Noncrossing Longest Paths and Cycles

Greg Aloupis, Ahmad Biniaz, Prosenjit Bose, Jean-Lou De Carufel, David Eppstein, Anil Maheshwari, Saeed Odak, Michiel Smid, Csaba D. Tóth, <u>Pavel Valtr</u>

Observation

For every point set in the plane, the shortest perfect matching (spanning path, spanning cycle) is plane.

Observation

For every point set in the plane, the shortest perfect matching (spanning path, spanning cycle) is plane.

Observation

SURELY NOT for every point set in the plane, the longest perfect matching (spanning path, spanning cycle) is plane.

Question

Are there ARBITRARILY LARGE point sets in the plane s.t. the longest perfect matching (spanning path, spanning cycle) is plane?

Observation

SURELY NOT for every point set in the plane, the longest perfect matching (spanning path, spanning cycle) is plane.

Question

Are there ARBITRARILY LARGE point sets in the plane s.t. the longest perfect matching (spanning path, spanning cycle) is plane.

Theorem (Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024))

YES for the longest perfect matching

Question (Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia 2024)

For every sufficiently large planar point set, must the longest spanning path have two edges that cross each other?

Conjecture (Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia 2024)

For every sufficiently large planar point set, the longest spanning cycle has two edges that cross each other.

Theorem

For every integer $n \ge 1$ there exists a set of n points in the plane for which the longest spanning path is unique and plane.

Theorem

For every integer $n \ge 3$ there exists a set of n points in the plane for which the longest spanning cycle is unique and plane.

Theorem

For every integer $n \ge 1$ there exists a set of n points in the plane for which the longest spanning path is unique and plane.

<u>PROOF:</u> Step 1: *n* points on a line (*n* even):

Longest path

Longest cycle

Theorem

For every integer $n \ge 3$ there exists a set of n points in the plane for which the longest spanning cycle is unique and plane.

Figure: The longest cycle connects p_{-1} to p_2 and p'_{-1} to p'_2