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Part 1.
(In)tractability and Treewidth



Intractable problems and approaches

Fixed-parameter tractability is a framework to deal with intractable problems:

• Choose a complexity parameter k independent of the input size n

• Find an OPT solution in time f (k) · nO(1) for some function f

Develop algorithms for graphs which are large but have a small solution size
...or simply structured
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Treewidth

Def. A tree decomposition of G is a pair T = (T , {Xt}t∈V (T )),
where T is a tree whose every node t is assigned a vertex
subset Xt ⊆ V (G ), called a bag, with following conditions:

T 1.
⋃

t∈V (T ) Xt = V (G);

T 2. For every vw ∈ E(G), there exists a node t of T such that bag Xt

contains both v and w ;

T 3. For every v ∈ V (G), the set Tv = {t ∈ V (T )|v ∈ Xt} induces
a connected subtree of T .

Def. The width of T is maxt∈V (T ) |Xt | − 1.

Def. The treewidth tw(G ) is the minimum width over all tree decompositions of G .
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Treewidth

The treewidth of a graph G is

min {ω(G+)− 1 : G+ ⊇ G and G+ is chordal}

The Cops-and-Robber Game

Treewidth is at most t if and only if t + 1 cops can
always catch the robber in G in a monotone game if the
robber is visible (to the cop player)

tw(Kn) = n − 1 tw(Pn × Pm) = min(m, n) tw(T ) = 1
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Treewidth

Many NP-hard problems are FPT parameterized by treewidth via dynamic
programming on the tree decomposition.

For a given signature τ , monadic second order logic has
• element-variables (x , y , z , . . . ) and set-variables (X ,Y ,Z , . . . )

• relations = (equation) and x ∈ X (membership), as well as relations from τ

• quantifiers ∃ and ∀, as well as operators ∧, ∨, ¬
If φ is a sentence, we write G |= φ to indicate that φ holds on G (i.e., G is a model of φ)

Theorem [Courcelle’90]

For a MSO1 sentence φ and graph G one can decide whether G |= φ in
time f (tw(G ), |φ|)n for some function f .
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Conditional Lower Bounds

Exponential Time Hypothesis (ETH) [Impagliazzo, Paturi, 1990]

Roughly, 3-SAT on n variables cannot be solved in time 2o(n).

Conditional lower bounds for tw are usually 2o(tw), 2o(tw log tw) or 2o(poly(tw)).

Rarer results: Unless the ETH fails,

• QSAT with k alternations admits a lower bound of a tower of exponents of height k in
the treewidth of the primal graph PSPACE-complete [Fichte, Hecher, Pfandler, 2020]

• k-Choosability and k-Choosability Deletion admit double- and triple-exponential
lower bounds in treewidth, respectively Πp

2-complete and Σp
3-complete [Marx, Mitsou, 2016]

• ∃∀-CSP admits a double-exponential lower bound in the vertex cover number
Σp

2-complete [Lampis, Mitsou, 2017]
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Conditional Lower Bounds

Question.
Does any NP-complete problem
require at least double-exponential
running time?

P

ΣP
1 = NP ΠP

1 = coNP

∆P
2 = PNP

ΣP
2 = NPNP ΠP

2 = coNPNP

PSPACE
...
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Part 2.
Metric Graph Problem(s)



Metric Dimension [Slater ’75, Harary, Melter ’76]

Def. A resolving set is a S ⊆ V (G ) such that ∀u, v ∈ V , ∃z ∈ S with
d(z , u) ̸= d(z , v).

Def. The minimum size of a resolving set of G is the metric dimension of G .
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Vertices 4 and 6 are not resolved by 5 nor 8.Observation. For any twins u, v ∈ V (G ) and any resolving set S of G , S ∩ {u, v} ≠ ∅.
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Metric Dimension (MDim)

Metric Dimension
Input: An undirected simple graph G and a positive integer k
Question: Is md(G ) ≤ k?

Polynomial-time
Trees

NP-complete

Outerplanar
Cographs

Arbitrary

Bipartite
Co-bipartite
Planar
Interval

Split

[Slater'75]

[Epstein et al'15]

[Diaz et al'17]

[Garey, Johnson'79]

[Epstein et al'15]

[Epstein et al'15]

[Epstein et al'15]

[Foucaud et al'17]

[Diaz et al'17]
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Parameterized complexity of Metric Dimension
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to Perfect
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FPT (f (k) · nO(1)-time algorithm)
XP (nf (k)-time algorithm)
W[1]-hard (not FPT unless FPT = W[1])
para-NP-hard (not XP unless P = NP)

n: size of input
k : size of parameter

A lower parameter is upper bounded by a function of the higher one

From NP-hardness results on previous slideW[2]-hard parameterised by solution size [Hartung, Nichterlein ’13][Eppstein ’15][Epstein et al ’15][Gima et al ’21]FPT parameterised by treelength + max degree [Belmonte et al ’17]
and clique-width + diameter [Gima et al ’21]

Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein ’13]
Q2: Complexity parameterised by treewidth? [Eppstein ’15], [Belmonte et al ’17], [D́iaz et al ’17]

Q2 answered first by [Bonnet, Purohit ’21].Q2 answered first by [Bonnet, Purohit ’21]. Then, improved by [Li, Pilipczuk ’22]Q1 answered for the combined parameter Feedback Vertex Set + Pathwidth
[Galby, Khazaliya, Mc Inerney, Sharma, Tale ’23]
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Part 3.
Our Technique and MDim



Results

Theorem [FGKLMST, 2024]

Metric Dimension and Geodetic Set

• can be solved in 2diam
O(tw) · nO(1) time

• no 2f (diam)o(tw) · nO(1) time algorithm assuming ETH

Theorem [FGKLMST, 2024]

Strong Metric Dimension

• can be solved in 22O(vc) · nO(1) time, admits 2O(vc) kernel

• no 22o(vc) · nO(1) time algorithm, or 2o(vc) kernel, assuming ETH
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A way to go

Theorem [FGKLMST, 2024]

Metric Dimension and Geodetic Set

• can be solved in 2diam
O(tw) · nO(1) time

• no 2f (diam)o(tw) · nO(1) time algorithm assuming ETH

Reduction.
3-Partitioned 3-SAT: φ → Metric Dimension: (G , k)

tw(G ) = log(n)

diam(G ) = const
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3-Partitioned 3-SAT

3-Partitioned 3-SAT [Lampis, Melissinos, Vasilakis, 2023]

Input: 3-CNF formula φ with a partition of its variables into 3 disjoint sets
Xα, X β, and X γ such that |Xα| = |X β| = |X γ| = n and each clause contains
at most one variable from each of Xα, X β, and X γ

Question: Is ϕ satisfiable?

Theorem [Lampis, Melissinos, Vasilakis, 2023]

3-Partitioned 3-SAT: no 2o(n) time algorithm assuming ETH
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Encode SAT with small separator

(xα1 ∨ xβ3 ∨ x4
γ)∧ (x1

α ∨ x4
γ)∧ (x3

β ∨ x4
γ)

tα2i represents xαi
f α2i−1 represents xαi

Aα

Aγ

Aβ 

c1

c2

c3

t2
α

f1
α

t6
β

f5
β

t8
γ

f7
γ

(xα1 ∨ xβ3 ∨ x4
γ)

(x1
α ∨ x4

γ)

(x3
β ∨ x4

γ)
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Set-Representation Gadget

(xα1 ∨ xβ3 ∨ x4
γ)∧ (x1

α ∨ x4
γ)∧ (x3

β ∨ x4
γ)

Aα

Aγ

Aβ 

c1

c2

c3

t2
α

f1
α

t6
β

f5
β

t8
γ

f7
γ

Vα

Vβ
O(log n)

Vγ

set-rep

set-rep

set-rep

O(log n)

O(log n)

(xα1 ∨ xβ3 ∨ x4
γ)

(x1
α ∨ x4

γ)

(x3
β ∨ x4

γ)
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Set-Representation Gadget

Aα

Aγ

Aβ 

c1

c2

c3

t2
α

f1
α

t6
β

f5
β

t8
γ

f7
γ

Vα

Vβ
O(log n)

Vγ

set-rep

set-rep

set-rep

O(log n)

O(log n)

(xα1 ∨ xβ3 ∨ x4
γ)

Let Fp be the collection of subsets of
{1, . . . , 2p} that contain exactly p integers.

No set in Fp is contained in another set
in Fp (Sperner family).

There exists p = O(log n) s.t.
(2p
p

)
≥ 2n.

We define a 1-to-1 function
set-rep : {1, . . . , 2n} → Fp .

tα2 is the only vertex in Aα that does

not share a common neighbour

with c1 = (xα1 ∨ xβ3 ∨ x4
γ) 15
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Bit-representation Gadget

Observation. For any twins u, v ∈ V (G ) and any resolving set S of G , S ∩ {u, v} ≠ ∅.

bit-rep(X)

bits(X)

nullifier(X)

X

xi

y*

according to bin(i)

H

G'

N(X)

• For any resolving set S ,
|S ∩ bits(X )| ≥ log(|X |) + 1

• |S ∩ bits(X )| distinguishes each
vertex in X ∪ bit-rep(X ) from
every other vertex in G

• nullifier(X ) guarantees that the
rest part of V (G ) does not
affected by the gadget

Purple edges represent all possible edges
16



Lower bound for Metric Dimension parameterized by tw

Vα

t2i
α

f2i-1
α

Aα

xi
α,°

xi
α,*

Xα
C

cq

cq*

nullifier(Xα) nullifier(Aα) nullifier(Vα) nullifier(С)

bit-rep(С)bit-rep(Vα)bit-rep(Aα)bit-rep(Xα)

Purple — all possible edges
Blue — set-rep
Red — complementary to blue

ai

aj

cq

cq*

O(log n)

Note: tw(G) = log(n)

diam(G) = const

Theorem [FGKLMST, 2024]

Metric Dimension: no 2f (diam)o(tw) · nO(1) time algorithm assuming ETH
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Part 4.
Other Results and Applications



Geodetic Set and Strong MDim

Geodetic Set
Input: An undirected simple graph G

Question: Does there exist S ⊆ V (G ) such that |S | ≤ k and, for any vertex u ∈ V (G ),
there are two vertices s1, s2 ∈ S such that a shortest path from s1 to s2 contains u?

Theorem [FGKLMST, 2024]

Geodetic Set

• no 2f (diam)o(tw) · nO(1) time algorithm assuming ETH
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Strong Metric Dimension

Strong Metric Dimension
Input: An undirected simple graph G

Question: Does there exist S ⊆ V (G ) such that |S | ≤ k and, for any pair of vertices
u, v ∈ V (G ), there exists a vertex w ∈ S such that either u lies on some shortest path
between v and w , or v lies on some shortest path between u and w?

Theorem [FGKLMST, 2024]

Strong Metric Dimension

• no 22o(vc) · nO(1) time algorithm, or 2o(vc) kernel, assuming ETH
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Match with the Algorithms

Theorem [FGKLMST, 2024]

Metric Dimension and Geodetic Set

• can be solved in 2diam
O(tw) · nO(1) time

• no 2f (diam)o(tw) · nO(1) time algorithm assuming ETH

Theorem [FGKLMST, 2024]

Strong Metric Dimension

• can be solved in 22O(vc) · nO(1) time, admits 2O(vc) kernel

• no 22o(vc) · nO(1) time algorithm, or 2o(vc) kernel, assuming ETH
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Applications of the Technique

Theorem [Chalopin, Chepoi, Mc Inerney, Ratel, COLT 2024]

Positive Non-Clashing Teaching Dimension for Balls in Graphs

• no 22o(vc) · nO(1) time algorithm, or 2o(vc) kernel, assuming ETH

Theorem [Chakraborty, Foucaud, Majumdar, Tale, 2024]

Locating-Dominating Set
(
resp., Test Cover

)
• no 22o(tw) · nO(1)

(
resp., 22o(tw)(|U |+ |F|)O(1)

)
time algorithm assuming ETH
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Part 5.
Open Problems



Open Questions

Q1: Are there certain properties shared by distance-based graph problems, that
imply such running times? Is there a possible way to generalize our approach
to a broader class of problems.

Q2: For which classic problems in NP are the best known FPT algorithms
parameterized by tw, vc (or other parameters) double-exponential?

Q3: For which classic problems do the best known kernelization algorithms
output a kernel with 2O(vc) vertices?

22



... and for Metric Dimension

Vertex Cover
Max Leaf
Number

Feedback
Edge Set

Distance
to Clique

Minimum
Clique Cover

Distance to
Co-Cluster

Distance
to Cluster

Distance to
Disjoint Paths

Treedepth Bandwidth

Maximum
Independent
Set

Distance to
Cograph

Distance
to Interval

Feedback
Vertex Set

Pathwidth
Maximum
Degree

Distance
to Perfect

Treewidth

FPT (f (k) · nO(1)-time algorithm)
XP (nf (k)-time algorithm)
W[1]-hard (not FPT unless FPT = W[1])
para-NP-hard (not XP unless P = NP)

n: size of input
k : size of parameter

Q4: XP or para-NP-hard parameterised by Feedback Vertex Set?

Q5: W[1]-hard or FPT parameterised by Feedback Edge Set?

Q6: Distance to Disjoint Paths? Bandwidth?
23



Thank you for your attention!

Further directions

Q1: Are there certain properties shared by distance-based graph problems, that imply such
running times? Is there a possible way to generalize our approach to a broader class of
problems.

Q2: For which classic problems in NP are the best known FPT algorithms parameterized by
tw, vc (or other parameters) double-exponential?

Q3: For which classic problems do the best known kernelization algorithms output a kernel
with 2O(vc) vertices?

For Metric Dimension:

Q4: XP or para-NP-hard parameterised by Feedback Vertex Set?

Q5: W[1]-hard or FPT parameterised by Feedback Edge Set?

Q6: Distance to Disjoint Paths? Bandwidth?

Сontents
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Problems
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