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Topology of Thin Film RC Circuits

By F. W. SINDEN

(Manuseript received August 31, 1066)

Integrated RC circuils can be made by depositing exceedingly thin
metallic and dielectric films in suitable paiterns on an insulating substrate.
Resistors are strips of conductor; capacitors are palches on which conducting,
dielectric, and conducting layers are superimposed. Since conductors can
cross al capacitor patches, RC networks need not be strictly planar to be
realizable in thin film.

Determining which RC circuils are realizable poses new problems in
topology which are remarkably simple to state nd are as yet unsolved. The
results reported here are fragmentary, bul they do cover some cases of small
order that may be of practical interest.



String graphs

* Intersection graphs of curves in the plane

1966 Sinden: Topology of thin film RC-circuits, Bell System Journal

1640 THE BELL SYSTEM TECHNICAL JOURNAL, NOVEMEER 1966

_ Fig. 1~ Thin film Iayout for n noteh filter (courtesy W. H. Orr). Black region
is bottom eonduetor; shaded region is dielectrie; white region is top conduetor.

Finding feasible layouts, or even determining when they exist, leads
to unsolved problems in topology. The results presented here give
answers only in special cases. Moreover, these results concern only the
topological side of the problem; dectrical equivalences are not taken into
account, It is assumed that the network is given topologically and that
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Fig. 2~ (a) Nonplanar eirevit (“twin-tee", Ref, 3, p. 300); (b) schematic
thin film layout for the eireuit in (a).
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terminals to the outside are loeated in given fixed positions on the
periphery of the board,

1. SEPARATION OF THE RESISTIVE AND CAPACITIVE PARTS

Given an RC network N, let Ry be the purely resistive network ob-
tained by replacing every eapacitor by a direet conneetion. Clearly N
is not realizable in thin film unless Ry is. Ry is realizable only if its
graph (a vertex for each conductor, an edge for each resistor) is planar
under the restrictions imposed by the locations of the terminals to the
outside (see Fig. 3). This observation provides a first check: if Ry is not
planar, there is no need to proceed further,

Each vertex in the graph of Ry replaces a purely capacitive network.
In Fig. 3, for example, the vertex V in Ry replaces the network shown
in Fig. 4.

One way to construct s realization of N is to construct realizations
for the individunl vertex-networks, and then to fit these into the planar
Iayout of Ry . Since the layout of Ry may not be unique (there may be
more than one ordering of edges about a vertex) the conditions on the
vertex-networks may not be unique.

Another approach, discussed briefly in the final section, is to modify
algorithms for purely capacitive networks to take account of resistors,
In cither case, one needs to study the purely eapacitive notworks fimst,

I, PURE C NETWORKS
A pure C network is a set of zero-resistance conductors ey, <0, 6,
some pairs of which are connected by eapacitors. The problem of finding
o feasible layout for such a network is the following:
For each conductor ¢; find a connected region R; in the plane such that
(i) R; and R; have common points if and only if ¢, and ¢; are con-
nected by a capacitor, and

Fig. 3 — Nonplanar RC network N and reduced purely resistive network Ry .
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terminals to the outside are located in given fixed positions on the
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1. SEPARATION OF THE RESISTIVE AND CAPACITIVE PARTS

Given an RC network N, let Ry be the purely resistive network ob-
tained by replacing every eapacitor by a direet conneetion. Clearly N
is not realizable in thin film unless Ry is. Ry is realizable only if its
graph (a vertex for each conductor, an edge for each resistor) is planar
under the restrictions imposed by the locations of the terminals to the
outside (see Fig. 3). This observation provides a first check: if Ry is not
planar, there is no need to proceed further,

Each vertex in the graph of Ry replaces a purely capacitive network.
In Fig. 3, for example, the vertex V in Ry replaces the network shown
in Fig. 4.

One way to construct s realization of N is to construct realizations
for the individunl vertex-networks, and then to fit these into the planar
Iayout of Ry . Since the layout of Ry may not be unique (there may be
more than one ordering of edges about a vertex) the conditions on the
vertex-networks may not be unique.

Another approach, discussed briefly in the final section, is to modify
algorithms for purely capacitive networks to take account of resistors,
In cither case, one needs to study the purely eapacitive notworks fimst,

1. PURE € NETWORKS
A pure C network is a set of zero-resistance conductors ey, <0, 6,
some pairs of which are connected by eapacitors. The problem of finding
o feasible layout for such a network is the following:
For each conductor ¢; find a connected region R; in the plane such that
(i) R and R; have common points if and only if ¢, and ¢; are con-
nected by a capacitor, and

Fig. 3 — Nonplanar RC network N and reduced purely resistive network Ry .
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Fig. 16 — Nonrealizable graph which does not contain either of the augmented
Kuratowski graphs Gy* or G2* and a partial realization.
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* 1974 Graham: Open problem in Keztheley

* 1976 Ehrlich, Even, Tarjan: Coloring intersection graphs of segments is
NP-hard

e 1991 JK: Recognizing string graphs is NP-hard

* 1991 JK, Matousek: There are string graphs that require exponential
number of crossing points in every representation

e 2001 Schaefer, Stefankovic: Upper bound on the number of crossing
points — recognizing string graphs is decidable

* 2002 Schaefer, Sedgwick, Stefankovic: Recognizing string graphs in NP
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Fig. 13 — Realization of the empty chain of order seven.
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Reduction from Hasse diagram recognition
H — G so that H is Hasse iff G is cylinder graph
In fact: H Hasse implies G is cylinder, and

H not Hasse implies G not outer-string

Graphclasses.org: Complexity of recognition of
outer-string graphs is unknown
Rok, Walczak (2019)
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Implicitly introduced in Sinden (1966)

Biedl, Biniaz, Derka (2018): May require exponential number of
crossing points in every representation

NP-hard to recognize
Rok, Walczak (2019): Outer-string graphs are y-bounded



Constrained outer-string graphs

The cyclic order in which the strings are tied to the boundary is given as
part of input.




Constrained outer-string graphs

Theorem 1: A necessary condition for a constrained graph G to be realizable
18 that G contain no empty cycles of order four or more.

Proof: (i) If G is an empty cycle of order four, then G is not realizable.
This is easily verified by inspection. If, therefore, G contains an empty
cycle of order four, then ¢ is not realizable.

(b)

Fig. 9 — (a) Empty cycle in @, (b) non-cycles. Dashed edges belong to ;
edges not shown belong to G.
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Outer-1-string graphs

Recognition is open
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Our results

Thm 1: A graph has a constrained outer-string representation for every
cyclic ordering of its vertices iff it is co-chordal.

Thm 2: Constrained outer-string chordal graphs can be recognized in
polynomial time, and are described by a single forbidden configuration.

Thm 3: Constrained outer-1-string trees can be recognized in
polynomial time, and are described by (infinitely many) forbidden
configurations.



Proof of Thm 1

Thm 1: A graph has a constrained outer-string representation for every
cyclic ordering of its vertices iff it is co-chordal.

Proof: If G is not co-chordal, then —G contains a chordless cycle C, with
k>4. No cyclic ordering of the vertices of G that extends the natural

ordering of this C, allows a constrained outer-string representation
(Sinden).

If G is co-chordal, and given a cyclic ordering of its vertices,
construct a constrained representation by induction on adding
simplicial vertices of —G.
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2) Claim 2. Both G, and G, contain no pair of interleaving independent

edges.
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2) Claim 3. Both G, and G, contain fewer pairs of independent edges
than G.
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L-shapes and U-shapes

Thm 4: If a cyclically constrained tree admits an outer-1-string
representation, then it admits a constrained U-shaped 1-string
representation for any linear order induced by the cyclic one.

Linearly constrained trees that admit L-shaped 1-string representations
can be recognized in polynomial time.
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