Note on Min-k-Planar Drawings of Graphs

Petr Hliněný and Lili Ködmön

September 20, 2024

Definition (Simple drawing)

A *simple drawing* is a drawing in which any two edges intersect in at most one point, a crossing or a common endpoint.

Definition (k-planar graph)

A k-planar graph is a graph admitting a drawing in which no edge has more than k crossings.

6-planar

not 6-planar

Definition (Min-k-planar graph)

General min-k-planar graphs are graphs admitting a drawing such that in any pair of crossing edges at least one has at most k crossings.

- If edge has at most k crossings, we call it *light*.
- If edge has more than k crossings, we call it heavy.

C. Binucci, A. Büngener, G. Di Battista, W. Didimo, V. Dujmović, S. Hong, M. Kaufmann, G. Liotta, P. Morin, A. Tappini. Min-*k*-planar drawings of graphs. (GD '23)

- introduced min-k-planar graphs
- considered only simple min-k-planar drawings

Theorem (M. Hoffmann, C. Liu, M. M. Reddy, C. D. Tóth (GD '20))

There exists a function f(k) such that every k-planar graph admits a simple f(k)-planar drawing.

•
$$f(k) = \frac{2}{3}\sqrt{58}k^{3/2}3^k$$
 for $k \ge 4$

Are all min-k-planar graphs simple min-k-planar or, at least, simple min-f(k)-planar?

YES for k = 1**NO** for $k \ge 2$

Petr Hliněný and Lili Ködmön Note on Min-*k*-Planar Drawings of Graphs September 20, 2024

Main Results

Proposition (Hliněný, K. 2024+)

- a) Every general min-1-planar graph admits a simple min-1-planar drawing.
- b) Every graph with a min-2-planar drawing in which no two adjacent edges cross also admits a simple min-2-planar drawing.

Theorem (Hliněný, K. 2024+)

- a) For every $k \ge 2$, there exists a simple graph H_k which is general min-2-planar, but H_k has no simple min-k-planar drawing.
- b) Moreover, for all $k \ge 3$, there exists a graph H'_k which has a general min-3-planar drawing in which no two adjacent edges cross, but, again, H'_k has no simple min-k-planar drawing.

くロト く伺下 くヨト くヨト

э

Standard redrawing along the uncrossed subarc of the light edge.

Proof of the Theorem (sketch)

We restrict the problem to graphs with a special structure, called *anchored* graphs. We then enforce the anchored property of the graphs with a special frame construction.

Definition

An anchored graph is a pair (G, A) where $A \subseteq V(G)$ is an ordered tuple of vertices. An anchored drawing of (G, A) in the unit disk $D \subseteq \mathbb{R}^2$ is a drawing $\mathcal{G} \subseteq D$ of G such that \mathcal{G} intersects the boundary of D precisely in the points of A (the anchors) in this clockwise order. We naturally extend the adjective anchored to min-k-planar drawings.

Lemma (Hliněný, K. 2024+)

For every $k \ge 2$, there exists a simple anchored graph (G_k, A_k) which has an anchored general min-2-planar drawing, but (G_k, A_k) has no anchored simple min-k-planar drawing. Furthermore, for any $k \ge 3$, there exists a simple anchored graph (G'_k, A'_k) which has an anchored general min-3-planar drawing in which no pair of adjacent edges cross, but (G'_k, A'_k) has no anchored simple min-k-planar drawing.

Image: A math a math

Proof of the Lemma I

Min-2-Planar Case:

- *M*₁, *M*₂: disjoint matchings of *k* + 1 edges
- S₁: induced star with center a₂ and k + 1 leaves including a₁, b₁
- S_2 : induced star with center c_2 and k + 2 leaves in the set $C_3 \cup \{c_1\}$ where $|C_3| = k + 1$
- $A_k = V(G_k) \setminus \{c_2\}$: anchor set

September 20, 2024

Proof of the Lemma II

Min-2-Planar Case:

- By the Jordan Curve Theorem, a₁a₂ must cross all edges of M₁, so it is heavy.
- If c_1c_2 crosses a_1a_2 , it must be light. Then, some edge of M_2 crosses a_1a_2 twice, contradiction.
- The edges going from c₂ to C₃ cross a₁a₂ and are light, so none of them can cross all k + 1 edges of S₁. Some edge of S₁ crosses c₁c₂, but then it must cross a₁a₂, contradiction.

Proof of the Lemma III

Min-3-Planar Case:

- Same as before, except:
 - *M*₃: induced matching of *k* + 1 edges
 - vertex c_3 replaces C_3

The proof of this case is almost identical to the previous one. We have to consider whether a_1a_2 crosses c_1c_2 or c_2c_3 .

September 20, 2024

Lemma (Hliněný, K. 2024+)

For any integers a, k and simple graph G with an ordered subset $A \subseteq V(G)$, |A| = a, there exists a simple anchored graph (H, A) disjoint from G except in the anchors A, such that the following hold:

- a) (H, A) has an anchored simple min-1-planar drawing.
- b) In every general min-k-planar drawing \mathcal{H} of $H \cup G$, the subdrawing $\mathcal{G} \subseteq \mathcal{H}$ of G is (spherically) homeomorphic to an anchored drawing of (G, A) or its mirror image.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

Which results in **Min**-*k*-**planar drawings of graphs** hold also for general min-*k*-planar drawings?

Thank you!

E

 $\exists \rightarrow$

< A

Proof of the Lemma (sketch) I

- *H*₀: double wheel with central vertices *w*₁, *w*₂
- H_0^* : take planar dual of H_0
- *H*₁: *H*₀ ∪ *H*₀^{*} with incident vertex-face pairs connected
- H₂: split w₂ into a vertices incident to equally split consecutive spoke edges of H₀ (anchor set A)
- H_2'' : subgraph formed by magenta edges
- *H*: replace each edge of H_2'' with *t* paths of length 2

Proof of the Lemma (sketch) II

- (*H*, *A*) has an anchored simple min-1-planar drawing
- in any min-k-planar drawing H of H ∪ G there is a planar subdrawing of a (k + 1)-amplification of H₂["] if t is sufficiently large (Ramsey-type argument)
- this crosses every black edge in \mathcal{H} at least (k + 1)-times (they are heavy)
- w₁ is connected to anchor by an uncrossed path in \mathcal{H}

Proof of the Lemma (sketch) III

- "invert" a local neighbourhood of w₁ into the outer face
- get an anchored subdrawing of (G, A) or its mirror image

To complete the proof of the main theorem, plug (G_k, A_k) and (G'_k, A'_k) into this lemma!