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• Diameter is 2N − 10 for N > 12 [Sleator, Tarjan, Thurston 88], [Pournin 14]

• All vertices have degree N − 3

• Chromatic number 4 ≤ χ(GN ) = O(logN)
[Fabila-Monroy et al. 09], [Berry, Reed, Scott, Wood 18]

• Hamilton cycle for N ≥ 5 [Lucas 87], [Hurtado, Noy 99]
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Ramsey-type subgraphs of GN

• Propp and Sagan suggested the following problem:
color points red and blue alternatingly

Want: no mono-
chromatic triangles

• Subgraph FN ⊆ GN

G6 F6
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Sagan’s problem
• Sagan proved that FN is connected [Sagan 08]

• He asked: Does FN admit a Hamilton path/cycle? [pers. comm.]

HP
no
HC

N = 5 yes

N = 6

N = 7

no

yes no

no

• Theorem: For all N ≥ 8, the graph FN has a Hamilton cycle.

• can compute Hamilton path in time O(1) on avg. per node
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Structure of FN

• Flip graph of colorful edges is rotation graph of ternary trees

• Flips of monochromatic edges are
independent and span disjoint hypercubes

F6

• HC in FN : Combine Gray codes for ternary trees & hypercubes
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A generalization
• Coloring sequence α = (α1, α2, . . . , αℓ), ℓ even

• Sagan’s original problem: α = (1, 1, . . . , 1)

α1

α2

α3

αℓ

• Subgraph Fα ⊆ GN , N =
∑ℓ

i=1 αi

α = (2, 3, 1, 2, 1, 1), ℓ = 6

• Theorem: For every α of (even) length ℓ ≥ 10, the graph Fα

has a Hamilton cycle.

ℓ = #blocks = #color changes
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Two blocks
• α = (α1, α2) = (a, b)

a = 4 b = 5

10 101 00

10 10

(a− 1, b− 1)-combination

• F(a,b) is isomorphic to flip graph of (a−1, b−1)-combinations
under adjacent transpositions

• Theorem: F(a,b) has a Hamilton path iff a ∈ {1, 2} or b ∈
{1, 2} or a and b are both even.

• Hamiltonicity was solved by [Buck, Wiedemann 84], [Eades, Hickey, Read 84]

flip

adjacent transposition
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Three colors
• Colors points red, blue, green alternatingly

Want: every triangle
sees all three colors

twist H9H6

• Flip graph HN

• Theorem: For any N a multiple of 3, HN is connected.
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Open problems

• Hamiltonicity of HN when 3|N (3 colors + twists)?

• HN not connected when 3̸ |N?

• Possible cycle lengths in associahedron GN apart from HCs?

• More than 3 colors? Different notions of ‘colorful’?



Thank you!


