

On the Complexity of Recognizing k⁺-real face Graphs

Michael A. Bekos, Giuseppe Di Battista, Emilio Di Giacomo, Walter Didimo, Michael Kaufmann, Fabrizio Montecchiani

Acknowledgments

Dagstuhl seminar Beyond-Planar Graphs, February 4-9, 2024

example of a 6⁺-real face picture

... but k⁺-real face graphs are different objects

Outline

k+-real face graphs
Definition
State of the art
Recognition problem
Contribution
Open problems

k⁺-real face drawing = <u>at least</u> k vertices per face (cell)

not k⁺-real face drawing

1⁺-real face drawing

2⁺-real face drawing

Observations

State of the art

- Binucci, Di Battista, D., Hong, Kaufmann, Liotta, Morin, Tappini WG 2023
- Binucci, Di Battista, D., Dujmovic, Hong, Kaufmann, Liotta, Morin, Tappini IEEE Access 2024

edge density

Graph Family	Crossings ($\chi \leq$)	Edges ($m \leq$)
k^+ -real face graphs ($k \ge 3$)	$\frac{2-k}{k}\cdot m+n-2$	$\frac{k}{k-2}(n-2)$
2 ⁺ -real face graphs	n-2	4n - 8
1 ⁺ -real face graphs	m+n-2	5n - 10
outer k^+ -real face graphs ($k \ge 3$)	$\frac{2-k}{k} \cdot m + \frac{k-1}{k} \cdot n - 1$	$\frac{k-1}{k-2} \cdot n - \frac{k}{k-2}$
outer 2 ⁺ -real face graphs	$\frac{1}{2}n - 1$	2.5n - 4
outer 1 ⁺ -real face graphs	m-1	3n - 6

State of the art

- Binucci, Di Battista, D., Hong, Kaufmann, Liotta, Morin, Tappini WG 2023
- Binucci, Di Battista, D., Dujmovic, Hong, Kaufmann, Liotta, Morin, Tappini IEEE Access 2024

The recognition problem

- **Problem**. Given a graph G and a positive integer k, decide whether G is k⁺-real face
 - recognition algorithms exist only for complete graphs and complete bipartite graphs, based on edge density and crossing number
 [Binucci Di Battista, D., Dujmovic, Hong, Kaufmann, Liotta, Morin, Tappini – IEEE Access 2024]

Contribution

General setting

 the recognition problem is NP-hard; namely, deciding whether a graph is k⁺-real face (for k=1 or k=2) is NP-complete, even for biconnected graphs – reduction from 3-PARTITION

2-layer setting

- edge density results for each positive integer k
- linear-time recognition algorithms for *optimal* k^+ -real face graphs when $k \ge 1$
- linear-time recognition algorithms for k⁺-real face graphs when $k \ge 2$

Contribution

General setting

 the recognition problem is NP-hard; namely, deciding whether a graph is k⁺-real face (for k=1 or k=2) is NP-complete, even for biconnected graphs – reduction from 3-PARTITION

2-layer setting

in this talk

- edge density results for each positive integer k
- $\hfill linear-time recognition algorithms for <math display="inline">\hfill optimal\,k^+\mbox{-real}$ face graphs when $k\geq 1$
- linear-time recognition algorithms for k⁺-real face graphs when $k \ge 2$

2-layer drawings: observations

- each internal face has at most 2 vertices
- the external face contains all the vertices
- we can restrict our attention to connected graphs

1⁺-real face drawing

1⁺-real face drawing

adding **n-2** edges the drawing remains outer 1⁺-real face

2⁺-real face drawing

adding **n-2** edges the drawing remains outer 2⁺-real face

1⁺-real face drawing

outer 1⁺-real face graphs have at most 3n-6 edges \Rightarrow 2-layer 1⁺-real face graphs have at most 3n-6-(n-2) = 2n-4 edges

2⁺-real face drawing

outer 2⁺-real face graphs have at most 2.5n-4 edges \Rightarrow 2-layer 2⁺-real face graphs have at most 2.5n-4-(n-2) = 1.5n-2 edges

k⁺-real face graph (n-1 edges)

2-layer drawing

2-layer k⁺-real face drawing ⇔ planar ⇔ caterpillar [Eades, McKay, Wormald, '96]

k⁺-real face graph (n-1 edges)

2-layer drawing

this immediately leads to an O(n)-time recognition algorithm for $k \ge 3$

Recognition of 2-layer 2+-real face graphs

- There is a relationship between 2-layer 2⁺-real face embeddings and 2-layer RAC embeddings
- 2-layer RAC drawing

right angle crossings

a 2-layer embedding is RAC drawable ⇔ it has no fan crossings [Di Giacomo, D., Eades, Liotta 2014]

fan crossing

Recognition of 2-layer 2+-real face graphs

 There is a relationship between 2-layer 2+-real face embeddings and 2-layer RAC embeddings

Biconnected 2-layer 2⁺-real face graph \Leftrightarrow biconnected 2-layer RAC graphs \Leftrightarrow spanning subgraph of a ladder

biconnected 2-layer 2+-real face graphs can be recognized in O(n) time (using [Di Giacomo, D., Eades, Liotta 2014])

There exist infinitely many 2-layer RAC graphs that are not 2-layer 2⁺-real face

• Structure of a 2-layer RAC embedding

skeleton

• Structure of a 2-layer RAC embedding

extended skeleton

• Structure of a 2-layer RAC embedding

extended skeleton + dangling paths

• Structure of a 2-layer RAC embedding

A 2-layer RAC embedding is 2+-real face \Leftrightarrow it does not contain two crossing dangling paths

A 2-layer RAC embedding is 2+-real face \Leftrightarrow it does not contain two crossing dangling paths

A 2-layer RAC embedding is 2+-real face \Leftrightarrow it does not contain two crossing dangling paths

- O(n)-time recognition algorithm
 - recursively remove all degree-1 vertices to recognize the skeleton (if any, it has a unique RAC embedding)

A 2-layer RAC embedding is 2+-real face \Leftrightarrow it does not contain two crossing dangling paths

- recursively remove all degree-1 vertices to recognize the skeleton (if any, it has a unique RAC embedding)
- iteratively add dangling paths attached to in-between paths in a greedy fashion (if fan-crossings or crossings between dangling paths arise reject)

A 2-layer RAC embedding is 2+-real face \Leftrightarrow it does not contain two crossing dangling paths

- recursively remove all degree-1 vertices to recognize the skeleton (if any, it has a unique RAC embedding)
- iteratively add dangling paths attached to in-between paths in a greedy fashion (if fan-crossings or crossings between dangling paths arise reject)
- recognize and add extremal paths and the attached dangling paths (if possible)

A 2-layer RAC embedding is 2+-real face \Leftrightarrow it does not contain two crossing dangling paths

- recursively remove all degree-1 vertices to recognize the skeleton (if any, it has a unique RAC embedding)
- iteratively add dangling paths attached to in-between paths in a greedy fashion (if fan-crossings or crossings between dangling paths arise reject)
- recognize and add extremal paths and the attached dangling paths (if possible)
- The different steps exploit variants of linear-time algorithms in [Di Giacomo, D., Eades, Liotta 2014]

Open Problems

- Can we efficiently recognize 2-layer 1+-real face graphs?
 - We have preliminary results ... we are optimistic
- What is the complexity of recognizing *outer* k⁺-real face graphs?
- In the unconstrained scenario, are there subfamilies of k⁺-real face graphs that can be recognized efficiently?
- What about parameterized algorithms for the unconstrained scenario?
 - note that the problem is neither FPT nor XP with parameter k

Thanks for your attention!

Motivations and Observations

Theoretical motivations

- extension of planar drawings with face sizes above a desired threshold
- generalization to non-planar graphs of the classical guarding planar graph problem (vertices that cover faces)
- Practical motivation
 - faces consisting of crossing points only might be less readable

