Jack Spalding-Jamieson (Jack S-J) jacksj@uwaterloo.ca

Graph Drawing 2024

## Morphing Planar Graph Drawings via Orthogonal Box Drawings

Joint work with Therese Biedl and Anna Lubiw

| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| Graph I      | Morphing    |           |                    |                  |                       |          |            |

<u>Morph</u>: Continuously transform between drawings (with time  $t \in [0,1]$ )



Morph: Continuously transform between drawings (with time  $t \in [0, 1]$ )





Morph: Continuously transform between drawings (with time  $t \in [0, 1]$ )



| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| Goals of     | mornhing    |           |                    |                  |                       |          |            |

Goal I: Make "nice" morphs.

- Simple paths of movement.
- Elementary steps.
- Few steps.

| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| Goals of     | mornhing    |           |                    |                  |                       |          |            |

Goal I: Make "nice" morphs.

- Simple paths of movement.
- Elementary steps.
- Few steps.

Goal II: Preserve drawing properties!

Planarity, few bend/straight line edges, orthogonality, drawing on a small grid, etc. Two types:

- Between elementary steps.
- During elementary steps/at all times.

| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| Goals of     | morphing    |           |                    |                  |                       |          |            |

Goal I: Make "nice" morphs.

- Simple paths of movement.
- Elementary steps.
- Few steps.

Goal II: Preserve drawing properties!

Planarity, few bend/straight line edges, orthogonality, drawing on a small grid, etc. Two types:

- Between elementary steps.
- During elementary steps/at all times.

Goal III: Algorithmic properties

- Time complexity
- Computational Model

## Planarity-Preserving Morphs (preserved at all times)

Planarity-Preserving Morph: At all times t, the "interpolated" drawing is also planar.

## Planarity-Preserving Morphs (preserved at all times)

Planarity-Preserving Morph: At all times t, the "interpolated" drawing is also planar.

Non-planarity-preserving morph:



## **Linear Morphs Sequences**



### These are **explicit intermediate drawings**.

Entire morph represented by a finite sequence  $D_1, D_2, D_3, D_4$ .

Can preserve extra properties on these drawings ("between steps").

# **The Linear Morph Problem**

#### Input:

'Compatible' pair of drawings (labelled)

## Output:

Planarity-preserving linear morph sequence (list of drawings)





**Objectives:** Numerous!

## Linear Morph Sequences on a Grid



Explicit drawings are on a grid. Implicit (interpolated) drawings are not.

## Open:

Input: Straight-line drawings each on an  $O(n) \times O(n)$  grid (same embedding of same graph). Output: Linear morph sequence with properties:

- Explicit drawings: Polynomial-sized grid.
- Implicit+explicit drawings: Planar, straight-line edges
- Linear morph sequence length: Polynomial.

# Open:

Input: Straight-line drawings each on an  $O(n) \times O(n)$  grid (same embedding of same graph). Output: Linear morph sequence with properties:

- Explicit drawings: Polynomial-sized grid.
- Implicit+explicit drawings: Planar, straight-line edges
- Linear morph sequence length: Polynomial.

Conjecture: Even stronger properties can be obtained.

Input: Straight-line drawings each on an  $O(n) \times O(n)$  grid (same embedding of same graph). Output: Linear morph sequence with properties:

- Explicit drawings:  $O(n) \times O(n)$  grid.
- Implicit+explicit drawings: Planar, straight-line edges
- Linear morph sequence length: O(n)

# Open:

Input: Straight-line drawings each on an  $O(n) \times O(n)$  grid (same embedding of same graph). Output: Linear morph sequence with properties:

- Explicit drawings: Polynomial-sized grid.
- Implicit+explicit drawings: Planar, straight-line edges
- Linear morph sequence length: Polynomial.

Conjecture: Even stronger properties can be obtained.

Input: Straight-line drawings each on an  $O(n) \times O(n)$  grid (same embedding of same graph). Output: Linear morph sequence with properties:

- Explicit drawings:  $O(n) \times O(n)$  grid.
- Implicit+explicit drawings: Planar, straight-line edges
- Linear morph sequence length: O(n)

Various weakenings are known. We present a new one.

## Linear Morphs Sequences that Add/Remove Bends

<u>Degenerate bend</u>: Bend that "isn't used" (coincident or  $180^{\circ}$  angle). Equivalent drawings: Drawings that differ only by degenerate bends.



|                        | Graph/Drawing<br>Class | Num<br>linear<br>morphs | Grid-<br>size<br>side-<br>length | Bends<br>per<br>edge | Comput.<br>Model | Time<br>Complexity |
|------------------------|------------------------|-------------------------|----------------------------------|----------------------|------------------|--------------------|
| Alamdari et al. (2017) | Straight-line          | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^3)$           |
| Klemz (2021)           | Straight-line          | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^2 \log n)$    |

|                        | Graph/Drawing<br>Class | Num<br>linear<br>morphs | Grid-<br>size<br>side-<br>length | Bends<br>per<br>edge | Comput.<br>Model | Time<br>Complexity |
|------------------------|------------------------|-------------------------|----------------------------------|----------------------|------------------|--------------------|
| Alamdari et al. (2017) | Straight-line          | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^3)$           |
| Klemz (2021)           | Straight-line          | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^2 \log n)$    |
| Klemz (2021)           | 2-connected            | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^2)$           |

|                        | Graph/Drawing<br>Class | Num<br>linear<br>morphs | Grid-<br>size<br>side-<br>length | Bends<br>per<br>edge | Comput.<br>Model | Time<br>Complexity |
|------------------------|------------------------|-------------------------|----------------------------------|----------------------|------------------|--------------------|
| Alamdari et al. (2017) | Straight-line          | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^3)$           |
| Klemz (2021)           | Straight-line          | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^2 \log n)$    |
| Klemz (2021)           | 2-connected            | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^2)$           |
| Lubiw & Petrick (2011) | Straight-line          | $O(n^6)$                | $O(n^3)$                         | $O(n^5)$             | Word RAM         | Polynomial         |

|                         | Graph/Drawing<br>Class | Num<br>linear<br>morphs | Grid-<br>size<br>side-<br>length | Bends<br>per<br>edge | Comput.<br>Model | Time<br>Complexity |
|-------------------------|------------------------|-------------------------|----------------------------------|----------------------|------------------|--------------------|
| Alamdari et al. (2017)  | Straight-line          | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^3)$           |
| Klemz (2021)            | Straight-line          | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^2 \log n)$    |
| Klemz (2021)            | 2-connected            | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^2)$           |
| Lubiw & Petrick (2011)  | Straight-line          | $O(n^6)$                | $O(n^3)$                         | $O(n^5)$             | Word RAM         | Polynomial         |
| This work (main result) | Connected              | O(n)                    | O(n)                             | O(1)                 | Word RAM         | $O(n^2)$           |

## Input: ('Compatible') pair of drawings Output: Planarity-preserving linear morph sequence

|                           | Graph/Drawing<br>Class | Num<br>linear<br>morphs | Grid-<br>size<br>side-<br>length | Bends<br>per<br>edge | Comput.<br>Model | Time<br>Complexity |
|---------------------------|------------------------|-------------------------|----------------------------------|----------------------|------------------|--------------------|
| Alamdari et al. (2017)    | Straight-line          | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^3)$           |
| Klemz (2021)              | Straight-line          | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^2 \log n)$    |
| Klemz (2021)              | 2-connected            | O(n)                    | Expo.                            | 0                    | Powerful         | $O(n^2)$           |
| Lubiw & Petrick (2011)    | Straight-line          | $O(n^{6})$              | $O(n^3)$                         | $O(n^5)$             | Word RAM         | Polynomial         |
| This work (main result)   | Connected              | O(n)                    | O(n)                             | O(1)                 | Word RAM         | $O(n^2)$           |
| Biedl et al. (2013)       | Connected Orthogonal   | $O(n^2)$                | O(n)                             | O(n)                 | Word RAM         | Polynomial         |
| Van Goethem et al. (2022) | Orthogonal             | O(n)                    | Polynomial                       | O(1)                 | Word RAM         | Polynomial         |
| This work (main method)   | Connected Ortho-Box    | O(n)                    | O(n)                             | O(1)                 | Word RAM         | $O(n^2)$           |
|                           |                        |                         |                                  |                      |                  |                    |
| Open                      | Many                   | Poly                    | Poly                             | 0                    | Any              | Any                |
| Lower Bounds              | Planar                 | O(n)                    | O(n)                             | 0                    | Word RAM         | $O(n^2)$           |

Grid size assumes input fits on the same grid.

Above table is not comprehensive.

## **High-Level Overview**

First: Reduce problem to morphing orthogonal box drawings.



# **High-Level Overview**

First: Reduce problem to morphing "orthogonal box drawings".



| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| High-Lov     | al Overview |           |                    |                  |                       |          |            |

High-Level Overview

Second: Morph orthogonal box drawings.





# **Reduction: Admitted Drawings (1)**



Orthogonal box drawing



Both



Admitted poly-line drawing

# **Reduction: Admitted Drawings (2)**



Morph of orthogonal box drawings  $\implies$  morph of admitted drawings

## Computing Box Drawings: Visibility Representations as an Intermediary







A planar straight-line drawing P.

A visibility representation that can be computed from P.

An orthogonal box drawing, and corresponding admitted drawing P', which can both be computed from P.

## Computing Box Drawings: Visibility Representations as an Intermediary







A planar straight-line drawing P.

A visibility representation that can be computed from P.

An orthogonal box drawing, and corresponding admitted drawing P', which can both be computed from P.

How do we actually perform a morph?



## Morphing from a straight-line to an admitted drawing: Method



| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
|              |             |           |                    |                  |                       |          |            |

## Morphing from a straight-line to an admitted drawing: Method



# **Recall: High-Level Overview**

Now have orthogonal box drawings, want to morph them.



|         | Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|---------|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| Phase I | Phase I      |             |           |                    |                  |                       |          |            |

Goal: Reduce to parallel box drawings.



## Phase I

Goal: Reduce to parallel box drawings.

## Phase I Overview

- Input: Orthogonal box drawing pair
- Output: <u>Parallel</u> orthogonal box drawing pair (for each edge: same port locations, same sequence of turns)
- Substeps:
  - Phase Ia: Adjust port locations
  - Phase Ib: Initial zig-zag elimination
  - Phase Ic: Twists (plus more interspersed compaction/zig-zag elim)



Goal: Reduce to parallel box drawings.

## Phase I Overview

Phase I

- Input: Orthogonal box drawing pair
- Output: <u>Parallel</u> orthogonal box drawing pair (for each edge: same port locations, same sequence of turns)
- Substeps:
  - Phase Ia: Adjust port locations
  - Phase Ib: Initial zig-zag elimination
  - Phase Ic: Twists (plus more interspersed compaction/zig-zag elim)

| Phase Ia      | 1 |  |  |  |  |
|---------------|---|--|--|--|--|
|               |   |  |  |  |  |
| Phase Ib & Ic |   |  |  |  |  |
|               |   |  |  |  |  |

Phase II

Conclusion

| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| Phase la     |             |           |                    |                  |                       |          |            |

High-level: Move ports. Add bends to do so.



## Phase la

High-level: Move ports. Add bends to do so.

## Phase la <u>Overview</u>

- **Input:** Orthogonal box drawing pair х.
- **Output:** Port-aligned orthogonal box 2 drawing pair (same relative port locations)


| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| Phase Ib     | & 1c        |           |                    |                  |                       |          |            |

Get rid of all (extra) bends.





High-level: Use black-box result to morph parallel orthogonal box drawings (i.e., adjust lengths).



#### **Moving Ports around Corners**



| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| Phase Ih     | & 1c        |           |                    |                  |                       |          |            |

Get rid of all (extra) bends.

#### Phase Ib Overview

- Input: Port-aligned orthogonal box drawing pair
- **Dutput:** Parallel orthogonal box drawing pair



| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| Spirality    |             |           |                    |                  |                       |          |            |



Spirality of the edge uv (oriented u to v): -1.





Difference in spirality of the edge uv (oriented u to v): -2.





Difference in spirality of the edge uv (oriented u to v): -2.

Goal: Reduce this to zero.



Difference in spirality of the edge uv (oriented u to v): 0.

Goal: Reduce this to zero.





Spirality changes! Net turns are added.

Similar to a result by Biedl et al.: Exists some number/direction of twists for each vertex so that difference in spirality becomes zero everywhere. This number is O(n) for each vertex.





Spirality changes! Net turns are added.

Similar to a result by Biedl et al.: Exists some number/direction of twists for each vertex so that difference in spirality becomes zero everywhere. This number is O(n) for each vertex.

Key difference/contribution: We use simultaneous twists, so only O(n) operations needed.

Two steps:

- "Prepare" drawing (make boxes square, well-spaced out)
- > Twist everything simultaneously

# **Twists (Implementation)**

Two steps:

- "Prepare" drawing (make boxes square, well-spaced out)
- > Twist everything simultaneously





Simplification/Canonical form: Zig-Zags



We want to remove zig-zags.

Method by Biedl et al.:





This is a unidirectional morph.



Simplification/Canonical form: Removing a Single Zig-Zag (2)





Push each thing over if it lies to the right of the divider.



Simplification/Canonical form: Removing a Single Zig-Zag (2)



Push each thing over if it lies to the right of the divider.

Problem: Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).



Simplification/Canonical form: Removing a Single Zig-Zag (2)



Push each thing over if it lies to the right of the divider.

Problem: Requires a morph for each zig-zag (want O(1) morphs for all zig-zags). Solution/new contribution: O(1) morphs suffice, even on a grid (skipping details).



High-level: Use black-box result to morph parallel orthogonal box drawings (i.e., adjust lengths).

#### Phase II Overview

- **Input:** Parallel orthogonal box drawing pair.
- Output: Linear morph sequence.
- Methodology: Appeal to black-box result by Biedl et al.. It requires connectivity.
  - Essentially, add edges to both drawings (and simplify again) until every face is a rectangle.



| _01 | ncl | usi | or |
|-----|-----|-----|----|

|                         | Graph/Drawing<br>Class | Num<br>linear<br>morphs | Grid-<br>size<br>side-<br>length | Bends<br>per<br>edge | Comput.<br>Model | Time<br>Complexity |
|-------------------------|------------------------|-------------------------|----------------------------------|----------------------|------------------|--------------------|
| Main result             | Connected              | O(n)                    | O(n)                             | O(1)                 | Word RAM         | $O(n^2)$           |
| This work (main method) | Connected Ortho-Box    | O(n)                    | O(n)                             | O(1)                 | Word RAM         | $O(n^2)$           |
|                         |                        |                         |                                  |                      |                  |                    |
| Open                    | Many                   | Poly                    | Poly                             | 0                    | Any              | Any                |
| Lower Bounds            | Planar                 | O(n)                    | O(n)                             | 0                    | Word RAM         | $O(n^2)$           |



## Morphing from a straight-line to an admitted drawing: Brainstorming (1)

Have: a planar straight-line drawing P, an orthogonal box drawing D with an admitted drawing P'. Want: Morph from P to P'. Bends need to be added.



- Idea 1: Use same y-coordinate
- Problem: Not integer coordinates



### Morphing from a straight-line to an admitted drawing: Brainstorming (2)

Have: a planar straight-line drawing P, an orthogonal box drawing D with an admitted drawing P'. Want: Morph from P to P'. Bends need to be added.



- Idea 1: Use same y-coordinate
- Idea 2: Make them coincident with the vertex
- Possible problem: Not a unidirectional morph (complicated movement).
- Alleviation: Perform the morph on one vertex/edge at a time.

| Introduction | Methodology | Reduction | Box Morph Overview | Phase la details | Phase Ib & Ic details | Phase II | Conclusion |
|--------------|-------------|-----------|--------------------|------------------|-----------------------|----------|------------|
| Compress     | ions        |           |                    |                  |                       |          |            |

Want to be able to bring a drawing to an  $O(n) \times O(n)$  grid from an arbitrarily sized grid (where the constant is independent of the initial grid size).

Idea: Sort *x*-coordinates.



This is a unidirectional morph.

#### Simplification—Removing all Horizontal Zig-Zags (High-level)

Each problem has a different solution:

- Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
  - Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags.

### Simplification—Removing all Horizontal Zig-Zags (High-level)

Each problem has a different solution:

- Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
  - Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags. Two issues with their solution:
    - Uses a large grid.
    - Slow time complexity.

### Simplification—Removing all Horizontal Zig-Zags (High-level)

Each problem has a different solution:

- Requires a morph for each zig-zag (want O(1) morphs for all zig-zags).
  - Van Goethem et al.: A single morph suffices for many (disjoint) horizontal zig-zags. Two issues with their solution:
    - Uses a large grid.
    - Slow time complexity.
- **P** Requires O(n) time for each zig-zag (want O(n) time for all zig-zags).
  - Use circuit layout compaction!

### Simplification—Circuit Compaction

Goal: Compress vertical line segments.

Solution by Doenhardt and Lengauer:



Important note:

Last step of Doenhardt and Lengauer's algorithm only needs *y*-coordinates and trapezoidal graph.

#### Simplification—Circuit Compaction for Box Drawings

**Goal:** Compress a box drawing (again).



Side note: Doing this in O(n) time requires connectivity (via an algorithm by Chazelle for trapezoidal maps of simple polygons).



Takeaway: The changes to the trapezoidal graph are local to the zig-zag being eliminated.



Takeaway: The changes to the trapezoidal graph are local to the zig-zag being eliminated.

Recall: Last step of Doenhardt and Lengauer's algorithm only needs *y*-coordinates and trapezoidal graph.



Takeaway: The changes to the trapezoidal graph are local to the zig-zag being eliminated.

Recall: Last step of Doenhardt and Lengauer's algorithm only needs *y*-coordinates and trapezoidal graph.

Idea: Compute <u>only</u> the trapezoidal graph after a sequence of zig-zag eliminations.



Takeaway: The changes to the trapezoidal graph are local to the zig-zag being eliminated.

Recall: Last step of Doenhardt and Lengauer's algorithm only needs *y*-coordinates and trapezoidal graph.

Idea: Compute <u>only</u> the trapezoidal graph after a sequence of zig-zag eliminations.

Final result: Can remove all horizontal zig-zags in one linear morph, in O(n) time.

## Simplification—Eliminating All Zig-Zags

Eliminating all horizontal zig-zags  $\neq$  eliminating all zig-zags:



## Simplification—Eliminating All Zig-Zags

Eliminating all horizontal zig-zags  $\neq$  eliminating all zig-zags:



Eliminating all horizontal (and then vertical) zig-zags <u>does</u> reduce the number of bends per edge (unless there are no zig-zags).

### Simplification—Eliminating All Zig-Zags

Eliminating all horizontal zig-zags  $\neq$  eliminating all zig-zags:



Eliminating all horizontal (and then vertical) zig-zags <u>does</u> reduce the number of bends per edge (unless there are no zig-zags).

Idea: Since O(1) bends per edge is maintained, only need to do O(1) simultaneous eliminations to eliminate all zig-zags.



### Phase I High-Level

