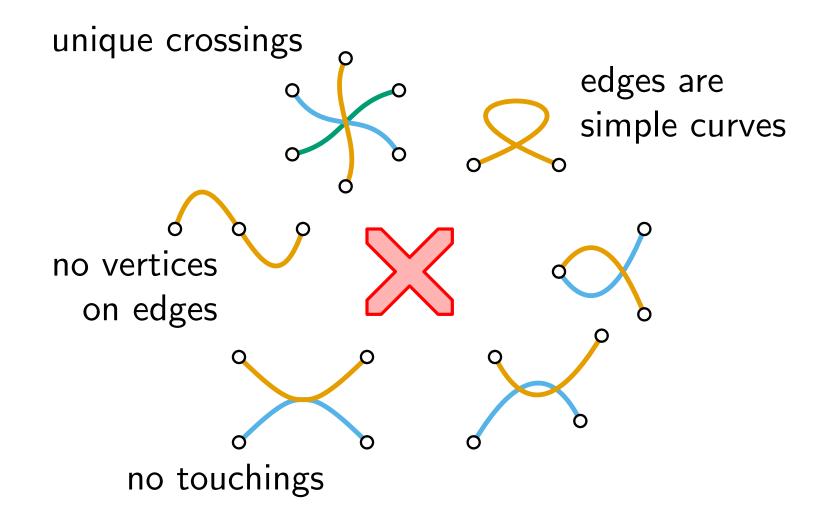
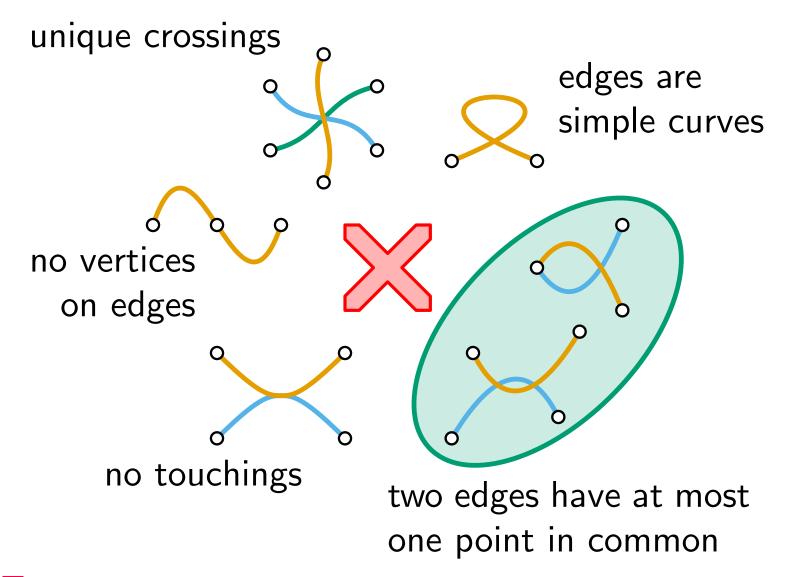
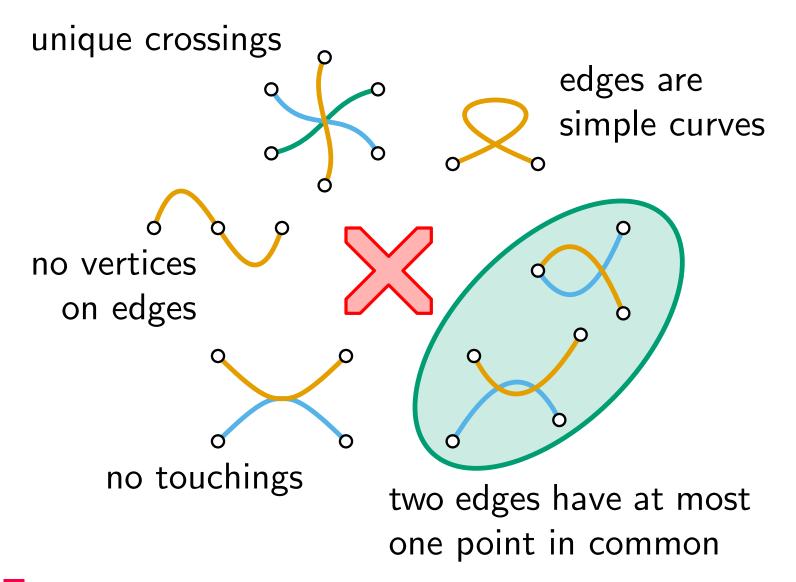
Separable Drawings: Extendability and Crossing-Free Hamiltonian Cycles

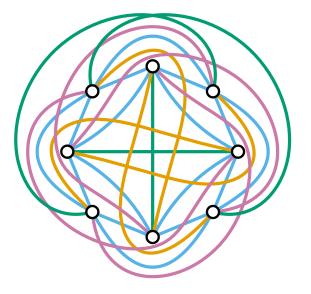
Oswin Aichholzer, Joachim Orthaber, and Birgit Vogtenhuber

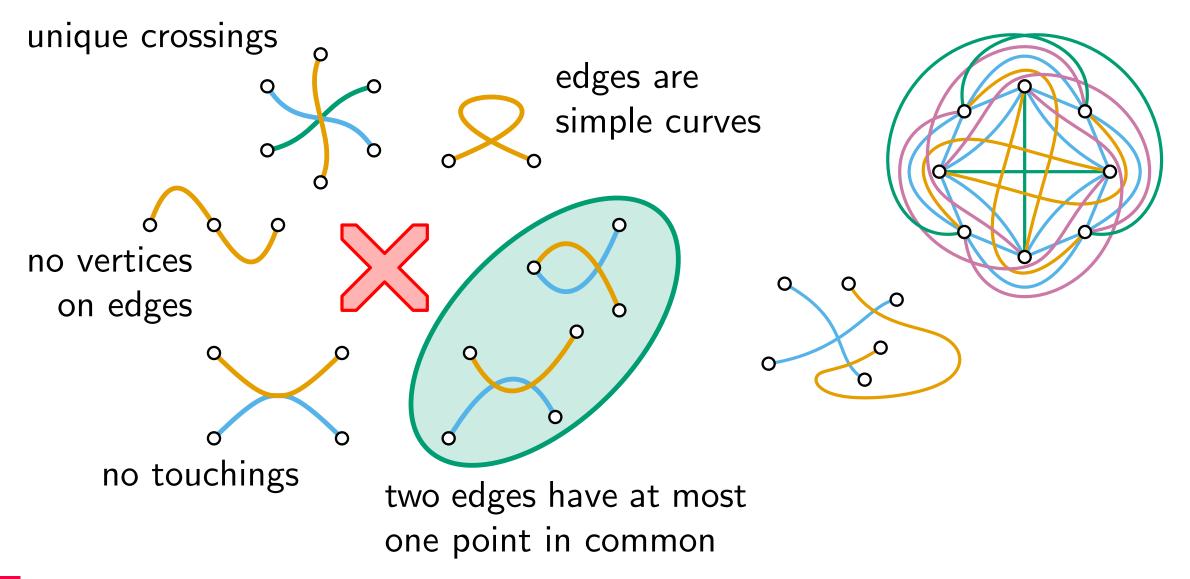
GD 2024: September 20





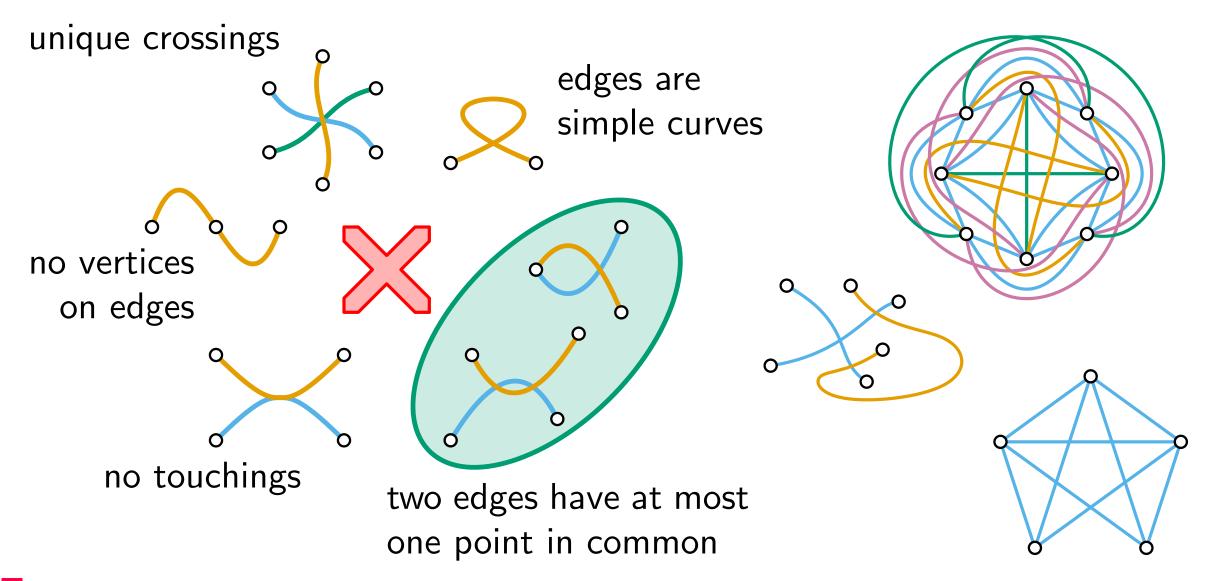






Joachim Orthaber

2/10

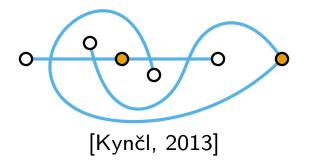


Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?

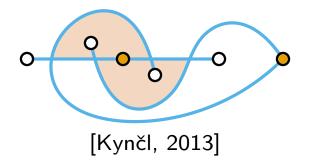
Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?



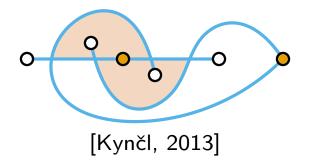
Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?

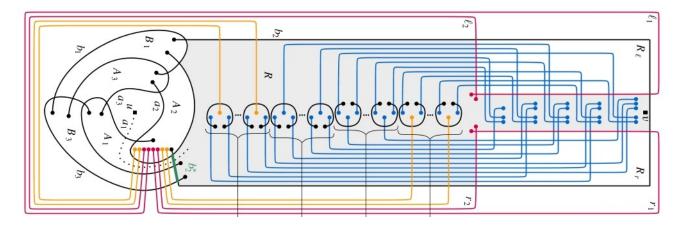


Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?

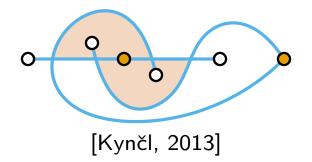


[Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete

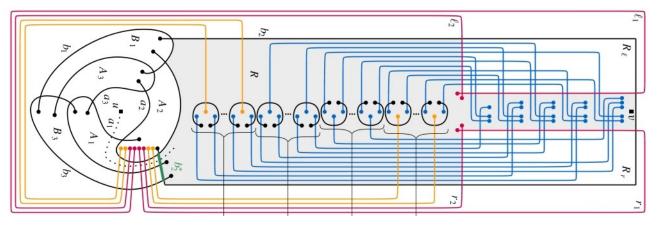


Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?



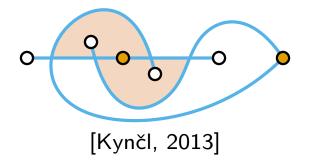
[Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete



even for pseudocircular drawings!

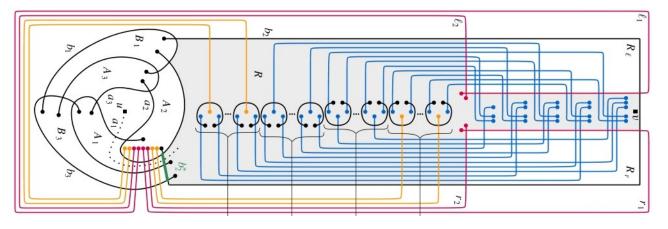
Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?



Joachim Orthaber

[Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete



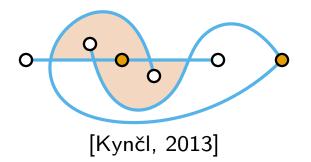
even for pseudocircular drawings!

3/10

x-monotone drawings always extendable [Kynčl, Soukup, 2024]

Extendability

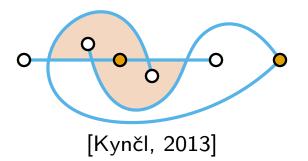
Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?



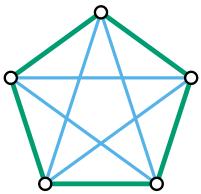
Hamiltonicity [Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete

Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?

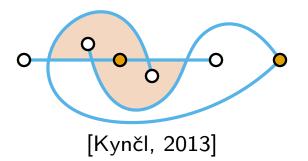


Hamiltonicity [Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete

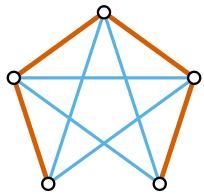


Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?

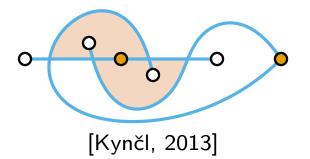


Hamiltonicity [Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete

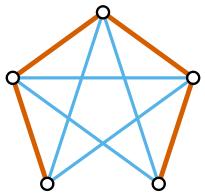


Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?

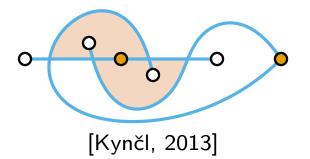


Hamiltonicity [Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete



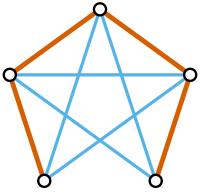
Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?



Hamiltonicity [Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete

Conjecture [Rafla 1988] Every simple drawing of K_n with $n \ge 3$ vertices contains a crossing-free Hamiltonian cycle.

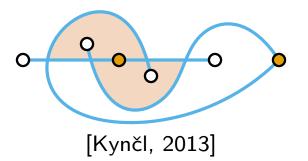


cylindrical, strongly c-monotone [AOV, 2024]

g-convex drawings (Bergold, Felsner, M. Reddy, O, Scheucher, 2024)

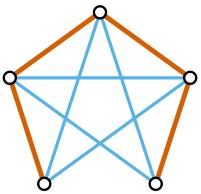
Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?



Hamiltonicity [Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete

Conjecture [Rafla 1988] Every simple drawing of K_n with $n \ge 3$ vertices contains a crossing-free Hamiltonian cycle.

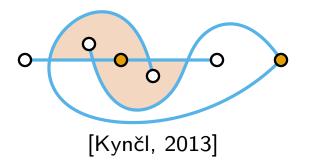


Recognition

Question: Given a drawing \mathcal{D} . Is \mathcal{D} contained in a certain drawing class?

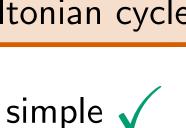
Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?



Hamiltonicity [Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete

Conjecture [Rafla 1988] Every simple drawing of K_n with $n \ge 3$ vertices contains a crossing-free Hamiltonian cycle.

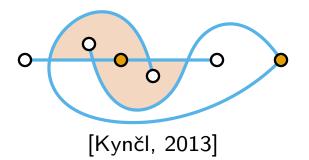


Recognition

Question: Given a drawing \mathcal{D} . Is \mathcal{D} contained in a certain drawing class?

Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?



Hamiltonicity [Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete

Conjecture [Rafla 1988] Every simple drawing of K_n with $n \ge 3$ vertices contains a crossing-free Hamiltonian cycle.

Recognition

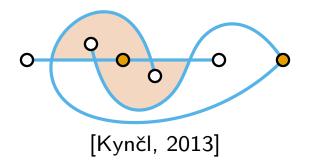
simple 🗸

Question: Given a drawing \mathcal{D} . Is \mathcal{D} contained in a certain drawing class?

crossing-free 🗸

Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?



Hamiltonicity [Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete

Conjecture [Rafla 1988] Every simple drawing of K_n with $n \ge 3$ vertices contains a crossing-free Hamiltonian cycle.

Recognition

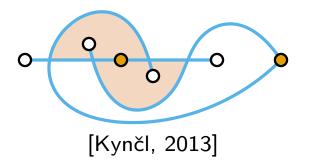
Question: Given a drawing \mathcal{D} . Is \mathcal{D} contained in a certain drawing class? simple \checkmark

pseudolinear

crossing-free 🗸

Extendability

Question: Given a simple drawing \mathcal{D} on n vertices. Can \mathcal{D} be extended to a simple drawing of K_n ?



crossing-free 🗸

3/10

Joachim Orthaber

Hamiltonicity [Arroyo, Klute, Parada, Seidel, Vogtenhuber, Wiedera, 2022] decision NP-complete

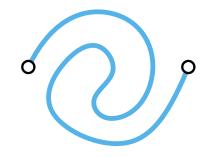
Conjecture [Rafla 1988] Every simple drawing of K_n with $n \ge 3$ vertices contains a crossing-free Hamiltonian cycle.

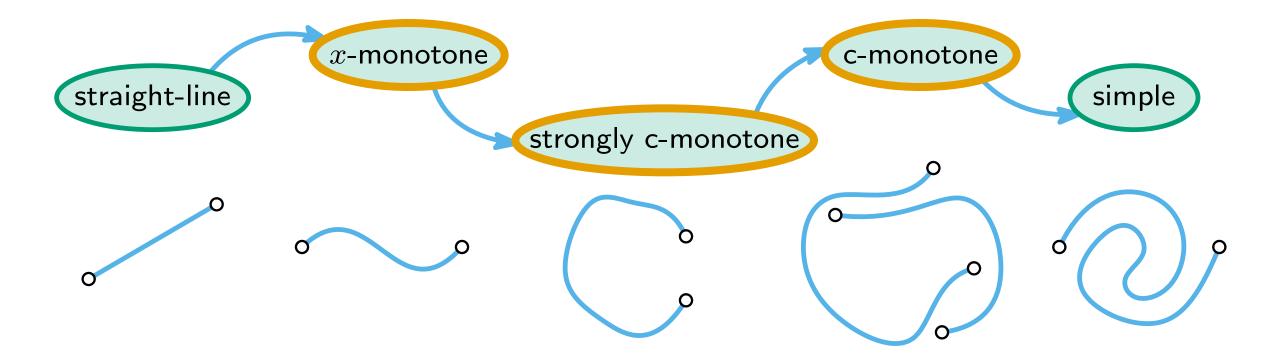
Recognition

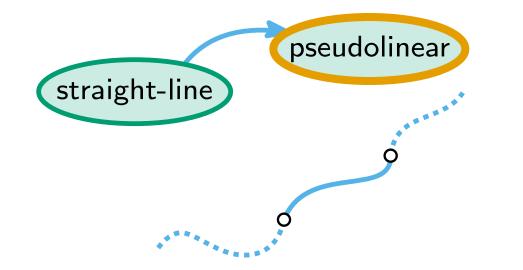
Question: Given a drawing \mathcal{D} . Is \mathcal{D} contained in a certain drawing class? simple \checkmark

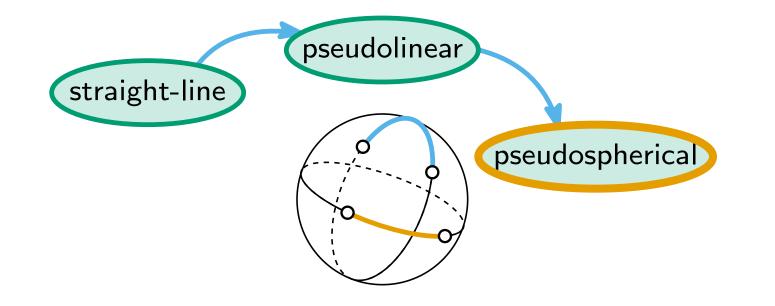
pseudolinear 🗸

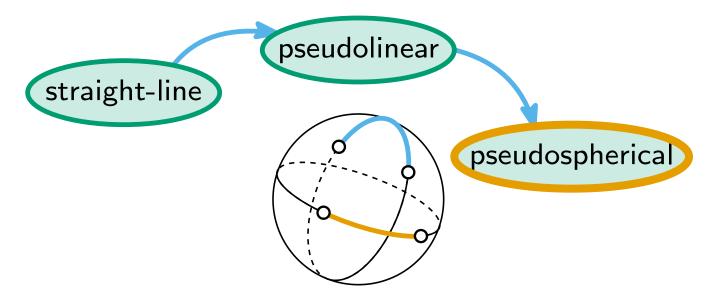
[Arroyo, Bensmail, Richter, 2021]



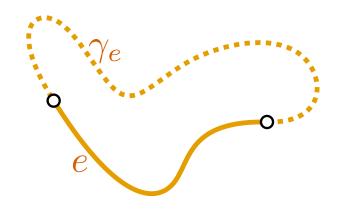


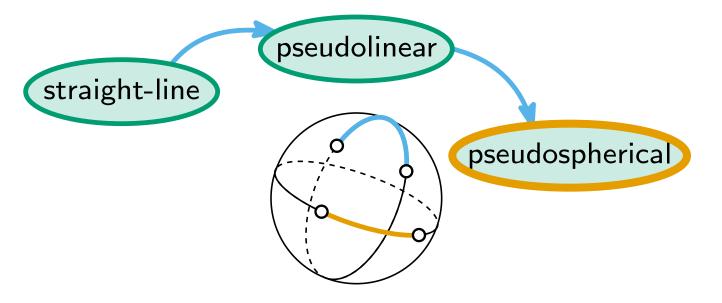




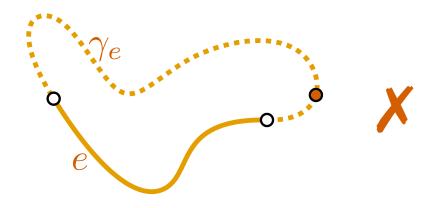


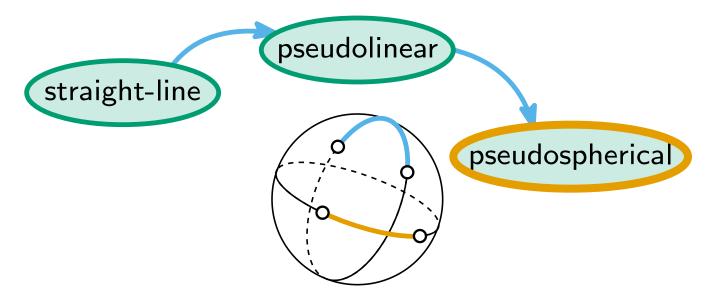
every edge e is contained in a simple closed curve γ_e such that



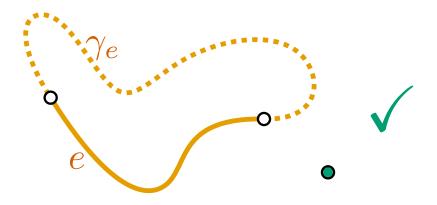


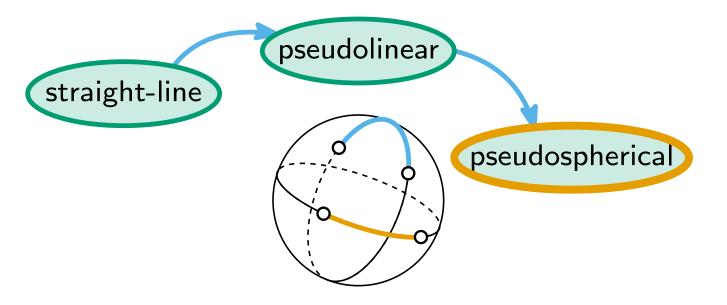
every edge e is contained in a simple closed curve γ_e such that





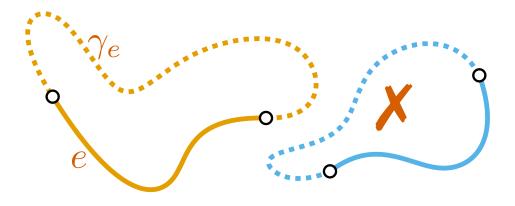
every edge e is contained in a simple closed curve γ_e such that

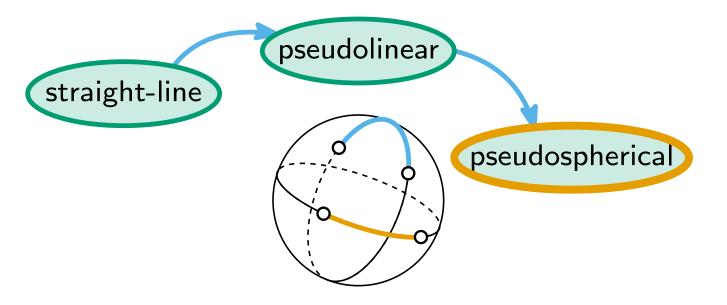




every edge e is contained in a simple closed curve γ_e such that

• for
$$e \neq f$$
, γ_e and γ_f cross exactly twice



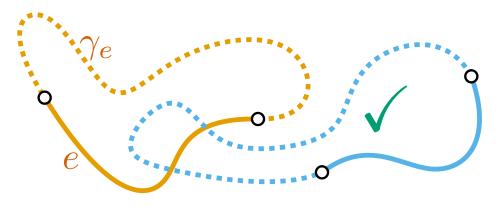


Joachim Orthaber

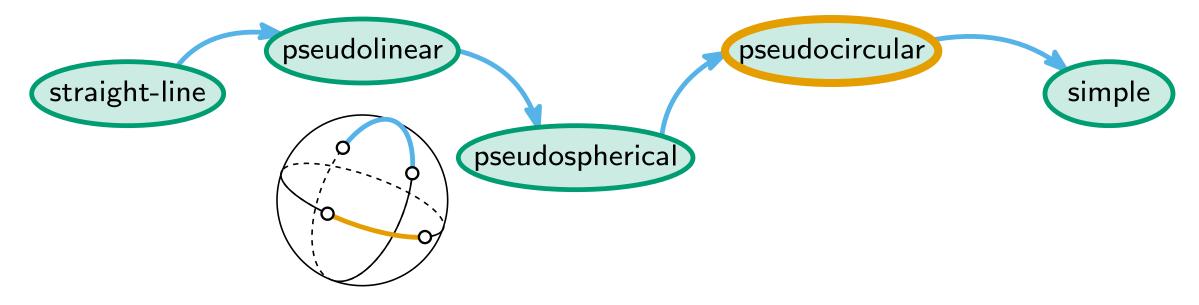
every edge e is contained in a simple closed curve γ_e such that

• only the end-vertices of e lie on γ_e

• for
$$e \neq f$$
, γ_e and γ_f cross exactly twice

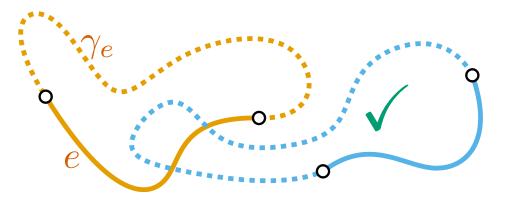


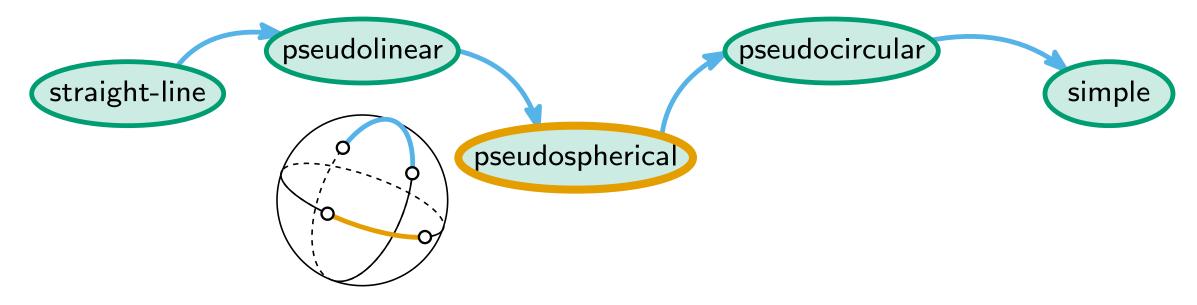
4/10



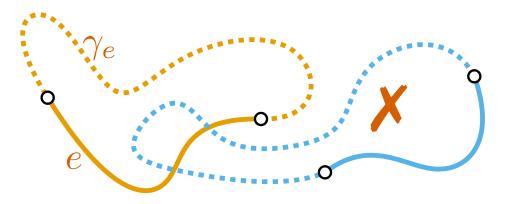
every edge e is contained in a simple closed curve γ_e such that

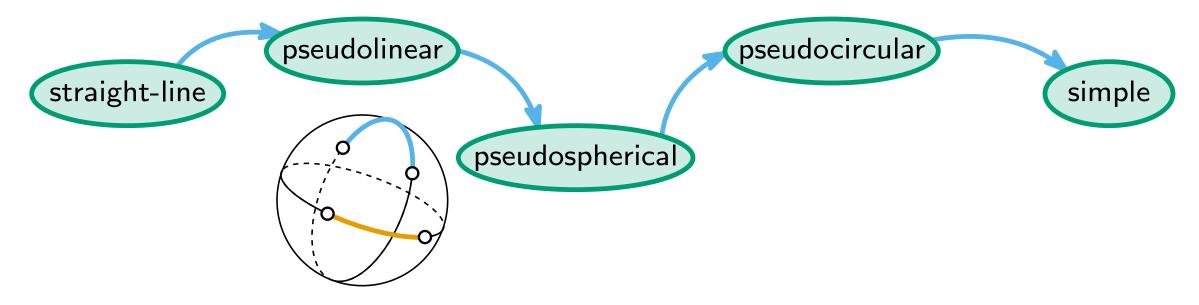
• for
$$e \neq f$$
, γ_e and γ_f cross exactly twice



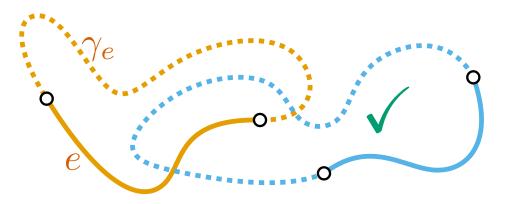


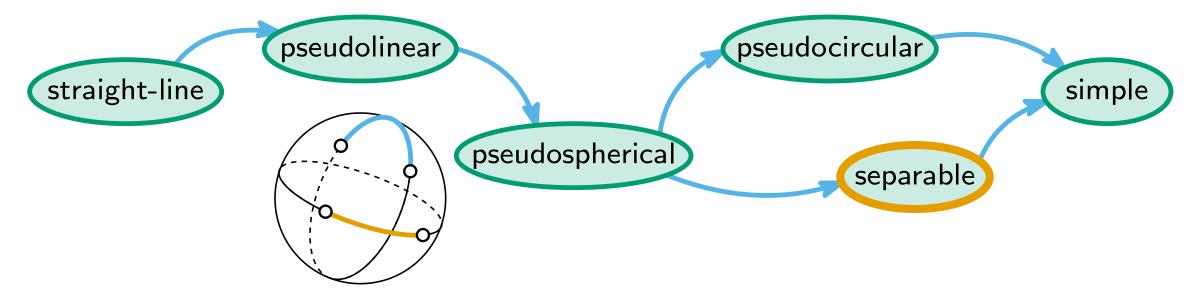
- only the end-vertices of e lie on γ_e
- for $e \neq f$, γ_e and γ_f cross exactly twice
- γ_e intersects every $f \neq e$ at most once



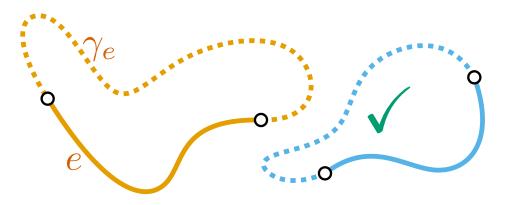


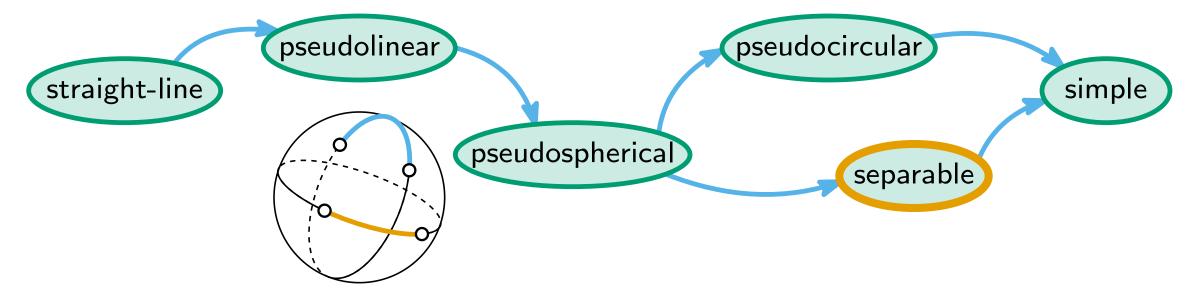
- only the end-vertices of e lie on γ_e
- for $e \neq f$, γ_e and γ_f cross exactly twice
- γ_e intersects every $f \neq e$ at most once



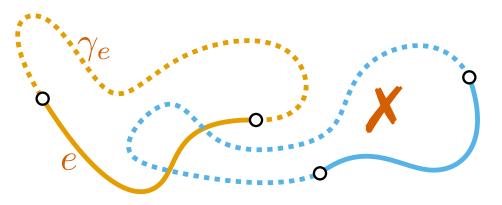


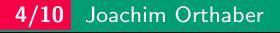
- only the end-vertices of e lie on γ_e
- for $e \neq f$, γ_e and γ_f cross exactly twice
- γ_e intersects every $f \neq e$ at most once



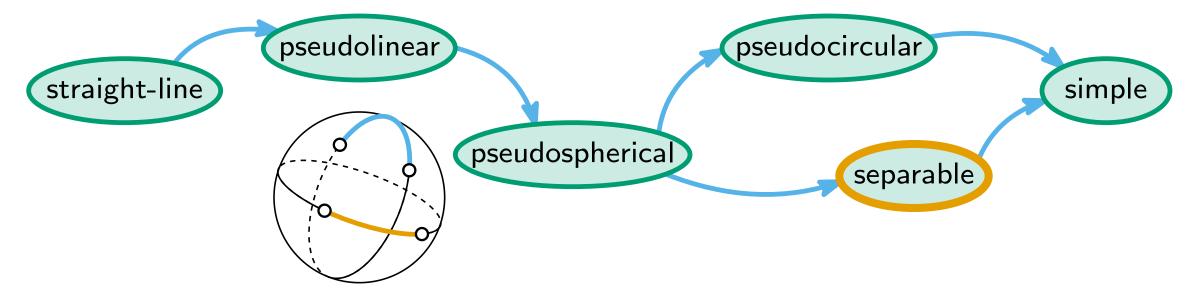


- only the end-vertices of e lie on γ_e
- for $e \neq f$, γ_e and γ_f cross exactly twice
- γ_e intersects every $f \neq e$ at most once



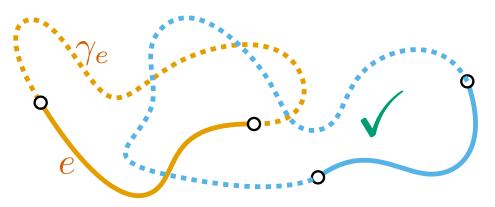


Pseudospherical Drawings

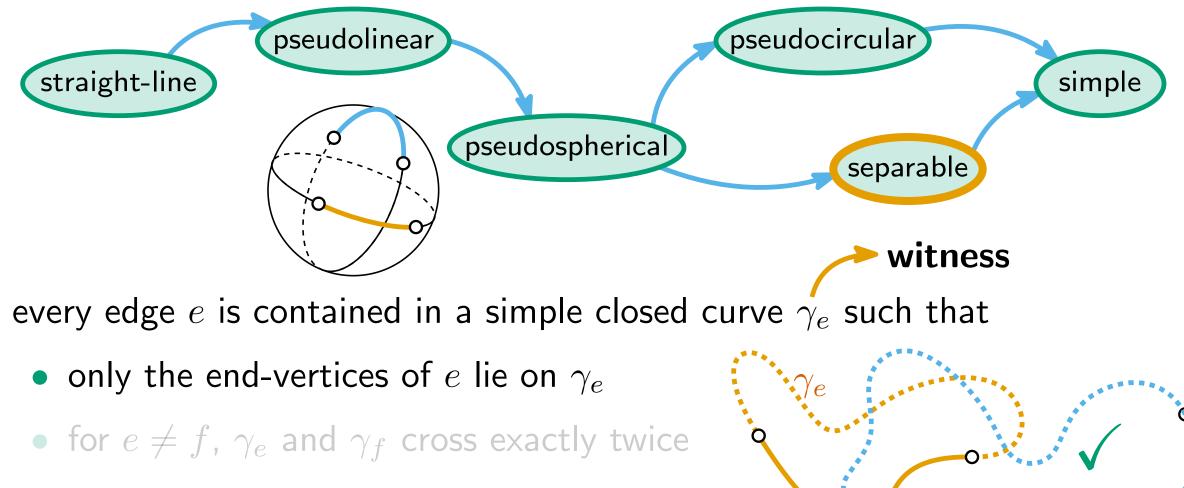


every edge e is contained in a simple closed curve γ_e such that

- only the end-vertices of e lie on γ_e
- for $e \neq f$, γ_e and γ_f cross exactly twice
- γ_e intersects every $f \neq e$ at most once

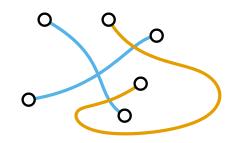


Pseudospherical Drawings

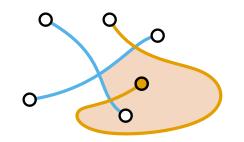


• γ_e intersects every $f \neq e$ at most once

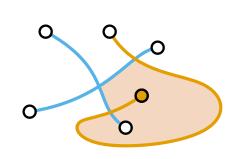
Not separable:

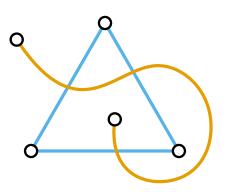


Not separable:

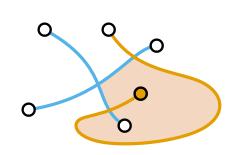


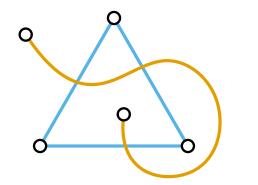
Not separable:



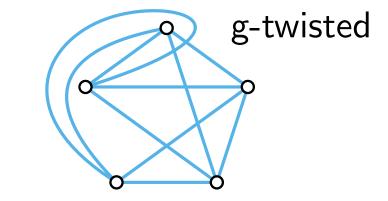


Not separable:

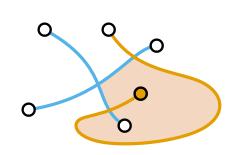


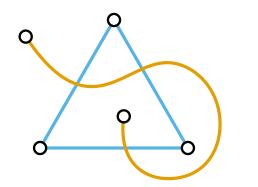


 \Rightarrow

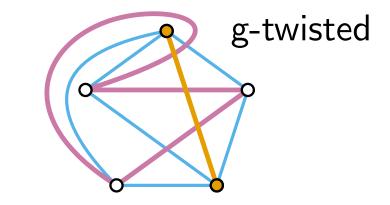


Not separable:

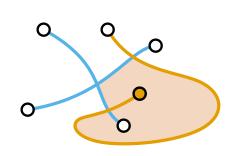


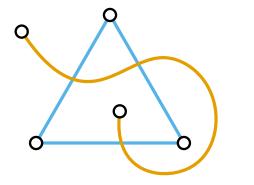


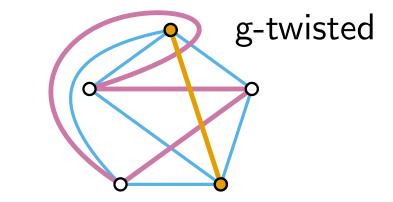
 \Rightarrow



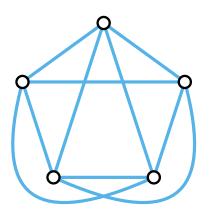
Not separable:



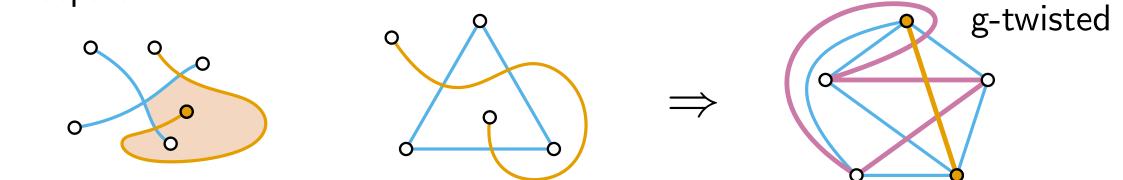




Separable:



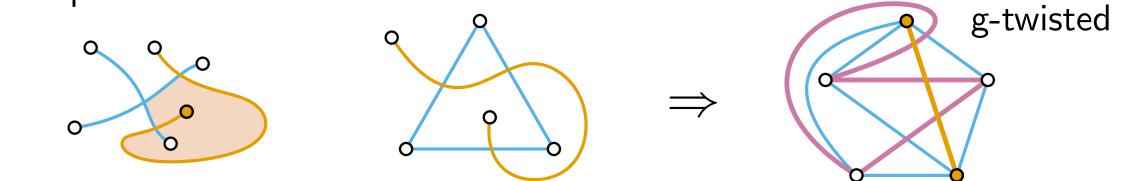
Not separable:



Separable:

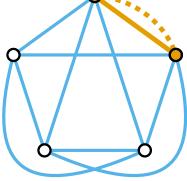
check each edge independently

Not separable:



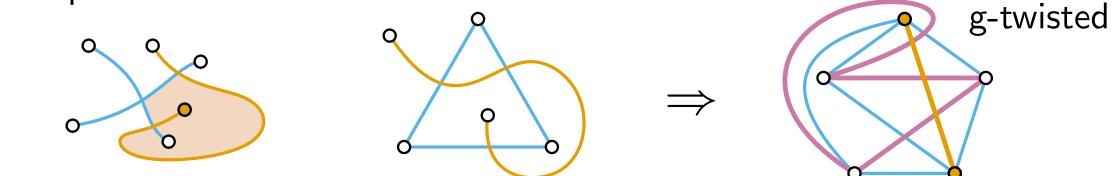
Separable:

check each edge independently

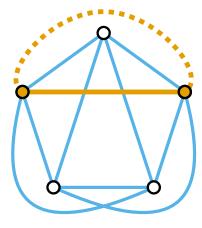


uncrossed \checkmark

Not separable:



Separable:

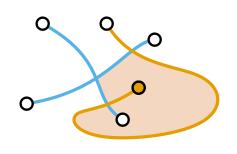


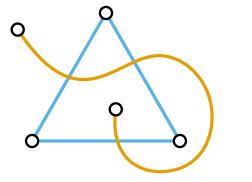
check each edge independently

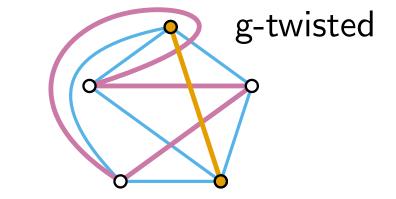
uncrossed 🗸

end-points share face 🗸

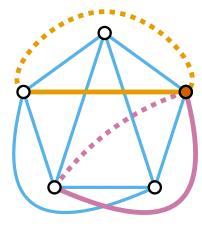
Not separable:







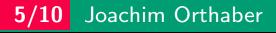
Separable:



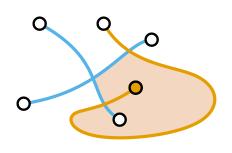
check each edge independently

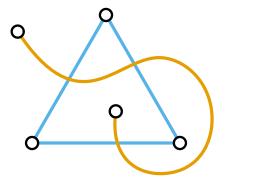
uncrossed 🗸

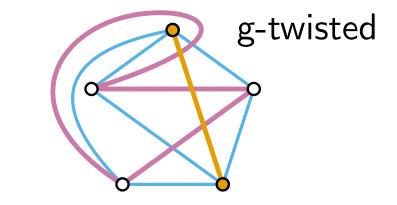
end-points share face \checkmark



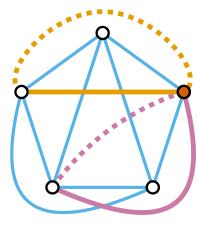
Not separable:





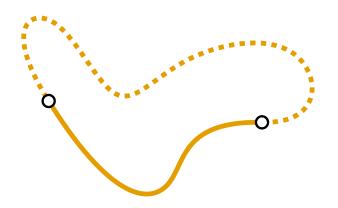


Separable:

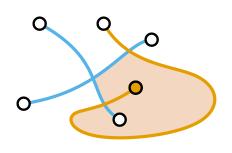


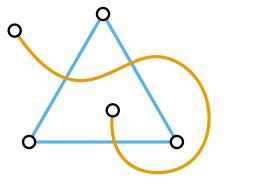
check each edge independently uncrossed

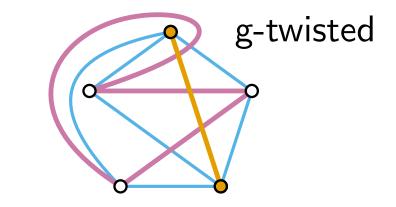
end-points share face 🗸



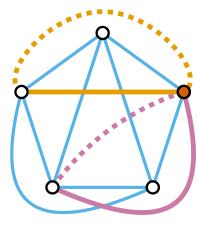
Not separable:





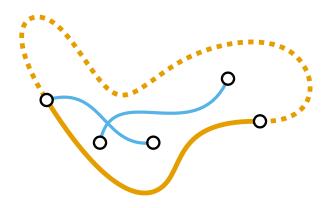


Separable:

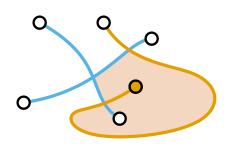


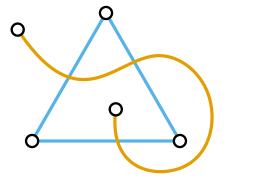
check each edge independently uncrossed

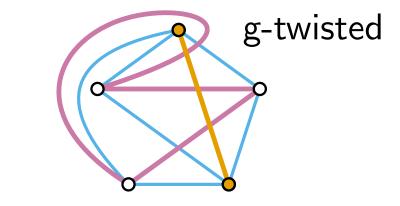
end-points share face \checkmark



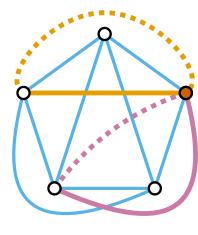
Not separable:





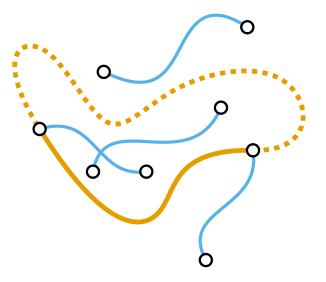


Separable:



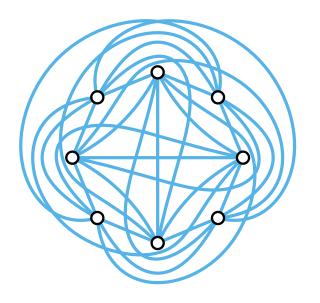
check each edge independently uncrossed 🗸

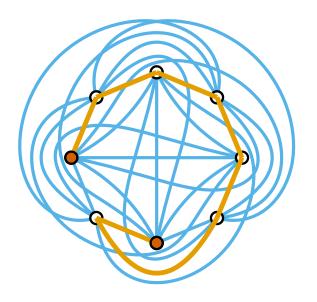
end-points share face \checkmark

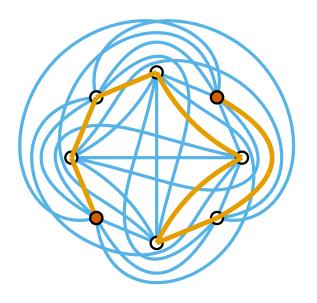


Result: Hamiltonicity (K_n)

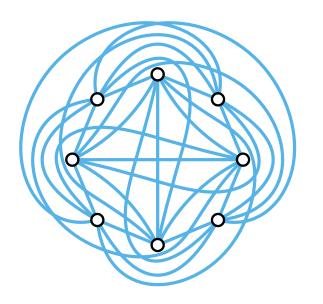
Conjecture [Rafla 1988] Every simple drawing of K_n with $n \ge 3$ vertices contains a crossing-free Hamiltonian cycle.

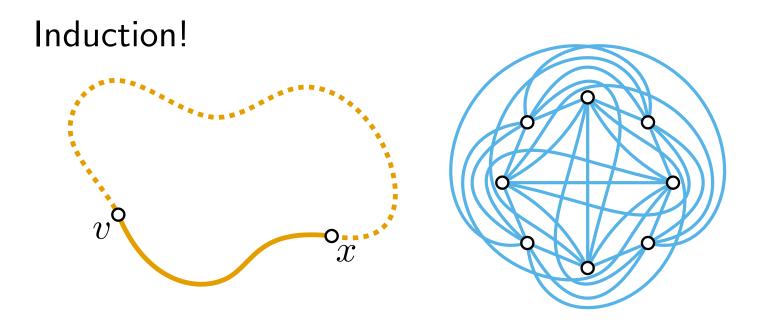




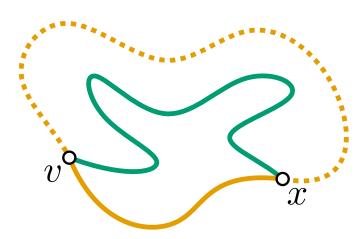


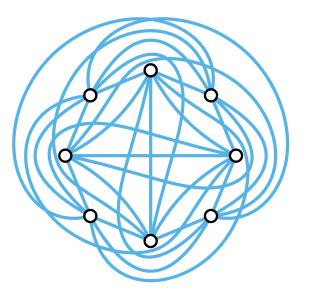
Induction!





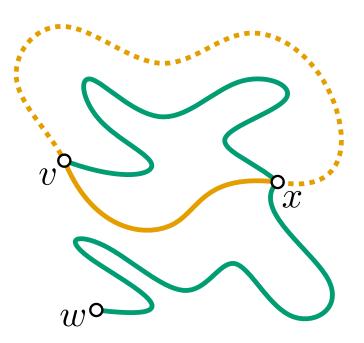
Induction!

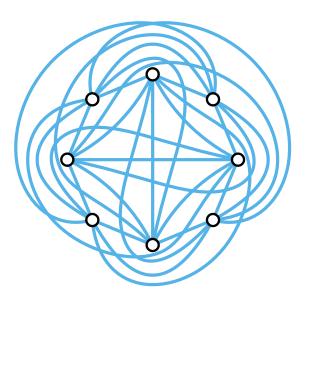


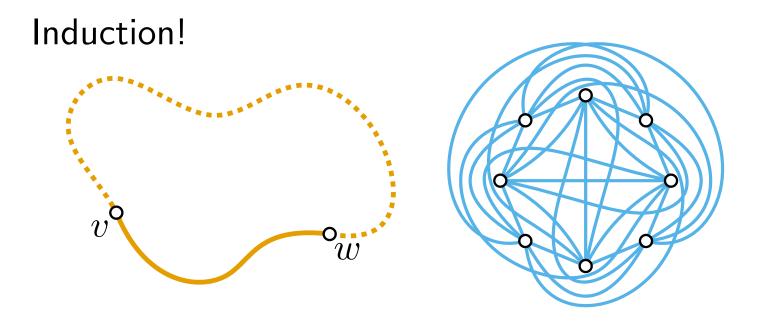


 w^{o}

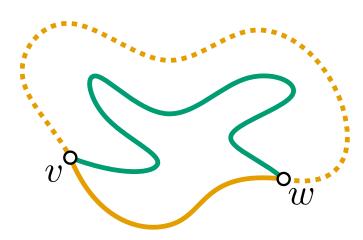
Induction!

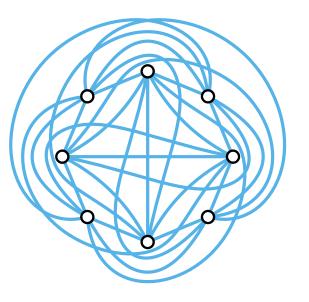




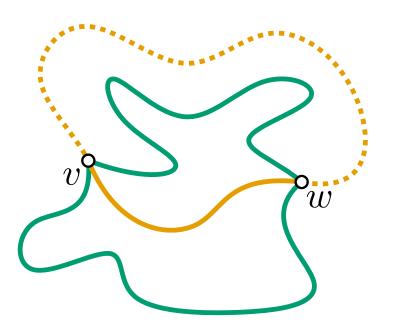


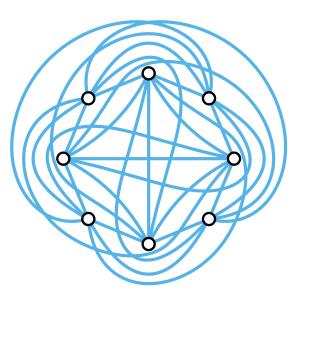
Induction!

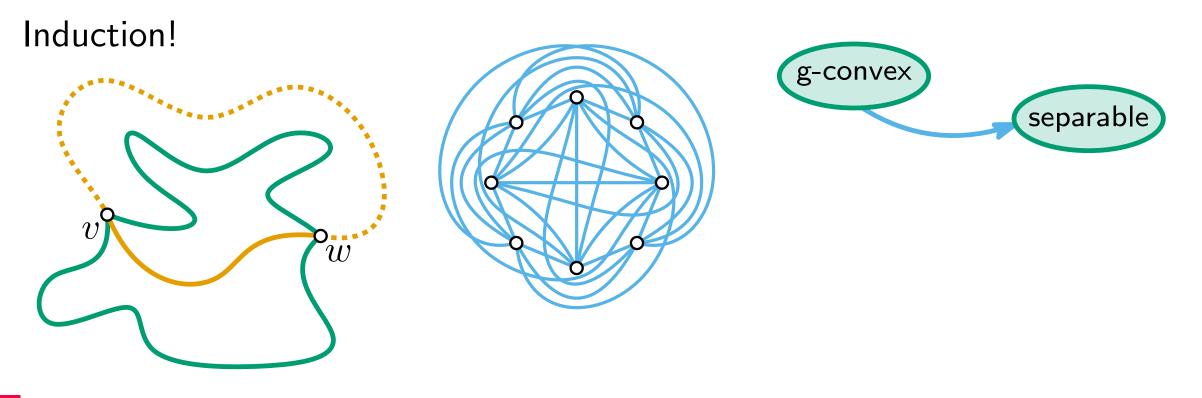


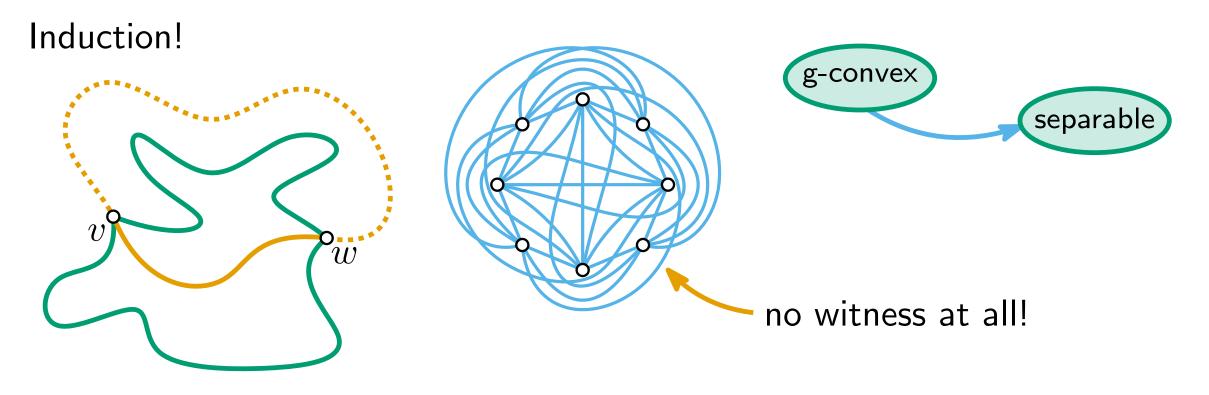


Induction!





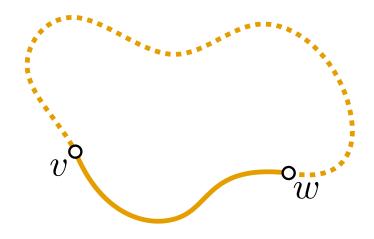




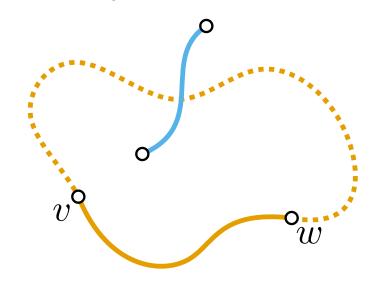
Joachim Orthaber

6/10

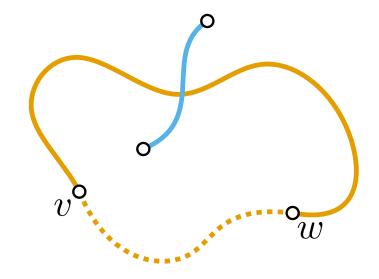
for every witness:



for every witness:

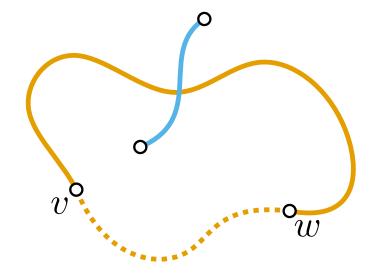


for every witness:



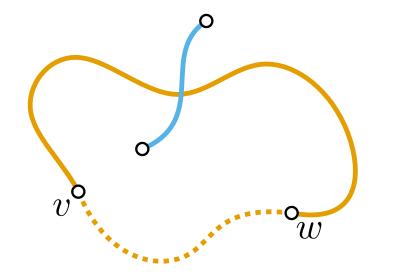
can exchange edge/non-edge part

for every witness:



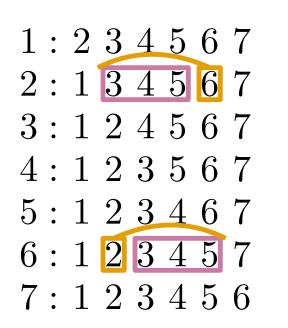
can exchange edge/non-edge part \rightarrow still simple

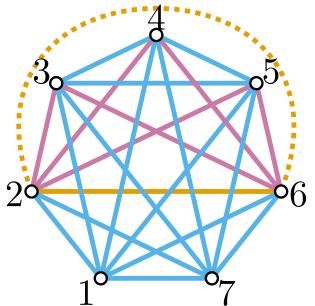
for every witness:



can exchange edge/non-edge part \rightarrow still simple

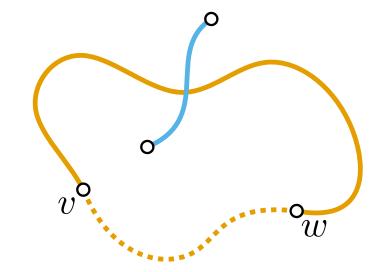
relation to **flips** in rotation systems





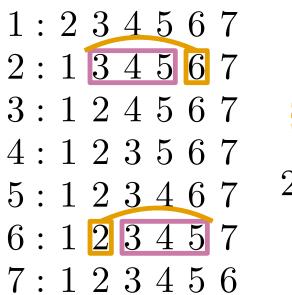
Theorem: It can be decided in $\mathcal{O}(n^6)$ time whether a given simple drawing of K_n is separable.

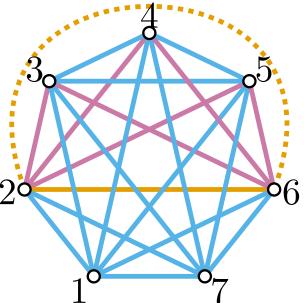
for every witness:



can exchange edge/non-edge part \rightarrow still simple

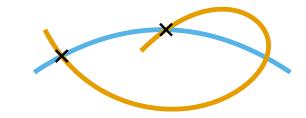
relation to **flips** in rotation systems





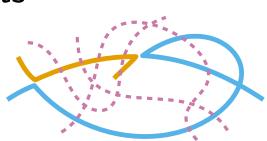
Theorem: Every separable drawing on n vertices can be extended to a simple drawing of K_n .

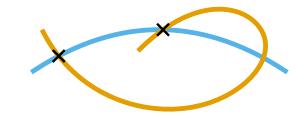
1 add one edge: minimize crossings with the **witnesses**



1 add one edge: minimize crossings with the **witnesses**

standard rerouting/exchanging arguments

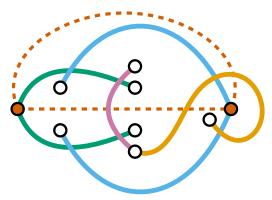


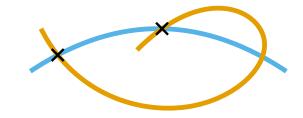


add one edge: minimize crossings with the **witnesses**

standard rerouting/exchanging arguments

result need not be separable!

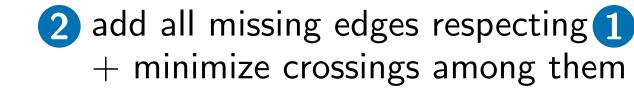


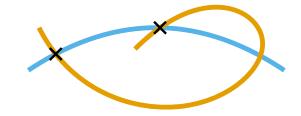


1) add one edge: minimize crossings with the **witnesses**

standard rerouting/exchanging arguments

result need not be separable!





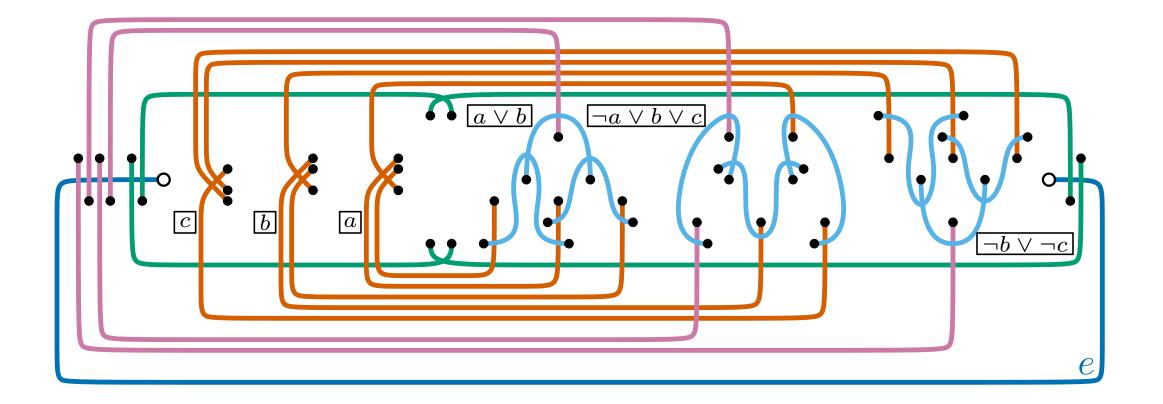
1) add one edge: minimize crossings with the **witnesses**

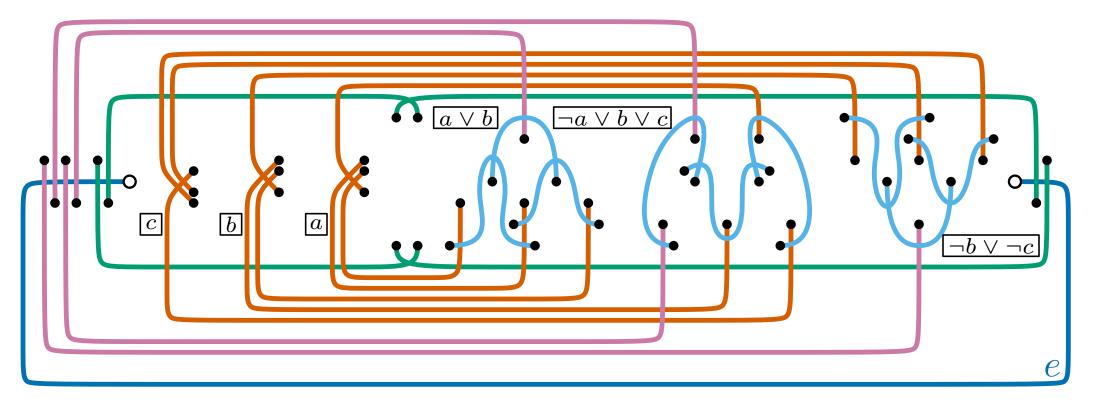
standard rerouting/exchanging arguments

result need not be separable!

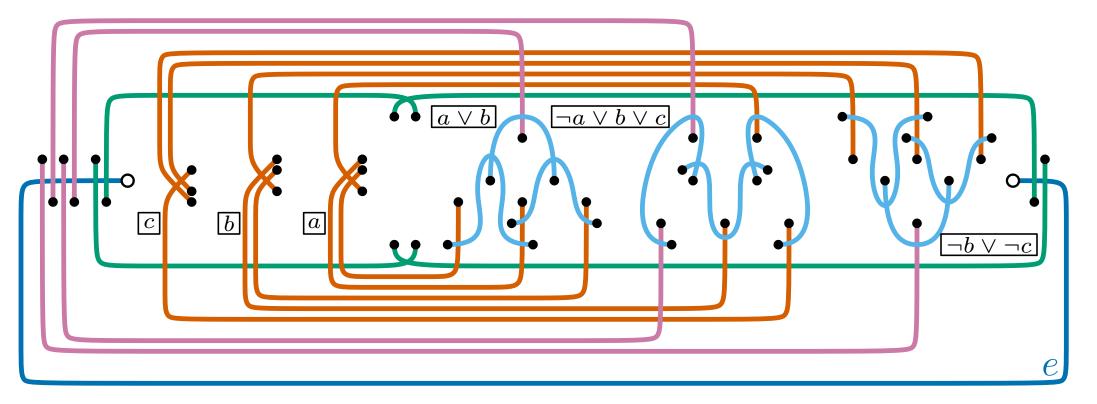
2 add all missing edges respecting 1 + minimize crossings among them

Theorem: Every crossing-minimizing drawing on n vertices can be extended to a simple drawing of K_n .



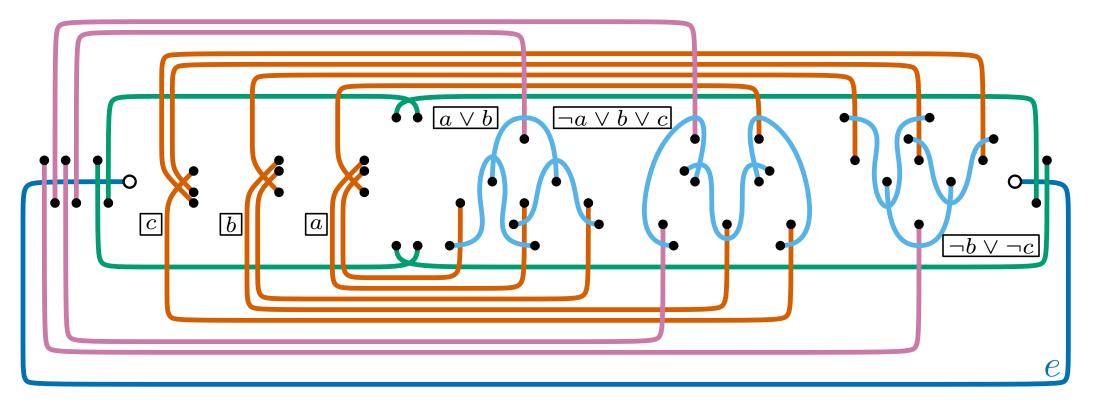


reduction from linked planar 3-SAT with negated edges on one side

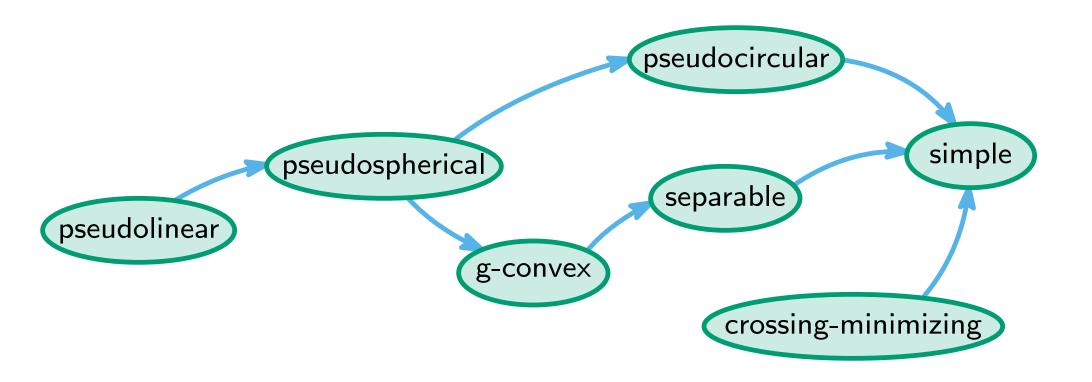


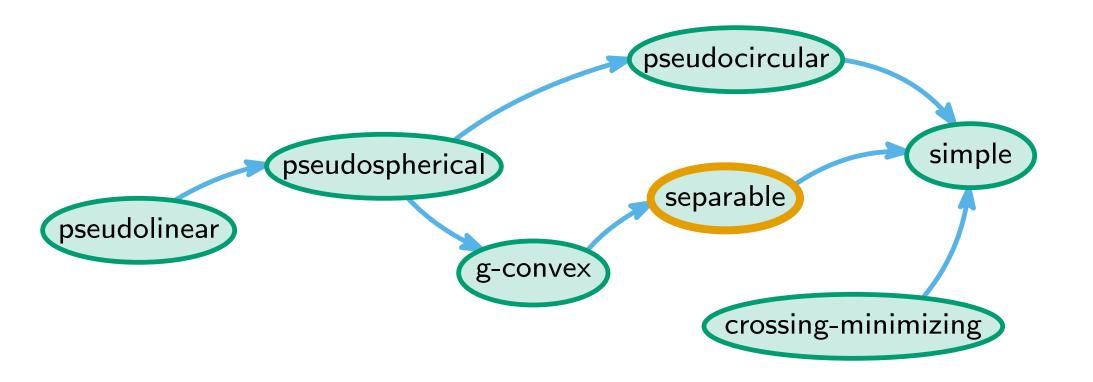
reduction from linked planar 3-SAT with negated edges on one side

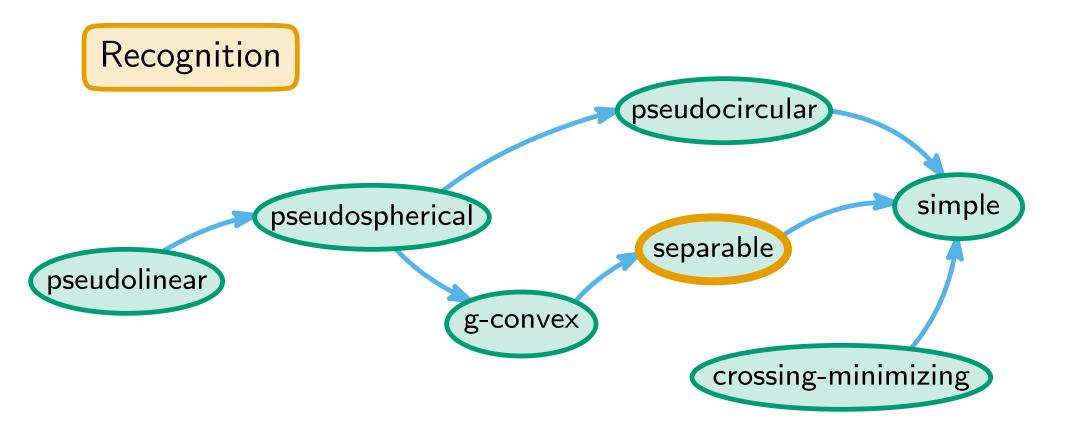
satisfiable $\Leftrightarrow e$ has witness

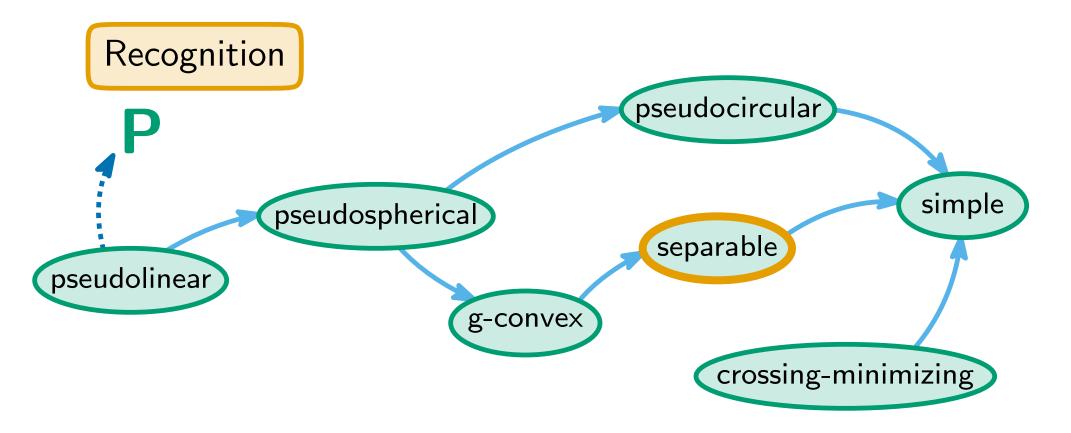


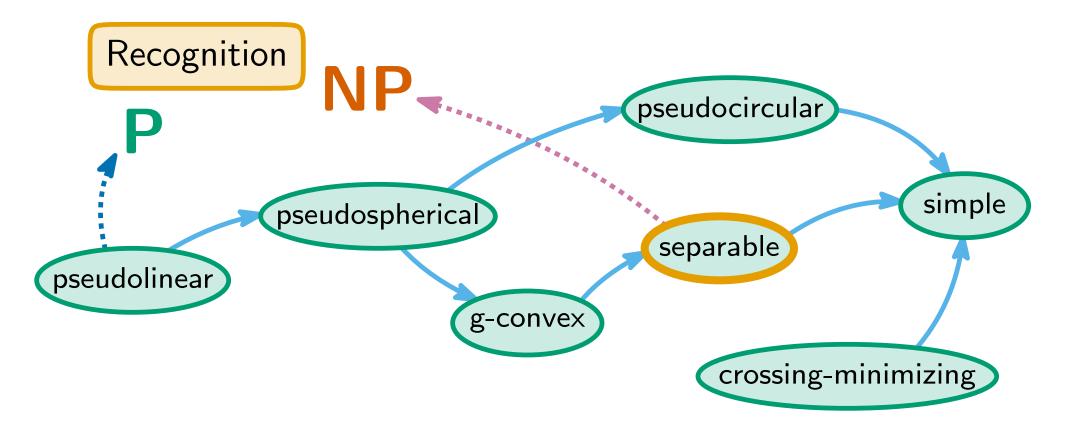
reduction from linked planar 3-SAT with negated edges on one side satisfiable $\Leftrightarrow e$ has witness all other edges have witnesses

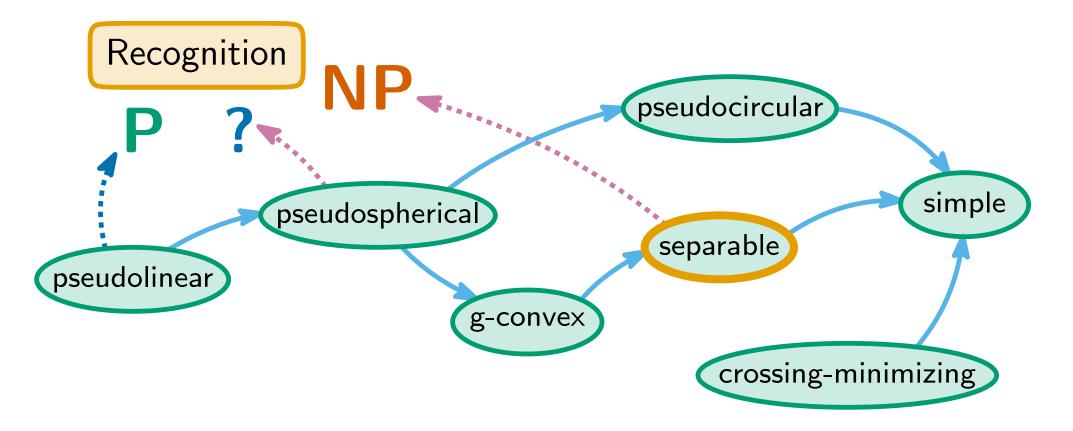


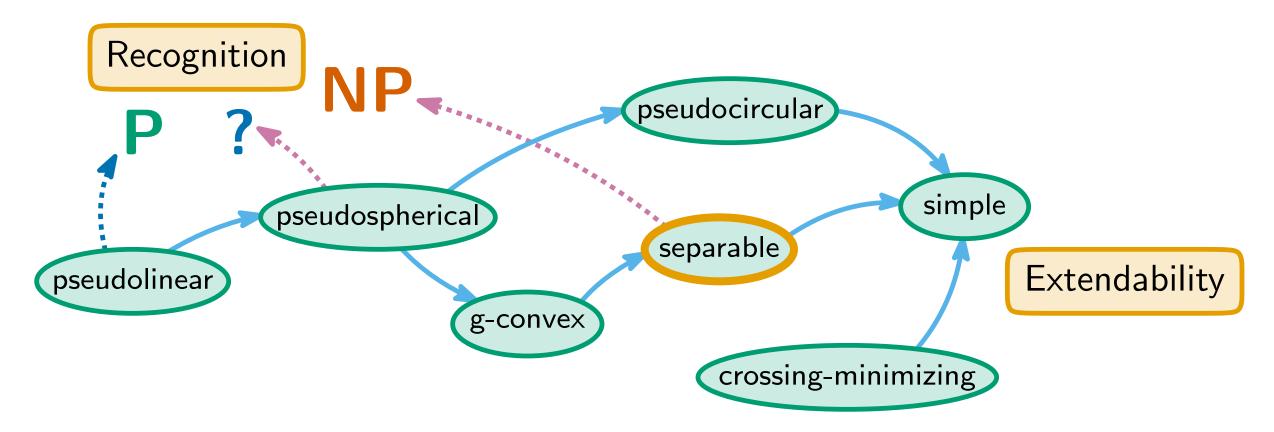


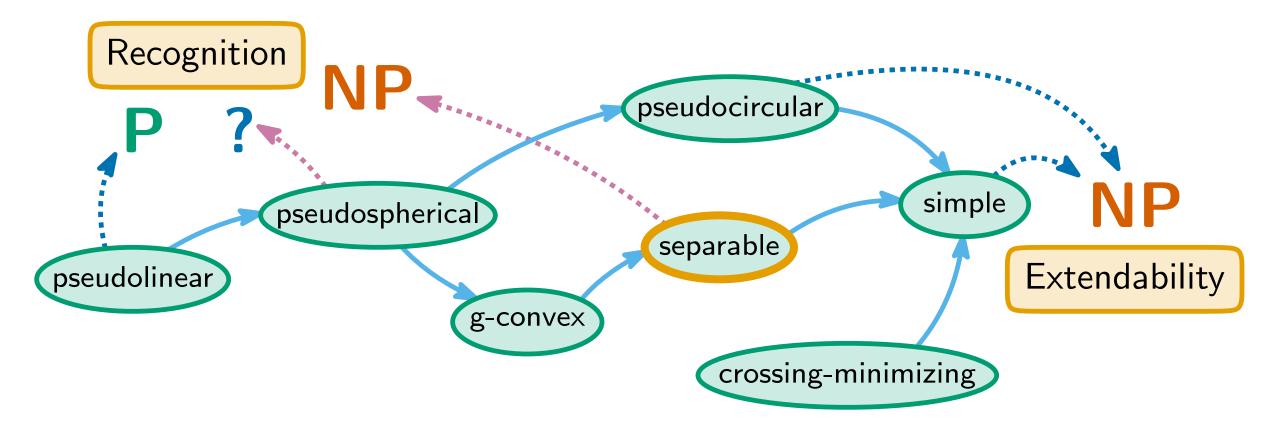


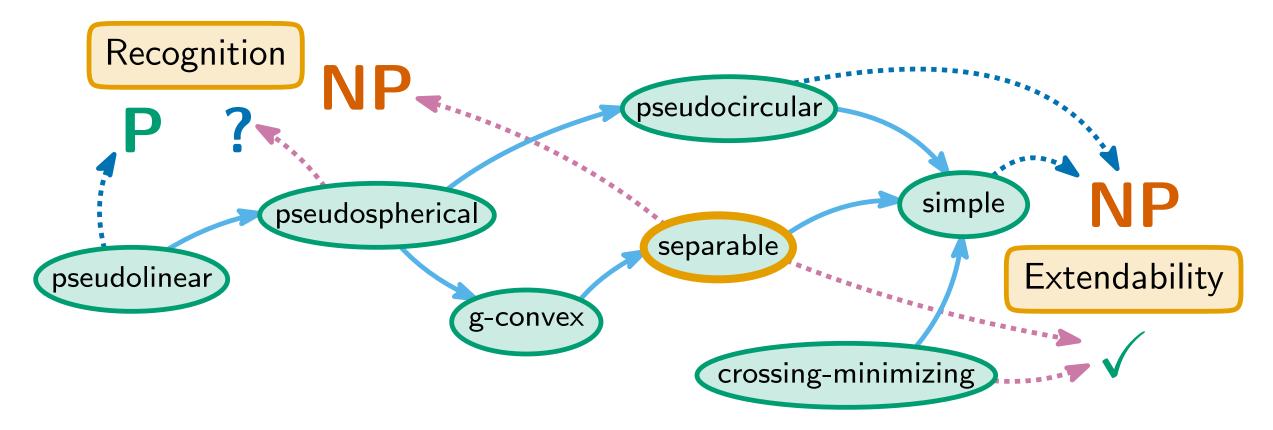


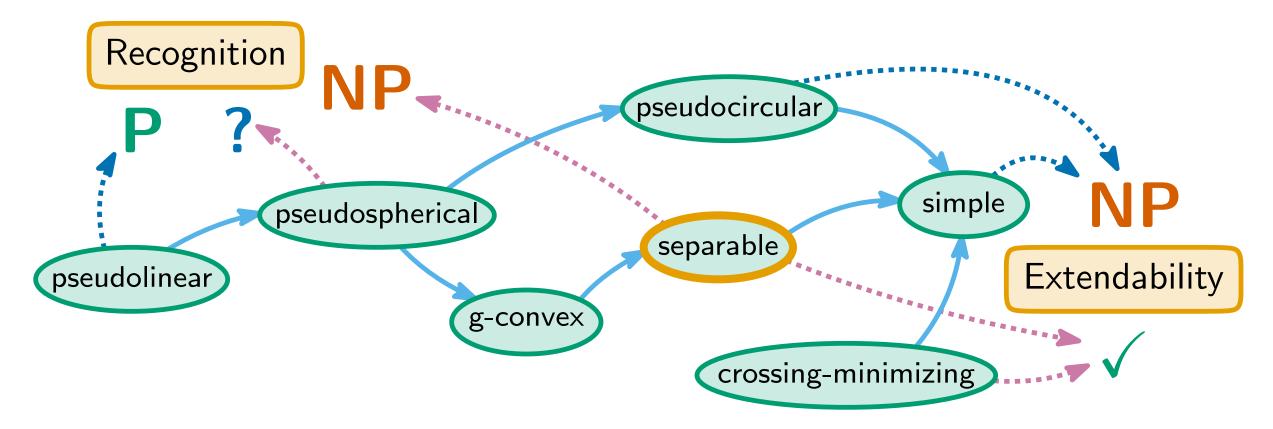






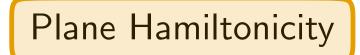


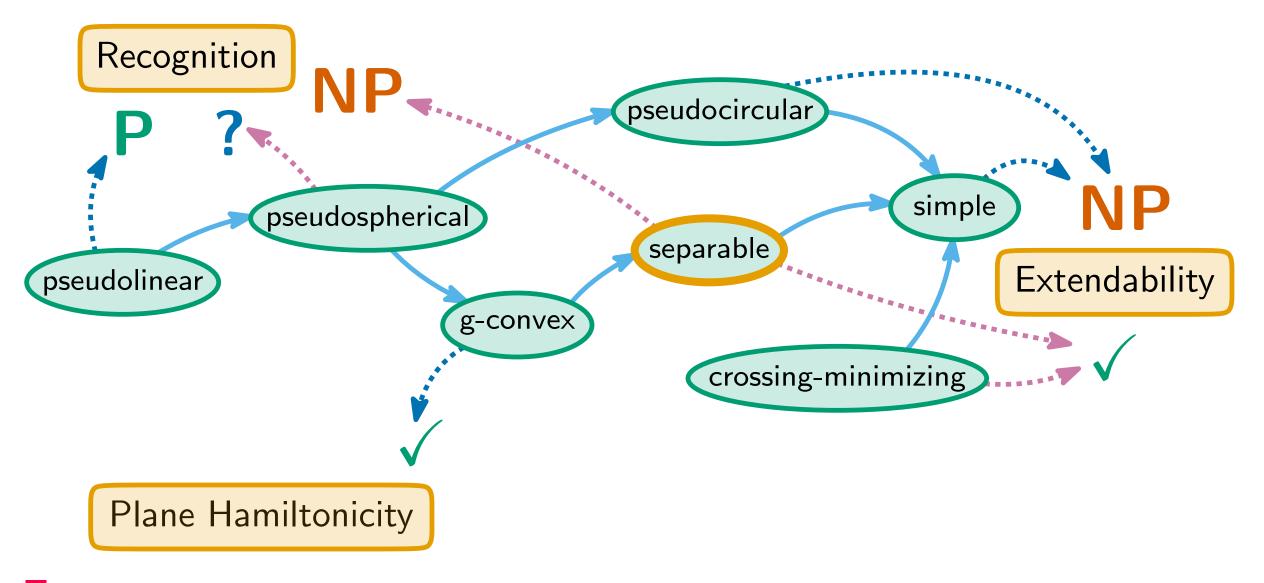


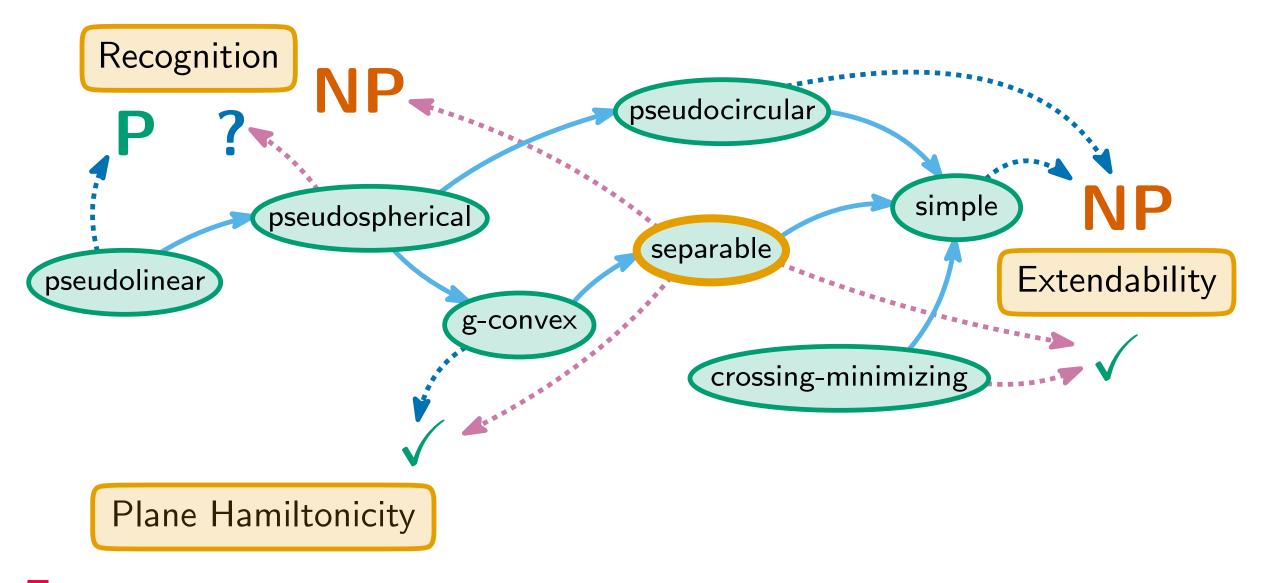


Joachim Orthaber

10/10

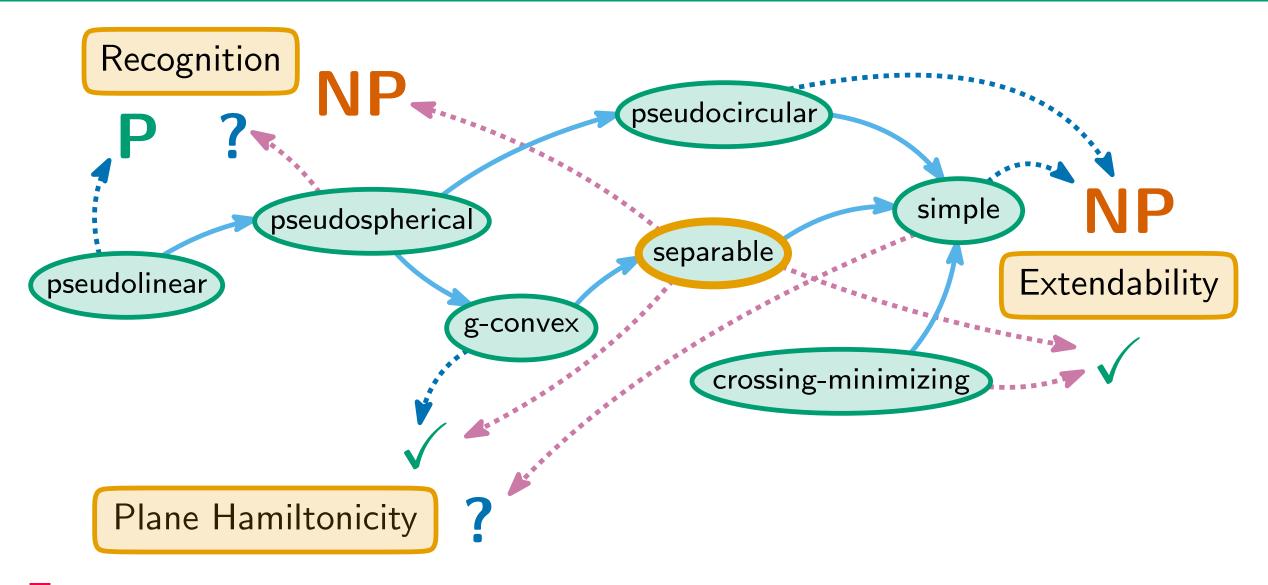






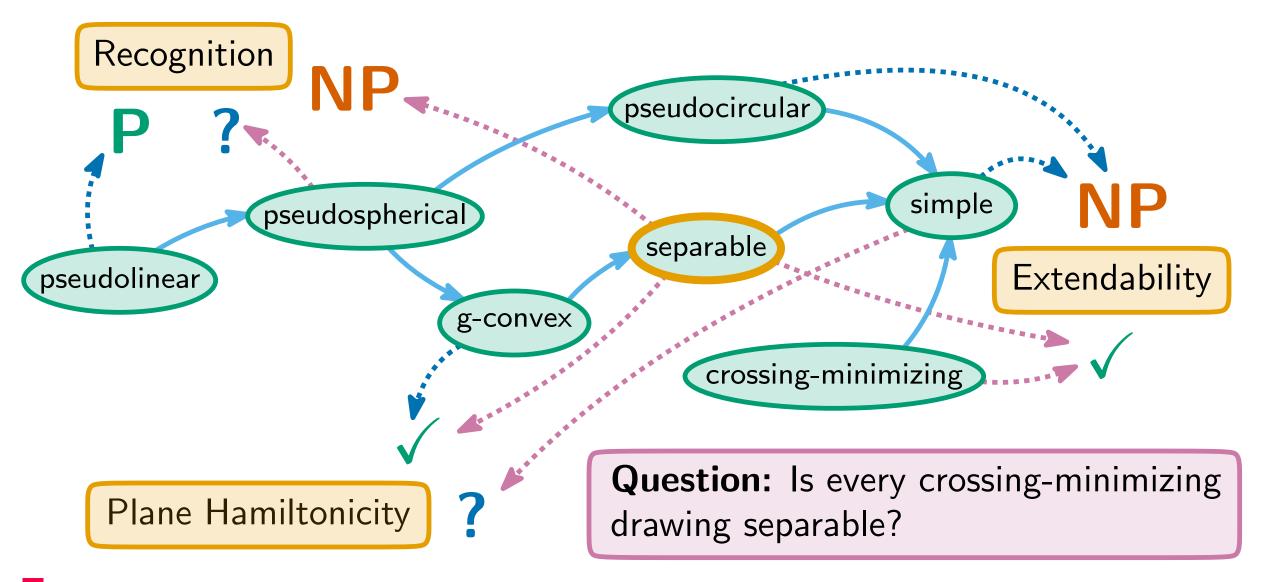
Joachim Orthaber

10/10



Joachim Orthaber

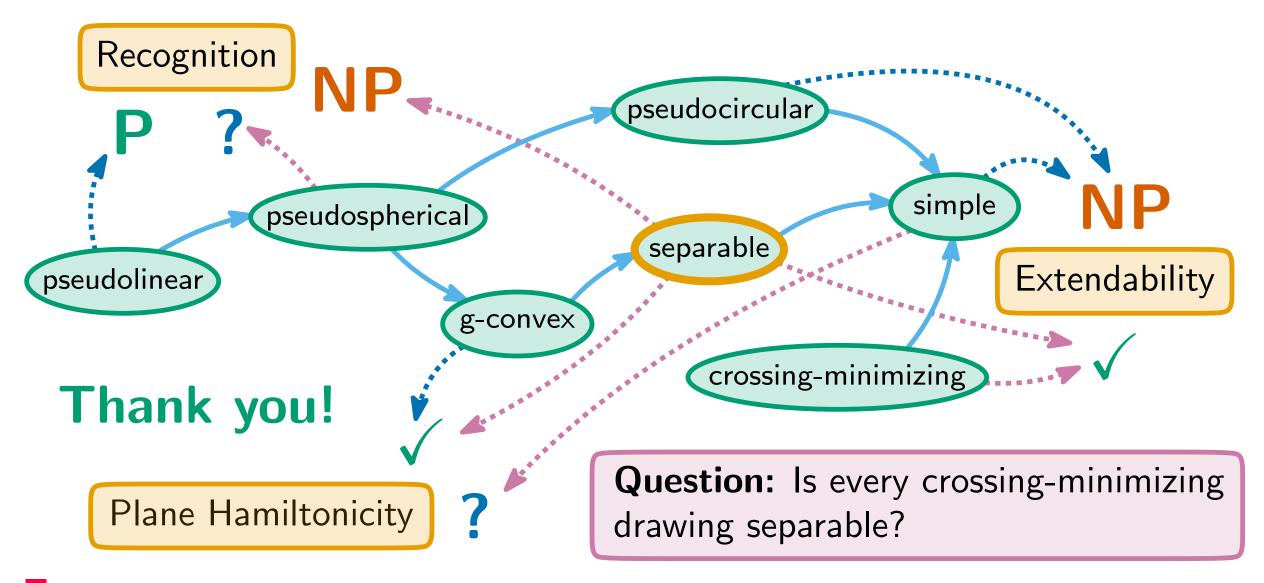
10/10



Joachim Orthaber

10/10

TU Graz



Joachim Orthaber

10/10

