph class C is monadically dependent if every transduction
D of C is not the class of all graphs.

Main Conjecture

For every graph class C that is closed under subgraphs holds:
First-order model-checking is fpt on C iff C is monadically de-
pendent.

56

Classes with FPT first-order model-checking?

nowhere
densetreewidth

cliquewidth

complements
of nowhere
dense

twinwidth

structurally
nowhere
dense

monadically
dependent

monadically
stable

A graph class C is monadically dependent if every transduction
D of C is not the class of all graphs.

Main Conjecture

For every graph class C that is closed under subgraphs holds:
First-order model-checking is fpt on C iff C is monadically de-
pendent.

56

Classes with FPT first-order model-checking?

nowhere
densetreewidth

cliquewidth

complements
of nowhere
dense

twinwidth

structurally
nowhere
dense

monadically
dependent

monadically
stable

A graph class C is monadically dependent if every transduction
D of C is not the class of all graphs.

Main Conjecture

For every graph class C that is closed under subgraphs holds:
First-order model-checking is fpt on C iff C is monadically de-
pendent.

56

Map of the Universe

Figure by Michał Pilipczuk
57

EXERCISES

Exercise

Show that the class of empty graphs is monadically
stable/dependent.

59

Exercise

Argue: If C transduces D and D transduces E , then C transduces E .

Argue that therefore monadically stable/dependent classes are
closed under transductions.

60

Exercise

Argue: If C transduces D and D transduces E , then C transduces E .

Argue that therefore monadically stable/dependent classes are
closed under transductions.

60

Exercise

Let C be the class of graphs of degree at most three. Show that C is
monadically stable/dependent.

Use the following theorem:
Corollary of Gaifman’s Theorem

Let φ be a first-order formula. There is a number k with
the following property. For every graph G there is a coloring
c : V (G) → [k] such that for all u, v ∈ V (G) with distance
larger than k, the fact whether (u, v) ∈ E(G) depends only
on (c(u), c(v)).

61

Exercise

Let C be the class of graphs of degree at most three. Show that C is
monadically stable/dependent.

Use the following theorem:
Corollary of Gaifman’s Theorem

Let φ be a first-order formula. There is a number k with
the following property. For every graph G there is a coloring
c : V (G) → [k] such that for all u, v ∈ V (G) with distance
larger than k, the fact whether (u, v) ∈ E(G) depends only
on (c(u), c(v)).

61

Exercise

Show that the class of “star matchings” and the class of
“comparability grids” are not monadically dependent.

62

APPENDIX

Restating the Milestones

For every graph class C that is closed under subgraphs:

C is nowhere dense if and only if C is monadically dependent.

Grohe, Kreutzer, Siebertz 2017

For a graph class C that is closed under subgraphs holds:
C is monadically dependent iff the first-order model-
checking problem on C is FPT (assuming FPT ̸= AW[∗]).

64

Restating the Milestones

For every graph class C that is closed under subgraphs:

C is nowhere dense if and only if C is monadically dependent.

Grohe, Kreutzer, Siebertz 2017

For a graph class C that is closed under subgraphs holds:
C is monadically dependent iff the first-order model-
checking problem on C is FPT (assuming FPT ̸= AW[∗]).

64

Restating the Milestones
A graph class C is unordered if for some k it excludes the following
graphs of order k as induced subgraphs.

For every unordered graph class C:

C is monadically stable if and only if C is monadically dependent.

D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk 2024

For an unordered graph class C that is closed under induced
subgraphs holds:
C is monadically dependent iff the first-order model-
checking problem on C is FPT (assuming FPT ̸= AW[∗]).

65

Restating the Milestones
A graph class C is unordered if for some k it excludes the following
graphs of order k as induced subgraphs.

For every unordered graph class C:

C is monadically stable if and only if C is monadically dependent.

D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk 2024

For an unordered graph class C that is closed under induced
subgraphs holds:
C is monadically dependent iff the first-order model-
checking problem on C is FPT (assuming FPT ̸= AW[∗]).

65

Restating the Milestones
A graph class C is unordered if for some k it excludes the following
graphs of order k as induced subgraphs.

For every unordered graph class C:

C is monadically stable if and only if C is monadically dependent.

D, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk 2024

For an unordered graph class C that is closed under induced
subgraphs holds:
C is monadically dependent iff the first-order model-
checking problem on C is FPT (assuming FPT ̸= AW[∗]).

65

Restating the Milestones
An ordered graph is a graph together with a total order on its
vertices (which can be queried by first-order logic).

For every class of ordered graphs C: C has bounded twin-width if
and only if C is monadically dependent.

Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk 2021

For a class C of ordered graphs that is closed under induced
subgraphs holds: C is monadically dependent iff the first-
order model-checking problem on C is FPT (assuming FPT ̸=
AW[∗]).

66

Restating the Milestones
An ordered graph is a graph together with a total order on its
vertices (which can be queried by first-order logic).

For every class of ordered graphs C: C has bounded twin-width if
and only if C is monadically dependent.

Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk 2021

For a class C of ordered graphs that is closed under induced
subgraphs holds: C is monadically dependent iff the first-
order model-checking problem on C is FPT (assuming FPT ̸=
AW[∗]).

66

Restating the Milestones
An ordered graph is a graph together with a total order on its
vertices (which can be queried by first-order logic).

For every class of ordered graphs C: C has bounded twin-width if
and only if C is monadically dependent.

Bonnet, Giocanti, Ossona de Mendez, Simon, Thomassé, Toruńczyk 2021

For a class C of ordered graphs that is closed under induced
subgraphs holds: C is monadically dependent iff the first-
order model-checking problem on C is FPT (assuming FPT ̸=
AW[∗]).

66

Map of the Universe

Figure by Michał Pilipczuk

67

	Motivation
	Can we go beyond nowhere dense?
	Exercises
	Appendix

