Harborth's conjecture for 4-regular planar graphs

Daniel J. Chang and Timothy Sun, San Francisco State University

Fáry's theorem

Theorem (Wagner 1936, Fáry 1948, Stein 1951)

Every planar graph has a straight-line embedding.

Harborth's conjecture

Conjecture (Harborth, Kemnitz, Möller, Süssenbach 1987)

Every planar graph has a straight-line embedding where every edge has integer (equivalently, rational) length.

A possible approach

Proof idea for maximal planar graphs (Kemnitz, Harborth 2001):

- delete a vertex of minimum degree
- triangulate the resulting polygon and recurse
- add back the deleted vertex inside the polygon

Theorem (Almering 1963): The set of points at rational distance to the vertices of a rational triangle are dense in the plane.

Theorem (Kemnitz and Harborth 2001): There is a point on the line passing through **x** and **y** at rational distance to each of the four vertices.

Theorem (Kemnitz and Harborth 2001): There is a point on the line passing through **x** and **y** at rational distance to each of the four vertices.

No idea...

Almering revisited

Theorem (Almering 1963): The set of points at rational distance to the vertices of a rational triangle are dense in the plane.

Almering revisited

Theorem (Berry 1992): Almering's theorem still holds even if, for two sides, only their squares are rational.

Almering revisited

Theorem (Geelen, Guo, McKinnon 2008): A point at rational distance to three rational points is also rational.

Generating graph drawings using Berry

Given a graph **G**, a **3-elimination order** (Biedl 2011) **v**₁, **v**₂, ..., **v**_n satisfies:

- *n* = 1, or
- \mathbf{v}_1 has degree at most 2, and \mathbf{v}_2 , ..., \mathbf{v}_n is a 3-elimination order for $\mathbf{G} \mathbf{v}_1$, or
- \mathbf{v}_1 has degree 3, and there are neighbors \mathbf{x} and \mathbf{y} such that $\mathbf{v}_2, ..., \mathbf{v}_n$ is a 3-elimination order for $(\mathbf{G} \mathbf{v}_1) \cup (\mathbf{x}\mathbf{y})$.

A 3-elimination order for the cube

A 3-elimination order for the cube

Drawing with 3-elimination orders

Theorem (Geelen et al. 2008, Biedl 2011): Any straight-line drawing of a planar graph with a 3-elimination order can be "approximated" by a rational drawing with rational vertex coordinates.

Graphs with 3-elimination orders

- Cubic graphs (also see S. 2011 or Biedl 2011)
- At most 4 vertices of degree > 3 (Dubickas 2012)
- (2, 1)-sparse graphs (Biedl 2011)
 - Planar bipartite
 - Series-parallel
 - Arboricity 2
 - **Connected** *subquartic* (maximum degree 4, but not 4-regular) (Benediktovich 2013)

One more edge

Our result: 4-regular graphs have drawings with all rational edge lengths.

Proof split into two parts:

- Vertex connectivity 1 or 2
- 3-vertex-connected

Low vertex connectivity

Proposition (S. 2013): Every 4-regular planar graph of *edge* connectivity 2 has a rational drawing.

Low vertex connectivity

Proposition (S. 2013): Every 4-regular planar graph of *edge* connectivity 2 has a rational drawing.

Low vertex connectivity

Glue together two subquartic graphs at an edge.

Revisiting Kemnitz and Harborth's incomplete solution for degree-4 vertices:

Revisiting Kemnitz and Harborth's incomplete solution for degree-4 vertices:

(S. 2013) for two edges, only their square needs to be rational

Revisiting Kemnitz and Harborth's incomplete solution for degree-4 vertices:

(S. 2013) for two edges, only their square needs to be rational

• Like Geelen et al., place vertices at rational coordinates

- Kemnitz and Harborth's solution lands on the line segment
- The rest of the graph can be drawn around it

- Kemnitz and Harborth's solution lands on the line segment
- The rest of the graph can be drawn around it

- Kemnitz and Harborth's solution lands on the line segment
- The rest of the graph can be drawn around it (incorrect proof in S. 2013)

Each region is star-shaped, so it can be extended. (Hong, Nagamochi 2008)

- Kemnitz and Harborth's solution lands on the line segment
- The rest of the graph can be drawn around it

If 4-regular graph has a *diamond*, then we can directly apply these results:

Lebesgue's criterion

What if the graph doesn't have a diamond?

Then it must have a **bowtie** or a **house**. (Proof: discharging)

3-elimination orders for bowties and houses

- Add an edge near a triangular face to get a diamond.
- Show that there is still a 3-elimination order (reduce until subquartic).

3-elimination orders for bowties and houses

- Add an edge near a triangular face to get a diamond.
- Show that there is still a 3-elimination order (reduce until subquartic).

Addendum

Theorem (Corvaja, Turchet, Zannier 2024): The set of points at rational distance to three rational points are dense in the plane.

Addendum

Corollary: all 3-degenerate graphs can be "approximated" by rational drawings with rational vertex coordinates.

Conclusion

Harborth's conjecture is now known for all graphs of maximum degree 4.

- Can these proofs be made algorithmic?
- Are there any methods for finding a point at rational distance to a "special" set of 5 points?