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String graphs
• Intersection graphs of curves in the plane

• 1966 Sinden: Topology of thin film RC-circuits, Bell System Journal

• 1974 Graham: Open problem in Keztheley

• 1976 Ehrlich, Even, Tarjan: Coloring intersection graphs of segments is 
NP-hard

• 1991 JK: Recognizing string graphs is NP-hard

• 1991 JK, Matoušek: There are string graphs that require exponential 
number of crossing points in every representation

• 2001 Schaefer, Stefankovic: Upper bound on the number of crossing 
points – recognizing string graphs is decidable

• 2002 Schaefer, Sedgwick, Stefankovic: Recognizing string graphs in NP
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Outer-string graphs
Implicitly introduced in Sinden (1966)

Biedl, Biniaz, Derka (2018): May require exponential number of 
crossing points in every representation

NP-hard to recognize

Rok, Walczak (2019): Outer-string graphs are -bounded



Constrained outer-string graphs
The cyclic order in which the strings are tied to the boundary is given as 
part of input.
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Constrained outer-1-string graphs

Outer-1-string graphs
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Our results
Thm 1: A graph has a constrained outer-string representation for every
cyclic ordering of its vertices iff it is co-chordal.

Thm 2: Constrained outer-string chordal graphs can be recognized in 
polynomial time, and are described by a single forbidden configuration.

Thm 3: Constrained outer-1-string trees can be recognized in 
polynomial time, and are described by (infinitely many) forbidden 
configurations.



Proof of Thm 1
Thm 1: A graph has a constrained outer-string representation for every
cyclic ordering of its vertices iff it is co-chordal.

Proof: If G is not co-chordal, then –G contains a chordless cycle Ck with 
k4. No cyclic ordering of the vertices of G that extends the natural 
ordering of this Ck allows a constrained outer-string representation 
(Sinden).

If G is co-chordal, and given a cyclic ordering of its vertices, 
construct a constrained representation by induction on adding 
simplicial vertices of –G.
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Proof of Thm 2
Thm 2: Constrained outer-string chordal graphs can be recognized in 
polynomial time, and are described by a single forbidden configuration 
– an interleaving pair of independent edges.
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Proof of Thm 2
2) The graph G has at least one pair of independent edges. Consider a 
minimal set K of vertices such that G-K has at least 2 nontrivial 
components (i.e., components with at least 2 vertices).
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Proof of Thm 2
2) Claim 2. Both GA and GB contain no pair of interleaving independent 
edges. 
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Proof of Thm 2
2) Claim 3. Both GA and GB contain fewer pairs of independent edges 
than G. 
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Proof of Thm 2
2) Induction. Both GA and GB admit constrained outer-string 
representations. And these can be merged. 

2 1 2’ 1’

K

A

A A

GA



Proof of Thm 2
2) Induction. Both GA and GB admit constrained outer-string 
representations. And these can be merged. 

2 1 2’ 1’

K

A

A A

GA



Before the proof of Thm 3
More general setting: In the input cyclic ordering, we allow some 
vertices appear twice. These occurrences then correspond to the end-
points of the corresponding curves.
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Obstructions for constrained outer-1-string trees
Thm 3: Constrained outer-1-string trees can be recognized in 
polynomial time, and are described by 3 types of forbidden 
configurations.
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L-shapes and U-shapes
Thm 4: If a cyclically constrained tree admits an outer-1-string 
representation, then it admits a constrained U-shaped 1-string 
representation for any linear order induced by the cyclic one.

Linearly constrained trees that admit L-shaped 1-string representations 
can be recognized in polynomial time.
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