Problems in NP can Admit Double-Exponential Lower Bounds when Parameterized by Treewidth or Vertex Cover

Florent Foucaud, Esther Galby, Liana Khazaliya,
Shaohua Li, Fionn Mc Inerney, Roohani Sharma, Prafullkumar Tale

July 9, 2024

Part 1.
(In)tractability and Treewidth

Intractable problems and approaches

Fixed-parameter tractability is a framework to deal with intractable problems:

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some function f

Develop algorithms for graphs which are large but have a small solution size
.or simply

Intractable problems and approaches

Fixed-parameter tractability is a framework to deal with intractable problems:

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{\mathcal{O}(1)}$ for some function f

Develop algorithms for graphs which are large but have a small solution size

Intractable problems and approaches

Fixed-parameter tractability is a framework to deal with intractable problems:

- Choose a complexity parameter k independent of the input size n
- Find an OPT solution in time $f(k) \cdot n^{(1)}$ for some function f

Develop algorithms for graphs which are large but have a small solution size ...or simply structured

Treewidth

Def. A tree decomposition of G is a pair $\mathcal{T}=\left(T,\left\{X_{t}\right\}_{t \in V(T)}\right)$, where T is a tree whose every node t is assigned a vertex subset $X_{t} \subseteq V(G)$, called a bag, with following conditions:

T1. $\bigcup_{t \in V(T)} X_{t}=V(G)$;

$\mathcal{T} 2$. For every $v w \in E(G)$, there exists a node t of T such that bag X_{t} contains both v and w;
$\mathcal{T} 3$. For every $v \in V(G)$, the set $T_{v}=\left\{t \in V(T) \mid v \in X_{t}\right\}$ induces a connected subtree of T.

Def. The width of \mathcal{T} is $\max _{t \in V(T)}\left|X_{t}\right|-1$.

Def. The treewidth $\operatorname{tw}(G)$ is the minimum width over all tree decompositions of G.

Treewidth

The treewidth of a graph G is

$$
\min \left\{\omega\left(G^{+}\right)-1: G^{+} \supseteq G \text { and } G^{+} \text {is chordal }\right\}
$$

The Cops-and-Robber Game

Treewidth is at most t if and only if $t+1$ cops can always catch the robber in G in a monotone game if the robber is visible (to the cop player)

$$
\operatorname{tw}\left(K_{n}\right)=n-1 \quad \operatorname{tw}\left(P_{n} \times P_{m}\right)=\min (m, n) \quad \operatorname{tw}(T)=1
$$

Treewidth

Many NP-hard problems are FPT parameterized by treewidth via dynamic programming on the tree decomposition.

For a given signature τ, monadic second order logic has

- element-variables (x, y, z, \ldots) and set-variables (X, Y, Z, \ldots)
- relations $=$ (equation) and $x \in X$ (membership), as well as relations from τ
- quantifiers \exists and \forall, as well as operators \wedge, \vee, \neg

If φ is a sentence, we write $G \models \varphi$ to indicate that φ holds on G (i.e., G is a model of φ)

Theorem

For a MSO_{1} sentence φ and graph G one can decide whether $G \models \varphi$ in time $f(\operatorname{tw}(G),|\varphi|) n$ for some function f.

Conditional Lower Bounds

Exponential Time Hypothesis (ETH)

Roughly, 3-SAT on n variables cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for tw are usually $2^{\circ(\mathrm{tw})}$, $2^{\circ \text { (tw } \log \mathrm{tw})}$ or $2^{o(\text { poly (tw) })}$.

Rarer results: Unless the ETH fails,

- OSAT mifth k atternationc admite a lower bound of a tower of exponents of height k in the treewidth of the primal graph PSPACE-complete [Fichte, Hecher, Pfandler, 2020]
- k-Choosability and k-Choosability Deletion admit double- and
lower bounds in treewidth, respectively $\quad \Pi_{2}^{p}$-complete and \sum_{3}^{p}-complete [Manx, Mitsou, 2016]

[^0]
Conditional Lower Bounds

Exponential Time Hypothesis (ETH)

Roughly, 3-SAT on n variables cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for tw are usually $2^{\circ(\mathrm{tw})}$, $2^{\circ(\mathrm{tw} \log \mathrm{tw})}$ or $2^{\circ(\text { poly }(\mathrm{tw}))}$.

Rarer results: Unless the ETH fails,

- QSAT with k alternations admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph [Fichte, Hecher, Pfandler, 2020]
- k-Choosability and k-Choosability Deletion admit double- and triple-exponential lower bounds in treewidth, respectively
[Marx, Mitsou, 2016]
- $\exists \forall$-CSP admits a double-exponential lower bound in the vertex cover number

Conditional Lower Bounds

Exponential Time Hypothesis (ETH)

Roughly, 3-SAT on n variables cannot be solved in time $2^{o(n)}$.

Conditional lower bounds for tw are usually $2^{\circ(\mathrm{tw})}, 2^{\circ(\mathrm{tw} \log \mathrm{tw})}$ or $2^{\circ(\text { poly }(\mathrm{tw}))}$.

Rarer results: Unless the ETH fails,

- QSAT with k alternations admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph PSPACE-complete [Fichte, Hecher, Pfandler, 2020]
- k-Choosability and k-Choosability Deletion admit double- and triple-exponential lower bounds in treewidth, respectively $\quad \underline{\Pi_{2}^{p} \text {-complete and }} \underline{\sum_{3}^{p} \text {-complete }} \quad$ [Marx, Mitsou, 2016]
- $\exists \forall$-CSP admits a double-exponential lower bound in the vertex cover number

$$
\underline{\sum_{2}^{p} \text {-complete }}
$$

Conditional Lower Bounds

Question.
Does any NP-complete problem require at least double-exponential running time?

Rarer results: Unless the ETH fails,

- QSAT with k alternations admits a lower bound of a tower of exponents of height k in the treewidth of the primal graph PSPACE-complete [Fichte, Hecher, Pfandler, 2020]
- k-Choosability and k-Choosability Deletion admit double- and triple-exponential lower bounds in treewidth, respectively $\quad \Pi_{2}^{p}$-complete and ${\underline{\sum_{3}^{p}} \text {-complete } \quad \text { [Marx, Mitsou, 2016] }}^{2}$
- $\exists \forall$-CSP admits a double-exponential lower bound in the vertex cover number

$$
\underline{\sum_{2}^{p} \text {-complete }}
$$

Part 2.
Metric Graph Problem(s)

Metric Dimension

Def. A resolving set is a $S \subseteq V(G)$ such that $\forall u, v \in V, \exists z \in S$ with

$$
d(z, u) \neq d(z, v)
$$

Def. The minimum size of a resolving set of G is the metric dimension of G.

Metric Dimension

Def. A resolving set is a $S \subseteq V(G)$ such that $\forall u, v \in V, \exists z \in S$ with

$$
d(z, u) \neq d(z, v)
$$

Def. The minimum size of a resolving set of G is the metric dimension of G.

Metric Dimension

Def. A resolving set is a $S \subseteq V(G)$ such that $\forall u, v \in V, \exists z \in S$ with

$$
d(z, u) \neq d(z, v)
$$

Def. The minimum size of a resolving set of G is the metric dimension of G.

Vertices 4 and 6 are not resolved by 5 nor 8 .

Metric Dimension

Def. A resolving set is a $S \subseteq V(G)$ such that $\forall u, v \in V, \exists z \in S$ with

$$
d(z, u) \neq d(z, v)
$$

Def. The minimum size of a resolving set of G is the metric dimension of G.

Observation. For any twins $u, v \in V(G)$ and any resolving set S of $G, S \cap\{u, v\} \neq \emptyset$.

Metric Dimension (MDim)

Metric Dimension
Input: An undirected simple graph G and a positive integer k
Question: Is $\operatorname{md}(G) \leq k$?

Polynomial-time	
Trees	[Slater'75]
Cographs	[Epstein et al'15]
Outerplanar	[Diaz et al'17]

Parameterized complexity of Metric Dimension

XP ($n^{f(k)}$-time algorithm)
\square W[1]-hard (not FPT unless FPT $=\mathrm{W}[1]$)
para-NP-hard (not $X P$ unless $P=N P$)
n : size of input
k : size of parameter

A lower parameter is upper bounded by a function of the higher one

Parameterized complexity of Metric Dimension

XPT $\left(f(k) \cdot n^{O(1)}\right.$-time algorithm)
W[1]-hard (not FPT unless FPT $=\mathrm{W}[1]$)
para-NP-hard (not $X P$ unless $P=N P$)
n : size of input
k : size of parameter

From NP-hardness results on previous slide

Parameterized complexity of Metric Dimension

XP ($n^{f(k)}$-time algorithm)
W[1]-hard $\quad($ not FPT unless FPT $=\mathrm{W}[1])$
para-NP-hard (not $X P$ unless $P=N P$)
n : size of input
k : size of parameter

W[2]-hard parameterised by solution size [Hartung, Nichterlein '13]

Parameterized complexity of Metric Dimension

[Eppstein '15]

Parameterized complexity of Metric Dimension

[Epstein et al '15]

Parameterized complexity of Metric Dimension

[Gima et al '21]

Parameterized complexity of Metric Dimension

FPT parameterised by treelength + max degree [Belmonte et al '17] and clique-width + diameter [Gima et al '21]

Parameterized complexity of Metric Dimension

Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]
Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]

Parameterized complexity of Metric Dimension

Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]
Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]
Q2 answered first by [Bonnet, Purohit '21].

Parameterized complexity of Metric Dimension

Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]
Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]
Q2 answered first by [Bonnet, Purohit '21]. Then, improved by [Li, Pilipczuk '22]

Parameterized complexity of Metric Dimension

Q1: Complexity parameterised by Feedback Vertex Set? [Hartung, Nichterlein '13]
Q2: Complexity parameterised by treewidth? [Eppstein '15], [Belmonte et al '17], [Díaz et al '17]
Q1 answered for the combined parameter Feedback Vertex Set + Pathwidth
[Galby, Khazaliya, Mc Inerney, Sharma, Tale '23]

Part 3.
Our Technique and MDim

Results

Theorem

Metric Dimension and Geodetic Set

- no $2^{f(\text { diam })^{(t(w)}} \cdot n^{O(1)}$ time algorithm assuming ETH

Theorem

Strong Metric Dimension

- can be solved in $2^{2^{O(v)}} \cdot n^{\mathcal{O}(1)}$ time, admits $2^{\mathcal{O}(\mathrm{vc})}$ kernel
- no $2^{2^{o(v)}} \cdot n^{O(1)}$ time algorithm, or $2^{o(v c)}$ kernel, assuming ETH

A way to go

Theorem

Metric Dimension and Geodetic Set

- can be solved in $2^{\text {diam }}{ }^{\mathcal{O}(\mathrm{tw})} \cdot n^{\mathcal{O}(1)}$ time
- no $2^{f(\text { diam })^{o(t w)}} \cdot n^{O(1)}$ time algorithm assuming ETH

Reduction.

3-Partitioned 3-SAT: $\varphi \quad \rightarrow \quad$ Metric Dimension: (G, k)

$$
\begin{array}{r}
\operatorname{tw}(G)=\log (n) \\
\operatorname{diam}(G)=\text { const }
\end{array}
$$

3-Partitioned 3-SAT

3-Partitioned 3-SAT
[Lampis, Melissinos, Vasilakis, 2023]
Input: 3-CNF formula φ with a partition of its variables into 3 disjoint sets X^{α}, X^{β}, and X^{γ} such that $\left|X^{\alpha}\right|=\left|X^{\beta}\right|=\left|X^{\gamma}\right|=n$ and each clause contains at most one variable from each of X^{α}, X^{β}, and X^{γ}
Question: Is ϕ satisfiable?

Theorem
[Lampis, Melissinos, Vasilakis, 2023]
3-Partitioned 3-SAT: no $2^{\circ(n)}$ time algorithm assuming ETH

Encode SAT with small separator

Set-Representation Gadget

Set-Representation Gadget

Let F_{p} be the collection of subsets of $\{1, \ldots, 2 p\}$ that contain exactly p integers.

No set in F_{p} is contained in another set in F_{p} (Sperner family).

There exists $p=O(\log n)$ s.t. $\binom{2 p}{p} \geq 2 n$. We define a 1-to-1 function

$$
\text { set-rep : }\{1, \ldots, 2 n\} \rightarrow F_{p}
$$

t_{2}^{α} is the only vertex in A^{α} that does not share a common neighbour with $c_{1}=\left(x_{1}^{\alpha} \vee x_{3}^{\beta} \vee{\overline{x_{4}}}^{\gamma}\right)$

Set-Representation Gadget

Let F_{p} be the collection of subsets of $\{1, \ldots, 2 p\}$ that contain exactly p integers.

No set in F_{p} is contained in another set in F_{p} (Sperner family).

There exists $p=O(\log n)$ s.t. $\binom{2 p}{p} \geq 2 n$. We define a 1-to-1 function

$$
\text { set-rep : }\{1, \ldots, 2 n\} \rightarrow F_{p}
$$

t_{2}^{α} is the only vertex in A^{α} that does not share a common neighbour with $c_{1}=\left(x_{1}^{\alpha} \vee x_{3}^{\beta} \vee{\overline{x_{4}}}^{\gamma}\right)$

Bit-representation Gadget

Observation. For any twins $u, v \in V(G)$ and any resolving set S of $G, S \cap\{u, v\} \neq \emptyset$.

- For any resolving set S, $|S \cap \operatorname{bits}(X)| \geq \log (|X|)+1$
- $|S \cap \operatorname{bits}(X)|$ distinguishes each vertex in $X \cup$ bit-rep (X) from every other vertex in G
- nullifier (X) guarantees that the rest part of $V(G)$ does not affected by the gadget

Purple edges represent all possible edges

Lower bound for Metric Dimension parameterized by tw

Theorem

Lower bound for Metric Dimension parameterized by tw

Purple - all possible edges
Blue - set-rep
Red - complementary to blue

Note: $\operatorname{tw}(G)=\log (n)$
$\operatorname{diam}(G)=$ const

Theorem
[FGKLMST, 2024]

Lower bound for Metric Dimension parameterized by tw

Theorem

Part 4.
 Other Results and Applications

Geodetic Set and Strong MDim

Geodetic Set
Input: An undirected simple graph G
Question: Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any vertex $u \in V(G)$, there are two vertices $s_{1}, s_{2} \in S$ such that a shortest path from s_{1} to s_{2} contains u ?

Theorem

Geodetic Set

- no $2^{f(\text { diam })^{o(t w)}} \cdot n^{O(1)}$ time algorithm assuming ETH

Strong Metric Dimension

Strong Metric Dimension
Input: An undirected simple graph G
Question: Does there exist $S \subseteq V(G)$ such that $|S| \leq k$ and, for any pair of vertices $u, v \in V(G)$, there exists a vertex $w \in S$ such that either u lies on some shortest path between v and w, or v lies on some shortest path between u and w ?

Theorem

[FGKLMST, 2024]

Strong Metric Dimension

- no $2^{2^{\text {o(vc) }}} \cdot n^{O(1)}$ time algorithm, or $2^{o(v c)}$ kernel, assuming ETH

Match with the Algorithms

Theorem

Metric Dimension and Geodetic Set

- no $2^{f(d i a m)^{\circ(t w)}} \cdot n^{O(1)}$ time algorithm assuming ETH

Theorem

Strong Metric Dimension

- can be solved in $2^{2^{O(v)}} \cdot n^{\mathcal{O}(1)}$ time, admits $2^{\mathcal{O}(\mathrm{vc})}$ kernel
- no $2^{2^{o(v)}} \cdot n^{O(1)}$ time algorithm, or $2^{o(v c)}$ kernel, assuming ETH

Applications of the Technique

Theorem

Positive Non-Clashing Teaching Dimension for Balls in Graphs

- no $2^{2^{o(v)}} \cdot n^{O(1)}$ time algorithm, or $2^{o(v c)}$ kernel, assuming ETH

Theorem

Locating-Dominating Set (resp., Test Cover)

- no $2^{2^{(\text {(tw })}} \cdot n^{O(1)}\left(\right.$ resp., $\left.2^{2^{2^{(t(w)}}}(|U|+|\mathcal{F}|)^{O(1)}\right)$ time algorithm assuming ETH

Part 5.
 Open Problems

Open Questions

Q1: Are there certain properties shared by distance-based graph problems, that imply such running times? Is there a possible way to generalize our approach to a broader class of problems.

Q2: For which classic problems in NP are the best known FPT algorithms parameterized by tw, vc (or other parameters) double-exponential?

Q3: For which classic problems do the best known kernelization algorithms output a kernel with $\underline{2}^{\mathrm{O}(\mathrm{vc})}$ vertices?

... and for Metric Dimension

Q4: XP or para-NP-hard parameterised by Feedback Vertex Set?
Q5: W[1]-hard or FPT parameterised by Feedback Edge Set?
Q6: Distance to Disjoint Paths? Bandwidth?

Thank you for your attention!

Further directions

Q1: Are there certain properties shared by distance-based graph problems, that imply such running times? Is there a possible way to generalize our approach to a broader class of problems.

Q2: For which classic problems in NP are the best known FPT algorithms parameterized by tw, vc (or other parameters) double-exponential?
Q3: For which classic problems do the best known kernelization algorithms output a kernel with $\underline{2}^{\mathrm{O}(\mathrm{vc})}$ vertices?

For Metric Dimension:

Q4: XP or para-NP-hard parameterised by Feedback Vertex Set?
Q5: W[1]-hard or FPT parameterised by Feedback Edge Set?
Q6: Distance to Disjoint Paths? Bandwidth?

Contents
Introduction
Metric Dimension
Lower Bounds: Technique
Other Results
Problems

[^0]: - $\exists \forall$-CSP admits a

