Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	0000000	00000000	O	00

Drawing Planar Graphs and 1-Planar Graphs Using Cubic Bézier Curves with Bounded Curvature

David Eppstein, Michael T. Goodrich, Abraham M. Illickan

University of California, Irvine

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
●00	0000000	00000000	O	00
Bézier curves				

$$At^{3} + 3Ct^{2}(1-t) + 3Dt(1-t)^{2} + B(1-t)^{3}$$

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
0●0	0000000	00000000	0	00
Curvature				

The curvature of a twice-differentiable parameterized curve, $\mathbf{c}(t) = (x(t), y(t))$, can be defined as follows:

$$\kappa(t) = rac{|x'y'' - y'x''|}{(x'^2 + y'^2)^{3/2}},$$

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
00●	0000000	00000000	0	00
1-Bend				

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	●000000	00000000	O	00
1-Planar Graphs				

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	0●00000	00000000	0	00
Straight Line Draw	vings			

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	00●0000	00000000	O	00
Always possible?				

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	000●000	00000000	O	00
1-bend RAC Drawi	ings			

Theorem (Bekos, Didimo, Liotta, Mehrabi, and Montecchiani [1])

Let G be an n-vertex 1-planar graph. Then G admits a 1-planar 1-bend RAC drawing.

We adapt the proof to use Bézier curves

Curves and Curvature	1-Planar Graphs 0000●00	Planar Graphs 00000000	Future Work O	References 00
Using Bézier Cı	urves inside			

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	0000000	●0000000	O	00
Angular Resolution	in Planar Grap	hs		

The smallest angle around a vertex

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	0000000	●0000000	O	00
Angular Resolution	in Planar Gra	ohs		

The smallest angle around a vertex

Theorem (Miyata [2])

Let ε be any positive constant. There is a family of planar graphs with maximum degree d that have angular resolution $O((\log d)^{\varepsilon}/d^{\frac{3}{2}})$

Theorem (Goodrich and Wagner [3])

There is an O(n) time algorithm to draw a planar graph on a grid with angular resolution $\Theta(1/d(v))$ using 2-Bend edges.

Theorem (Goodrich and Wagner [3])

There is an O(n) time algorithm to draw a planar graph on a grid with angular resolution $\Theta(1/d(v))$ using cubic Bézier curves.

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	0000000	00●00000	0	00
Using 1-Bend edge	2S			

Theorem (Cheng, Duncan, Goodrich, and Kobourov [4])

Given a planar graph G, algorithm ONEBEND produces in O(n) time, a planar embedding on the $30n \times 15n$ grid with angular resolution $\Theta(1/d(v))$ using 1-Bend edges.

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	0000000	00000000	O	00
Vertex Joint Box				

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	0000000	0000●000	O	00
Drawing an edge				

Curves and Curvature	1-Planar Graphs 0000000	Planar Graphs 00000●00	Future Work O	References 00		
Non-intersection changing <i>k</i>						

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	0000000	0000000	O	00
Curvature				

Theorem

Given an n-vertex planar graph, G, we can draw G in an $O(n) \times O(n)$ grid and $\Omega(1/\text{degree}(v))$ angular resolution, for each vertex $v \in G$, using a single cubic Bézier curve with curvature $O(\sqrt{n})$ per edge in O(n) time.

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	0000000	00000000	●	00
Future Work				

- Bounds on the Curvature for 1-Planar graphs
- Improve the Curvature for Planar graphs
- Use "C" shaped curves instead of "S" shaped curves

Curves and Curvature	1-Planar Graphs	Planar Graphs	Future Work	References
	0000000	00000000	O	●0
References				

- M. A. Bekos, W. Didimo, G. Liotta, S. Mehrabi, and F. Montecchiani, "On rac drawings of 1-planar graphs," Theoretical Computer Science, vol. 689, pp. 48–57, 2017.
- [2] H. Miyata, "A new upper bound for angular resolution," <u>CoRR</u>, vol. abs/2309.08401, 2023.
- [3] M. T. Goodrich and C. G. Wagner, "A framework for drawing planar graphs with curves and polylines," <u>Journal of</u> <u>Algorithms</u>, vol. 37, no. 2, pp. 399–421, 2000.
- [4] C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G. Kobourov, "Drawing planar graphs with circular arcs," <u>Discrete</u> <u>& Computational Geometry</u>, vol. 25, pp. 405–418, 1999.

1-Planar Graphs

Planar Graphs

Future Work

References 0●

$+h\{a_n\}^k \gamma_0 \cup$