Intersection Graphs with and without Product Structure

GD 2024 · 19.09.2024

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

For every $G \in \mathcal{G}$

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

For every $G \in \mathcal{G}$

there are H and P

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

A graph class \mathcal{G} has product structure if there exists a $c \in \mathbb{N}$ such that:

Many beyond-planar graph classes have product structure.

• Large cliques \implies **no** product structure.

Many beyond-planar graph classes have product structure.

• Large cliques \implies **no** product structure.

• Large treewidth in neighborhood \implies **no** product structure.

- Large cliques \implies **no** product structure.
- Large treewidth in neighborhood \implies **no** product structure.
- **No** linear local treewidth \implies **no** product structure.

Many beyond-planar graph classes have product structure.

Where is the border between product structure and no product structure?

- Large cliques \implies **no** product structure.
- **Large treewidth in neighborhood** \implies **no** product structure.
- **No** linear local treewidth \implies **no** product structure.

Problems for product structure:

Problems for product structure:

Problems for product structure:

Problems for product structure:

Problems for product structure:

Problems for product structure:

Problems for product structure:

Problems for product structure:

large cliques

Problems for product structure:

large cliques

Problems for product structure:

large cliques

Problems for product structure:

large cliques

Problems for product structure:

A set S of shapes in the plane is α -free with $\alpha \in [0, 1]$ if every shape $S \in S$ has at least α of its area disjoint from all other shapes.

A set S of shapes in the plane is α -free with $\alpha \in [0, 1]$ if every shape $S \in S$ has at least α of its area disjoint from all other shapes.

0-free

A set S of shapes in the plane is α -free with $\alpha \in [0, 1]$ if every shape $S \in S$ has at least α of its area disjoint from all other shapes.

A set S of shapes in the plane is α -free with $\alpha \in [0, 1]$ if every shape $S \in S$ has at least α of its area disjoint from all other shapes.

A set S of shapes in the plane is α -free with $\alpha \in [0, 1]$ if every shape $S \in S$ has at least α of its area disjoint from all other shapes.

A set S of shapes in the plane is α -free with $\alpha \in [0, 1]$ if every shape $S \in S$ has at least α of its area disjoint from all other shapes.

A set S of shapes in the plane is α -free with $\alpha \in [0, 1]$ if every shape $S \in S$ has at least α of its area disjoint from all other shapes.

A set S of shapes in the plane is α -free with $\alpha \in [0, 1]$ if every shape $S \in S$ has at least α of its area disjoint from all other shapes.

A set S of shapes in the plane is α -free with $\alpha \in [0, 1]$ if every shape $S \in S$ has at least α of its area disjoint from all other shapes.

Constructing Graphs with Radius $\mathcal{O}(k)$ and Treewidth $\Omega(k^2)$

k-Independent Crossing Drawings

k-independent crossing: no edge is crossed by more than k independent edges.

k-Independent Crossing Drawings

k-independent crossing: no edge is crossed by more than k independent edges.

1-independent crossing

k-Independent Crossing Drawings

k-independent crossing: no edge is crossed by more than k independent edges.

1-independent crossing

k-independent crossing: no edge is crossed by more than k independent edges.

k-independent crossing: no edge is crossed by more than k independent edges.

k-independent crossing: no edge is crossed by more than k independent edges.

k-independent crossing: no edge is crossed by more than k independent edges.

k-independent crossing: no edge is crossed by more than k independent edges.

Question: Do *k*-independent crossing graphs have product structure?