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® Haml|t0n CyC|e fOI’ N Z 5 [Lucas 87], [Hurtado, Noy 99]
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Sagan's problem

e Sagan proved that F is connected (sagan 0

e He asked: Does Fn admit a Hamilton path/cycle? jpers comm]

HP  HC
N =5 yes no e
N—=6 no no M
N =7 yes no

e Theorem: For all NV > 8§, the graph Fx has a Hamilton cycle.

e can compute Hamilton path in time O(1) on avg. per node
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e Distinguish colorful ®—e and monochromatic edges o¢—e

o every triangle has exactly one monochromatic edge
o every monochr. edges is surrounded by 4 colorful edges

< <

e Removing all monochromatic edges yields a quadrangulation
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e Flip graph of colorful edges is rotation graph of ternary trees

Structure of Fxn @

e HC in F: Combine Gray codes for ternary trees & hypercubes
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e Coloring sequence a = (a1, az,...,ayp), £ even
1 R
S

a=(2,3,1,2,1,1),£ =6
&2\\ ¢ = #blocks = #-color changes
N4

a3

e Sagan’'s original problem: o = (1,1,...,1)

e Subgraph F, C Gy, N = Zle o

e Theorem: For every a of (even) length ¢ > 10, the graph F,
has a Hamilton cycle.
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e F(aup) is isomorphic to flip graph of (a —1,b—1)-combinations
under adjacent transpositions

® Ham||t0n|C|ty was SO|Ved by [Buck, Wiedemann 84], [Eades, Hickey, Read 84]

e Theorem: F(, ;) has a Hamilton path iff a € {1,2} or b €
{1,2} or a and b are both even.
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e Colors points red, blue, green alternatingly
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e Theorem: For any N a multiple of 3, H Is connected.
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Open problems

Hamiltonicity of H when 3|N (3 colors + twists)?

H not connected when 3 /N7

More than 3 colors? Different notions of ‘colorful’ ?

Possible cycle lengths in associahedron Gy apart from HCs?



Thank youl



