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Introduction

Morph: Continuously transform between drawings (with time ¢ € [0, 1])
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Introduction

Morph: Continuously transform between drawings (with time ¢ € [0, 1])

t=20 t=20.5
])
Linear morph: Linearly interpolate vertex (and other) locations
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Introduction

Goal I: Make “nice” morphs.
= Simple paths of movement.
= Elementary steps.

= Few steps.
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Introduction

Goal |: Make “nice” morphs.
= Simple paths of movement.
= Elementary steps.

= Few steps.

Goal Il: Preserve drawing properties!
Planarity, few bend/straight line edges, orthogonality, drawing on a small grid, etc. Two types:

= Between elementary steps.

= During elementary steps/at all times.

Goal IlI: Algorithmic properties
= Time complexity

= Computational Model
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Introduction

Planarity-Preserving Morph: At all times ¢, the “interpolated” drawing is also planar.
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Introduction

Planarity-Preserving Morph: At all times ¢, the “interpolated” drawing is also planar.

Non-planarity-preserving morph:

A A

e
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Introduction

X—u %
)%.
P =D Do D3 Dy=Q

These are explicit intermediate drawings.
Entire morph represented by a finite sequence D1, D2, D3, Dy.

Can preserve extra properties on these drawings (“between steps”).
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Introduction

Input: Output:
'Compatible’ pair of drawings (labelled) Planarity-preserving linear morph sequence (list of drawings)

1 1 l ] 1 R

Objectives: Numerous!
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Introduction

] ] 1 ]
LT
P = D, Do D3 Dy =Q

Explicit drawings are on a grid.
Implicit (interpolated) drawings are not.
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Introduction

Open:
Input: Straight-line drawings each on an O(n) x O(n) grid (same embedding of same graph).
Output: Linear morph sequence with properties:

= Explicit drawings: Polynomial-sized grid.
= Implicit4-explicit drawings: Planar, straight-line edges

= Linear morph sequence length: Polynomial.
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Introduction

Open:
Input: Straight-line drawings each on an O(n) x O(n) grid (same embedding of same graph).
Output: Linear morph sequence with properties:

= Explicit drawings: Polynomial-sized grid.
= Implicit+explicit drawings: Planar, straight-line edges

= Linear morph sequence length: Polynomial.

Conjecture: Even stronger properties can be obtained.
Input: Straight-line drawings each on an O(n) x O(n) grid (same embedding of same graph).
Output: Linear morph sequence with properties:

= Explicit drawings: O(n) x O(n) grid.
= Implicit+explicit drawings: Planar, straight-line edges
= Linear morph sequence length: O(n)

Various weakenings are known. We present a new one.
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Introduction

e

Degenerate bend: Bend that “isn't used” (coincident or 180° angle).
Equivalent drawings: Drawings that differ only by degenerate bends.
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Introduction

Input: ('Compatible’) pair of drawings
Output: Planarity-preserving linear morph sequence

Num Grid- Bends
Graph/Drawing linear size per Comput. Time
Class morphs side- edge Model Complexity
length
Alamdari et al. (2017) Straight-line O(n) Expo. 0 Powerful O(n”)
Klemz (2021) Straight-line O(n) Expo. 0 Powerful O(n?logn)
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Graph/Drawing linear size per Comput. Time

Class morphs side- edge Model Complexity
length

Alamdari et al. (2017) Straight-line O(n) Expo. 0 Powerful O(n”)
Klemz (2021) Straight-line O(n) Expo. 0 Powerful O(n?logn)

Klemz (2021) 2-connected O(n) Expo. 0 Powerful O(n?)
Lubiw & Petrick (2011) Straight-line O(nb) O(n?3) O(n°) | Word RAM Polynomial
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Introduction

Input: ('Compatible’) pair of drawings
Output: Planarity-preserving linear morph sequence

Num Grid- Bends
Graph/Drawing linear size per Comput. Time
Class morphs side- edge Model Complexity
length
Alamdari et al. (2017) Straight-line O(n) Expo. 0 Powerful O(n?)
Klemz (2021) Straight-line O(n) Expo. 0 Powerful O(n?logn)
Klemz (2021) 2-connected O(n) Expo. 0 Powerful O(n?)
Lubiw & Petrick (2011) Straight-line O(n%) O(m3) | O(n®) | Word RAM Polynomial
This work (main result) Connected O(n) O(n) O(1) Word RAM O(n?)
Biedl et al. (2013) Connected Orthogonal O(n?) O(n) O(n) | Word RAM | Polynomial
Van Goethem et al. (2022) Orthogonal O(n) Polynomial O(1) Word RAM Polynomial
This work (main method) Connected Ortho-Box O(n) O(n) O(1) Word RAM O(n?)
Open Many Poly Poly 0 Any Any
Lower Bounds Planar O(n) O(n) 0 Word RAM O(n?)

Grid size assumes input fits on the same grid.

Above table is not comprehensive.
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Methodology

First: Reduce problem to morphing orthogonal box drawings.
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Methodology

First: Reduce problem to morphing “orthogonal box drawings”.

e

Reduction

J =
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Methodology

Second: Morph orthogonal box drawings.

Phase Ta,

Phase 11
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Reduction

Orthogonal box drawing Both Admitted poly-line drawing
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Reduction

Morph of orthogonal box drawings = morph of admitted drawings
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Reduction

KN R -

S

A planar straight-line drawing P. A visibility representation that An orthogonal box drawing,
can be computed from P. and corresponding admitted

drawing P’, which can both be
computed from P.
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Reduction

KN R -

S

A planar straight-line drawing P. A visibility representation that An orthogonal box drawing,
can be computed from P. and corresponding admitted

drawing P’, which can both be

computed from P.
How do we actually perform a morph?
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Step 1

Step 4

Step 6

Step 7

Step 2

Step 8
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Box Morph Overview

Now have orthogonal box drawings, want to morph them.

Phase Ta,

Phase Ib

L J

Phase 11

Phase Ic
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Box Morph Overview

Goal: Reduce to parallel box drawings.

Phase Ia

Phase Ib & Ic
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Box Morph Overview

L
Goal: Reduce to parallel box drawings. ‘ ‘ ‘
. ¢ [
Phase | Overview l Phase [a T
= Input: Orthogonal box drawing pair
= Output: Parallel orthogonal box drawing (-1 [ L]
pair (for each edge: same port locations, ot
same sequence of turns) [
= Substeps: ‘
» Phase la: Adjust port locations l Phase Ib & Ie T
Phase Ib: Initial zig-zag elimination
Phase Ic: Twists (plus more interspersed
compaction/zig-zag elim) E E
(]
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Box Morph Overview

Goal: Reduce to parallel box drawings.

Phase | Overview l Phase Ia T

= Input: Orthogonal box drawing pair

= Output: Parallel orthogonal box drawing
pair (for each edge: same port locations,
same sequence of turns)
= Substeps:
> Phase la: Adjust port locations l Phase Ib & I T
Phase Ib: Initial zig-zag elimination
Phase Ic: Twists (plus more interspersed
compaction/zig-zag elim)
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Box Morph Overview

High-level: Move ports. Add bends to do so. l Phase Ia

B E | —| B
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Box Morph Overview

Sl s -
o
High-level: Move ports. Add bends to do so. E B
Phase la Overview
= Input: Orthogonal box drawing pair l Phase Ta T
= Output: Port-aligned orthogonal box L
drawing pair (same relative port locations) e (] [v]
S
Mok [4]
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Box Morph Overview

Get rid of all t bends.
et rid of all (extra) bends Phase Ib & Ic

Phase 11

[ =] @
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Box Morph Overview

High-level: Use black-box result to morph parallel

.
orthogonal box drawings (i.e., adjust lengths). ) Phoo 1L
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Phase la details

Dy
¢ el 1
- o L R N —
by by by
b [P bl e | |»
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Phase Ib & Ic details

Get rid of all (extra) bends.

Phase Ib Overview

= Input: Port-aligned orthogonal box drawing pair
= Output: Parallel orthogonal box drawing pair [« ]

Phase Ib & Ic

Phase 11

[ =] @
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Phase Ib & Ic details

+1

A
I

Spirality of the edge uv (oriented u to v): —1.
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Phase Ib & Ic details

Difference in spirality of the edge uv (oriented u to v): —2.
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Phase Ib & Ic details

Difference in spirality of the edge uv (oriented u to v): —2.

Goal: Reduce this to zero.
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Phase Ib & Ic details

Difference in spirality of the edge uv (oriented u to v): 0.

Goal: Reduce this to zero.
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Phase Ib & Ic details

Spirality changes! Net turns are added.

Similar to a result by Biedl et al.: Exists some number/direction of twists for each vertex so that
difference in spirality becomes zero everywehere. This number is O(n) for each vertex.
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Phase Ib & Ic details

Spirality changes! Net turns are added.

Similar to a result by Biedl et al.: Exists some number/direction of twists for each vertex so that
difference in spirality becomes zero everywehere. This number is O(n) for each vertex.

Key difference/contribution: We use simultaneous twists, so only O(n) operations needed.
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Phase Ib & Ic details

Two steps:
= "Prepare”’ drawing (make boxes square, well-spaced out)

= Twist everything simultaneously
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Phase Ib & Ic details

Two steps:

= “Prepare” drawing (make boxes square, well-spaced out)

= Twist everything simultaneously
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No zig-zags.

We want to remove zig-zags.

One (vertical) zig-zag.

Phase Ib & Ic details

]

=

Five zig-zags, three horizontal and two

vertical.
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Phase Ib & Ic details

Method by Biedl et al.:

l—T

This is a unidirectional morph.
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Phase Ib & Ic details

|

=

B lumll]

=

Push each thing over if it lies to the right of the divider.
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Phase Ib & Ic details

|

=

B lumll]

=

Push each thing over if it lies to the right of the divider.

Problem: Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
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Phase Ib & Ic details

|

=

B lumll]

=

Push each thing over if it lies to the right of the divider.

Problem: Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
Solution/new contribution: O(1) morphs suffice, even on a grid (skipping details).
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High-level: Use black-box result to morph parallel
orthogonal box drawings (i.e., adjust lengths).

Phase Il Overview

e

= Input: Parallel orthogonal box drawing pair.

= Output: Linear morph sequence.

= Methodology: Appeal to black-box result by
Biedl et al.. It requires connectivity.
Essentially, add edges to both drawings (and
simplify again) until every face is a rectangle.

Phase 11
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Conclusion

Num Grid- Bends
Graph/Drawing linear size per Comput. Time
Class morphs side- edge Model Complexity
length
Main result Connected O(n) O(n) O(1) | Word RAM O(n?)
This work (main method) Connected Ortho-Box O(n) O(n) O(1) | Word RAM O(n?)
Open Many Poly Poly 0 Any Any
Lower Bounds Planar O(n) O(n) 0 Word RAM O(n?)

| Hl T || B R e G

Reduction Phase Ia Phase Ib & Ic TPhase 1T Ei
n

- BE’H
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Conclusion

Have: a planar straight-line drawing P, an orthogonal box drawing D with an admitted drawing P’.
Want: Morph from P to P’. Bends need to be added.

A o = Idea 1: Use same y-coordinate
. ' \ [. { ‘. = Problem: Not integer coordinates
\
® A
P IJ/
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Conclusion

Have: a planar straight-line drawing P, an orthogonal box drawing D with an admitted drawing P".
Want: Morph from P to P’. Bends need to be added.

= ldea—1-—Usesamey-coordinate

. [. L ‘. = Idea 2: Make them coincident with the vertex
| " ] = Possible problem: Not a unidirectional morph
‘ N (complicated movement).

= Alleviation: Perform the morph on one

, vertex/edge at a time.
I,) l,)
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Conclusion

Want to be able to bring a drawing to an O(n) x O(n) grid from an arbitrarily sized grid (where the
constant is independent of the initial grid size).

Idea: Sort z-coordinates.

This is a unidirectional morph.
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Conclusion

Each problem has a different solution:
= Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags.
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Conclusion

Each problem has a different solution:
= Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags.
Two issues with their solution:

» Uses a large grid.
» Slow time complexity.
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Conclusion

Each problem has a different solution:
= Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags.
Two issues with their solution:

» Uses a large grid.
» Slow time complexity.
= Requires O(n) time for each zig-zag (want O(n) time for all zig-zags).

Use circuit layout compaction!
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Conclusion

Goal: Compress vertical line segments.

Solution by Doenhardt and Lengauer:

- . . —
L~
—— B . -
v N
——— AR N -l
: N
‘ ‘ o\\__,//"\\\‘c
—_— ' ! —
—_— ‘ ‘ : -
— sl ' ' 0\ -l
*—>0 '
] ] —>9
—_— ! ! ! ! >l —»

(1) Input (2) Trapezoidal Map (3) Trapezoidal Graph (4) Result from

topological sort
Important note:

Last step of Doenhardt and Lengauer’s algorithm only needs y-coordinates and trapezoidal graph.
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Conclusion

Goal: Compress a box drawing (again).

[ \

A box drawing C' A set of maximal vertical line The compressed drawing C’
segments L(C') covering C'

Side note: Doing this in O(n) time requires connectivity (via an algorithm by Chazelle for trapezoidal
maps of simple polygons).
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Conclusion

rthogonal Box Drawings Trapezoidal Maps Trapezoidal Graphs

. ,‘4, .\7.\ Takeaway: The changes to the trapezoidal
‘A . L T\T‘L; graph are local to the zig-zag being
| f('[} 3 eliminated.

Zig-Zag Lhnunanou

4>>>
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Orthogonal Box Drawings

o[

Zig-Zag Elimination

= -

Conclusion

Trapezoidal Maps Trapezoidal Graphs

—>‘4>> ' '

‘, . '\7’\ Takeaway: The changes to the trapezoidal
‘a . L ?\T‘;_; graph are local to the zig-zag being
| fﬂi 3 eliminated.

Recall: Last step of Doenhardt and
Lengauer’s algorithm only needs
y-coordinates and trapezoidal graph.

‘H‘Hb ' '

‘. ‘.

— sl
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Orthogonal Box Drawings Trapezoidal Maps

5

Zig-Zag Elimination

= -

Trapezoidal Graphs

Conclusion

Takeaway: The changes to the trapezoidal
graph are local to the zig-zag being
eliminated.

Recall: Last step of Doenhardt and
Lengauer’s algorithm only needs
y-coordinates and trapezoidal graph.

Idea: Compute only the trapezoidal graph
after a sequence of zig-zag eliminations.
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Conclusion

Orthogonal Box Drawings Trapezoidal Maps Trapezoidal Graphs

‘, ,‘4, '\7’\ Takeaway: The changes to the trapezoidal
- ‘a . L ?\T‘L’L graph are local to the zig-zag being
‘ /x/'[ } eliminated.
[

Recall: Last step of Doenhardt and
Zig-Zag Elimination Lengauer’s algorithm only needs
y-coordinates and trapezoidal graph.

t
L L \] \._. Idea: Compute only the trapezoidal graph
]\ /‘ 3 after a sequence of zig-zag eliminations.

Final result: Can remove all horizontal zig-zags in one linear morph, in O(n) time.
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Conclusion

Eliminating all horizontal zig-zags # eliminating all zig-zags:
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Conclusion

Eliminating all horizontal zig-zags # eliminating all zig-zags:

Eliminating all horizontal (and then vertical) zig-zags does reduce the number of bends per edge
(unless there are no zig-zags).
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Conclusion

Eliminating all horizontal zig-zags # eliminating all zig-zags:

Eliminating all horizontal (and then vertical) zig-zags does reduce the number of bends per edge
(unless there are no zig-zags).

Idea: Since O(1) bends per edge is maintained, only need to do O(1) simultaneous eliminations to
eliminate all zig-zags.
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Conclusion

Phase Ila ’—> Phase IIb
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