
Quantum Algorithms
|f ⊗ r⟩

One-Sided Crossing Minimization

Susanna Caroppo, Giordano Da Lozzo, Giuseppe Di Battista

Roma Tre University

What is the One-Sided Crossing Minimization problem?

What is the One-Sided Crossing Minimization problem?

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

What is the One-Sided Crossing Minimization problem?

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

a b c d e

f g h i l m

What is the One-Sided Crossing Minimization problem?

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

Output: a linear ordering of V such that the number of crossings is minimum

a b c d e

f g h i l m

What is the One-Sided Crossing Minimization problem?

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

Output: a linear ordering of V such that the number of crossings is minimum

a b c d e

f g h i l m

a b c d e

f g hi lm

What is the One-Sided Crossing Minimization problem?

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

Output: a linear ordering of V such that the number of crossings is minimum

a b c d e

f g h i l m

a b c d e

f g hi lm

11 crossings

What is the One-Sided Crossing Minimization problem?

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

Output: a linear ordering of V such that the number of crossings is minimum

a b c d e

f g h i l m

a b c d e

f g hi lm

11 crossings 4 crossings

State of the art

State of the art
• OSCM problem is N P-complete [Eades et al. 1994]

• Even for sparse graphs [Muñoz et al. 2001]

State of the art
• OSCM problem is N P-complete [Eades et al. 1994]

• Its importance in GD was first put in evidence by Sugiyama [Sugiyama et al.
1981]

• Even for sparse graphs [Muñoz et al. 2001]

State of the art
• OSCM problem is N P-complete [Eades et al. 1994]

• Its importance in GD was first put in evidence by Sugiyama [Sugiyama et al.
1981]

• Exact solutions for OSCM has been searched with branch-and-cut
techniques [Jünger et al. 1995, Mutzel et al. 1998, Valls et al. 1996]

• Even for sparse graphs [Muñoz et al. 2001]

State of the art
• OSCM problem is N P-complete [Eades et al. 1994]

• Its importance in GD was first put in evidence by Sugiyama [Sugiyama et al.
1981]

• Exact solutions for OSCM has been searched with branch-and-cut
techniques [Jünger et al. 1995, Mutzel et al. 1998, Valls et al. 1996]

• A O∗(2n) time and space exact classic algorithm can be obtained [Bodlaender
et. al 2009]

• Even for sparse graphs [Muñoz et al. 2001]

• A O∗(4n) time and polynomial space exact classic algorithm can be
obtained [Bodlaender et. al 2009]

State of the art
• OSCM problem is N P-complete [Eades et al. 1994]

• Its importance in GD was first put in evidence by Sugiyama [Sugiyama et al.
1981]

• Exact solutions for OSCM has been searched with branch-and-cut
techniques [Jünger et al. 1995, Mutzel et al. 1998, Valls et al. 1996]

• The parameterized version of the problem has been widely investigated
[Dujmovic et al. 2004,2008, Fernau et al. 2010, Kenyon-Mathieu et al. 2007, Alon et al. 2009]

• A O∗(2n) time and space exact classic algorithm can be obtained [Bodlaender
et. al 2009]

• Even for sparse graphs [Muñoz et al. 2001]

• A O∗(4n) time and polynomial space exact classic algorithm can be
obtained [Bodlaender et. al 2009]

State of the art
• OSCM problem is N P-complete [Eades et al. 1994]

• Its importance in GD was first put in evidence by Sugiyama [Sugiyama et al.
1981]

• Exact solutions for OSCM has been searched with branch-and-cut
techniques [Jünger et al. 1995, Mutzel et al. 1998, Valls et al. 1996]

• The parameterized version of the problem has been widely investigated
[Dujmovic et al. 2004,2008, Fernau et al. 2010, Kenyon-Mathieu et al. 2007, Alon et al. 2009]

• Currently the best FPT results is O(k2
√

2k) [Kobayashi et al. 2015]

• A O∗(2n) time and space exact classic algorithm can be obtained [Bodlaender
et. al 2009]

• Even for sparse graphs [Muñoz et al. 2001]

• A O∗(4n) time and polynomial space exact classic algorithm can be
obtained [Bodlaender et. al 2009]

Our Contribution

Our Contribution
• We present singly-exponential quantum algorithms for the One-Sided

Crossing Minimization (OSCM) problem

Our Contribution
• We present singly-exponential quantum algorithms for the One-Sided

Crossing Minimization (OSCM) problem

Classic Quantum

time space time space

O∗(2n) O∗(2n) O∗(1.728n) O∗(1.728n)

O∗(4n) O∗(poly(n)) O∗(2n) O∗(poly(n))

Our Contribution
• We present singly-exponential quantum algorithms for the One-Sided

Crossing Minimization (OSCM) problem

Classic Quantum

time space time space

O∗(2n) O∗(2n) O∗(1.728n) O∗(1.728n)

O∗(4n) O∗(poly(n)) O∗(2n) O∗(poly(n))

Our Contribution
• We present singly-exponential quantum algorithms for the One-Sided

Crossing Minimization (OSCM) problem

Classic Quantum

time space time space

O∗(2n) O∗(2n) O∗(1.728n) O∗(1.728n)

O∗(4n) O∗(poly(n)) O∗(2n) O∗(poly(n))

Our Contribution
• We present singly-exponential quantum algorithms for the One-Sided

Crossing Minimization (OSCM) problem

Classic Quantum

time space time space

O∗(2n) O∗(2n) O∗(1.728n) O∗(1.728n)

O∗(4n) O∗(poly(n)) O∗(2n) O∗(poly(n))

Our Contribution
• We present singly-exponential quantum algorithms for the One-Sided

Crossing Minimization (OSCM) problem

Classic Quantum

time space time space

O∗(2n) O∗(2n) O∗(1.728n) O∗(1.728n)

O∗(4n) O∗(poly(n)) O∗(2n) O∗(poly(n))

Our Contribution
• We present singly-exponential quantum algorithms for the One-Sided

Crossing Minimization (OSCM) problem

Classic Quantum

time space time space

O∗(2n) O∗(2n) O∗(1.728n) O∗(1.728n)

O∗(4n) O∗(poly(n)) O∗(2n) O∗(poly(n))

Quantum Preliminaries

Quantum Preliminaries
• Qubit

Quantum Preliminaries
• Qubit

• |γ⟩

Quantum Preliminaries
• Qubit

• |γ⟩ = α1 |0⟩ + α2 |1⟩, α1, α2 ∈ C

Quantum Preliminaries
• Qubit

• |γ⟩ = α1 |0⟩ + α2 |1⟩, α1, α2 ∈ C
• Superposition

Quantum Preliminaries
• Qubit

• |γ⟩ = α1 |0⟩ + α2 |1⟩, α1, α2 ∈ C
• Superposition

• |ϕ⟩

Quantum Preliminaries
• Qubit

• |γ⟩ = α1 |0⟩ + α2 |1⟩, α1, α2 ∈ C
• Superposition

• |ϕ⟩ = α1 |00⟩ + α2 |01⟩ + α3 |10⟩ + α4 |11⟩

Quantum Preliminaries
• Qubit

• |γ⟩ = α1 |0⟩ + α2 |1⟩, α1, α2 ∈ C
• Superposition

• |ϕ⟩ = α1 |00⟩ + α2 |01⟩ + α3 |10⟩ + α4 |11⟩ =
∑

x∈{0,1}2 αx |x⟩

Quantum Preliminaries
• Qubit

• |γ⟩ = α1 |0⟩ + α2 |1⟩, α1, α2 ∈ C
• Superposition

• |ϕ⟩ = α1 |00⟩ + α2 |01⟩ + α3 |10⟩ + α4 |11⟩ =
∑

x∈{0,1}2 αx |x⟩

• Quantum computation

Quantum Preliminaries
• Qubit

• |γ⟩ = α1 |0⟩ + α2 |1⟩, α1, α2 ∈ C
• Superposition

• |ϕ⟩ = α1 |00⟩ + α2 |01⟩ + α3 |10⟩ + α4 |11⟩ =
∑

x∈{0,1}2 αx |x⟩

• Quantum computation

∑
x∈{0,1}n αx |x⟩

Quantum Preliminaries
• Qubit

• |γ⟩ = α1 |0⟩ + α2 |1⟩, α1, α2 ∈ C
• Superposition

• |ϕ⟩ = α1 |00⟩ + α2 |01⟩ + α3 |10⟩ + α4 |11⟩ =
∑

x∈{0,1}2 αx |x⟩

• Quantum computation

Q
∑

x∈{0,1}n αx |x⟩

Quantum Preliminaries
• Qubit

• |γ⟩ = α1 |0⟩ + α2 |1⟩, α1, α2 ∈ C
• Superposition

• |ϕ⟩ = α1 |00⟩ + α2 |01⟩ + α3 |10⟩ + α4 |11⟩ =
∑

x∈{0,1}2 αx |x⟩

• Quantum computation

Q
∑

x∈{0,1}n αx |x⟩
∑

x∈{0,1}n βx |x⟩

Quantum tools

Quantum tools
• Quantum Random Access Memory (QRAM)

Quantum tools
• Quantum Random Access Memory (QRAM)

• This model of computation enables us to use quantum search primitives that
involve condition checking on data stored in a random access memory

Quantum tools
• Quantum Random Access Memory (QRAM)

• This model of computation enables us to use quantum search primitives that
involve condition checking on data stored in a random access memory

|x⟩ (address) |dx⟩ (data)

00 110
01 101
10 001
11 111

Quantum tools
• Quantum Random Access Memory (QRAM)

• This model of computation enables us to use quantum search primitives that
involve condition checking on data stored in a random access memory

|x⟩ (address) |dx⟩ (data)

00 110
01 101
10 001
11 111

• α0 |00⟩ |000⟩ + α1 |01⟩ |000⟩ + α210 |000⟩ + α3 |11⟩ |000⟩

Quantum tools
• Quantum Random Access Memory (QRAM)

• This model of computation enables us to use quantum search primitives that
involve condition checking on data stored in a random access memory

|x⟩ (address) |dx⟩ (data)

00 110
01 101
10 001
11 111

• α0 |00⟩ |000⟩ + α1 |01⟩ |000⟩ + α210 |000⟩ + α3 |11⟩ |000⟩

Quantum tools
• Quantum Random Access Memory (QRAM)

• This model of computation enables us to use quantum search primitives that
involve condition checking on data stored in a random access memory

|x⟩ (address) |dx⟩ (data)

00 110
01 101
10 001
11 111

• α0 |00⟩ |000⟩ + α1 |01⟩ |000⟩ + α210 |000⟩ + α3 |11⟩ |000⟩

Quantum tools
• Quantum Random Access Memory (QRAM)

• This model of computation enables us to use quantum search primitives that
involve condition checking on data stored in a random access memory

|x⟩ (address) |dx⟩ (data)

00 110
01 101
10 001
11 111

• α0 |00⟩ |000⟩ + α1 |01⟩ |000⟩ + α210 |000⟩ + α3 |11⟩ |000⟩

α0 |00⟩ |000⟩

α1 |01⟩ |000⟩

α2 |10⟩ |000⟩

α3 |11⟩ |000⟩

Quantum tools
• Quantum Random Access Memory (QRAM)

• This model of computation enables us to use quantum search primitives that
involve condition checking on data stored in a random access memory

|x⟩ (address) |dx⟩ (data)

00 110
01 101
10 001
11 111

• α0 |00⟩ |000⟩ + α1 |01⟩ |000⟩ + α210 |000⟩ + α3 |11⟩ |000⟩

α0 |00⟩ |000⟩

α1 |01⟩ |000⟩

α2 |10⟩ |000⟩

α3 |11⟩ |000⟩

QRAM

Quantum tools
• Quantum Random Access Memory (QRAM)

• This model of computation enables us to use quantum search primitives that
involve condition checking on data stored in a random access memory

|x⟩ (address) |dx⟩ (data)

00 110
01 101
10 001
11 111

• α0 |00⟩ |000⟩ + α1 |01⟩ |000⟩ + α210 |000⟩ + α3 |11⟩ |000⟩

α0 |00⟩ |000⟩

α1 |01⟩ |000⟩

α2 |10⟩ |000⟩

α3 |11⟩ |000⟩

α0 |00⟩ |110⟩

α1 |01⟩ |101⟩

α2 |10⟩ |001⟩

α3 |11⟩ |111⟩

QRAM

Quantum tools
• Quantum Random Access Memory (QRAM)

• This model of computation enables us to use quantum search primitives that
involve condition checking on data stored in a random access memory

|x⟩ (address) |dx⟩ (data)

00 110
01 101
10 001
11 111

α0 |00⟩ |000⟩

α1 |01⟩ |000⟩

α2 |10⟩ |000⟩

α3 |11⟩ |000⟩

α0 |00⟩ |110⟩

α1 |01⟩ |101⟩

α2 |10⟩ |001⟩

α3 |11⟩ |111⟩

QRAM

• α0 |00⟩ |000⟩ + α1 |01⟩ |000⟩ + α210 |000⟩ + α3 |11⟩ |000⟩ → α0 |00⟩ |110⟩ + α1 |01⟩ |101⟩ + α210 |001⟩ + α3 |11⟩ |111⟩

Quantum tools

Quantum tools

• Quantum Minimum Finding (QMF) [Durr 1996]

Quantum tools

• Quantum Minimum Finding (QMF) [Durr 1996]

• Given a table T of size N the algorithms finds the index y such that
T [y] is minimized in time O(

√
N)

Quantum Dynamic Programming for Set Problems

Quantum Dynamic Programming for Set Problems
• Set problem

Quantum Dynamic Programming for Set Problems
• Set problem

• The solution for a set X can be determined by considering optimal
solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

• Ambainis et al. [SODA 2019] introduced a quantum framework designed to
speedup several classic exponential-time and space algorithms

• Set problem
• The solution for a set X can be determined by considering optimal

solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

• Ambainis et al. [SODA 2019] introduced a quantum framework designed to
speedup several classic exponential-time and space algorithms

Lemma Let P be an optimization problem over a set X.

• Set problem
• The solution for a set X can be determined by considering optimal

solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

• Ambainis et al. [SODA 2019] introduced a quantum framework designed to
speedup several classic exponential-time and space algorithms

Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X.

• Set problem
• The solution for a set X can be determined by considering optimal

solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

• Ambainis et al. [SODA 2019] introduced a quantum framework designed to
speedup several classic exponential-time and space algorithms

Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R such that, for any S ⊆ X, it holds that for any k ∈ [|S| − 1]:

• Set problem
• The solution for a set X can be determined by considering optimal

solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

• Ambainis et al. [SODA 2019] introduced a quantum framework designed to
speedup several classic exponential-time and space algorithms

Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R such that, for any S ⊆ X, it holds that for any k ∈ [|S| − 1]:

OPTP(S) = min
W⊂S,|W |=k

{OPTP(W) + OPTP(S \ W) + fP(W, S \ W)}

• Set problem
• The solution for a set X can be determined by considering optimal

solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

• Ambainis et al. [SODA 2019] introduced a quantum framework designed to
speedup several classic exponential-time and space algorithms

Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R such that, for any S ⊆ X, it holds that for any k ∈ [|S| − 1]:

OPTP(S) = min
W⊂S,|W |=k

{OPTP(W) + OPTP(S \ W) + fP(W, S \ W)}

• Set problem
• The solution for a set X can be determined by considering optimal

solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

• Ambainis et al. [SODA 2019] introduced a quantum framework designed to
speedup several classic exponential-time and space algorithms

Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R such that, for any S ⊆ X, it holds that for any k ∈ [|S| − 1]:

OPTP(S) = min
W⊂S,|W |=k

{OPTP(W) + OPTP(S \ W) + fP(W, S \ W)}

• Set problem
• The solution for a set X can be determined by considering optimal

solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

• Ambainis et al. [SODA 2019] introduced a quantum framework designed to
speedup several classic exponential-time and space algorithms

Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R such that, for any S ⊆ X, it holds that for any k ∈ [|S| − 1]:

OPTP(S) = min
W⊂S,|W |=k

{OPTP(W) + OPTP(S \ W) + fP(W, S \ W)}

• Set problem
• The solution for a set X can be determined by considering optimal

solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

• Ambainis et al. [SODA 2019] introduced a quantum framework designed to
speedup several classic exponential-time and space algorithms

Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R such that, for any S ⊆ X, it holds that for any k ∈ [|S| − 1]:

OPTP(S) = min
W⊂S,|W |=k

{OPTP(W) + OPTP(S \ W) + fP(W, S \ W)}

• Set problem
• The solution for a set X can be determined by considering optimal

solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

• Ambainis et al. [SODA 2019] introduced a quantum framework designed to
speedup several classic exponential-time and space algorithms

Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R such that, for any S ⊆ X, it holds that for any k ∈ [|S| − 1]:

OPTP(S) = min
W⊂S,|W |=k

{OPTP(W) + OPTP(S \ W) + fP(W, S \ W)}

Then, OPTP(X) can be computed by a quantum algorithm that uses QRAM in O∗(1.728n)
time and space.

• Set problem
• The solution for a set X can be determined by considering optimal

solutions for all partitions (S, X \ S) of X with |S| = k, for any fixed
positive k, using polynomial time for each partition

Quantum Dynamic Programming for Set Problems

Quantum Dynamic Programming for Set Problems
• The main idea is to

Quantum Dynamic Programming for Set Problems
• The main idea is to

• Precompute solutions (pre-processing) for smaller subsets using classic
dynamic programming and save the results in the QRAM

Quantum Dynamic Programming for Set Problems
• The main idea is to

• Precompute solutions (pre-processing) for smaller subsets using classic
dynamic programming and save the results in the QRAM

• Recombine the results of the precomputation step to obtain the optimal
solution for the whole set (recursively) applying Quantum Minimum
Finding (QMF)

Quantum Dynamic Programming for Set Problems

Quantum Dynamic Programming for Set Problems

Quantum

Classic

Quantum Dynamic Programming for Set Problems

QRAM

Quantum

Classic
pre-processing
classic precomputed
optimal solutions
are stored in QRAM

Quantum Dynamic Programming for Set Problems

QRAM

e p m q g chd

p
i

d
e
p

a
f
m

f
m

g

l
o

l
r

l
o
r

b
c
n

b
c

Quantum

Classic
pre-processing
classic precomputed
optimal solutions
are stored in QRAM

Quantum Dynamic Programming for Set Problems

QRAM

e p m q g chd

p
i

d
e
p

a
f
m

f
m

g

l
o

l
r

l
o
r

b
c
n

b
c

a b c d e f g h i l m n o p q r

Quantum

Classic
pre-processing
classic precomputed
optimal solutions
are stored in QRAM

Quantum Dynamic Programming for Set Problems

QRAM

e p m q g chd

p
i

d
e
p

a
f
m

f
m

g

l
o

l
r

l
o
r

b
c
n

b
c

0 1 1 1 1 1 1 1 10 0 0 0 0 0 0

a d e f i m p qb c g h l n o r

QMF

Quantum

Classic

n/2

pre-processing
classic precomputed
optimal solutions
are stored in QRAM

Quantum Dynamic Programming for Set Problems

QRAM

e p m q g chd

p
i

d
e
p

a
f
m

f
m

g

l
o

l
r

l
o
r

b
c
n

b
c

0 1 1 1 1 1 1 1 10 0 0 0 0 0 0

a d e f i m p q b c g h l n o r

a d e f i m p qb c g h l n o r

0 1

QMF

Quantum

Classic

n/2

pre-processing
classic precomputed
optimal solutions
are stored in QRAM

Quantum Dynamic Programming for Set Problems

QRAM

e p m q g chd

p
i

d
e
p

a
f
m

f
m

g

l
o

l
r

l
o
r

b
c
n

b
c

0 1 1 1 1 1 1 1 10 0 0 0 0 0 0

1 1 1 10000 1 1 1 10 0 0 0

d e i pa f m q g l o rb c h n

a d e f i m p qb c g h l n o r

0 1

QMF

QMF

Quantum

Classic

n/2

n/4

pre-processing
classic precomputed
optimal solutions
are stored in QRAM

Quantum Dynamic Programming for Set Problems

QRAM

e p m q g chd

p
i

d
e
p

a
f
m

f
m

g

l
o

l
r

l
o
r

b
c
n

b
c

0 1 1 1 1 1 1 1 10 0 0 0 0 0 0

1 1 1 10000 1 1 1 10 0 0 0

e i pd a f m q g l o r b c h n

d e i pa f m q g l o rb c h n

a d e f i m p qb c g h l n o r

0

0 01 1

1

QMF

QMF

Quantum

Classic

n/2

n/4

pre-processing
classic precomputed
optimal solutions
are stored in QRAM

Quantum Dynamic Programming for Set Problems

QRAM

e p m q g chd

p
i

d
e
p

a
f
m

f
m

g

l
o

l
r

l
o
r

b
c
n

b
c

0 1 1 1 1 1 1 1 10 0 0 0 0 0 0

1 1 1 10000 1 1 1 10 0 0 0

e i pd a f m q g l o r b c h n

d e i pa f m q g l o rb c h n

a d e f i m p qb c g h l n o r

0

0 01 1

1

QMF

QMF

1 101 1 1 10 1 1 10 1 1 10 QMF
Quantum

Classic

n/2

n/4

αn/4

pre-processing
classic precomputed
optimal solutions
are stored in QRAM

Quantum Dynamic Programming for Set Problems

QRAM

e p m q g chd

p
i

d
e
p

a
f
m

f
m

g

l
o

l
r

l
o
r

b
c
n

b
c

0 1 1 1 1 1 1 1 10 0 0 0 0 0 0

1 1 1 10000 1 1 1 10 0 0 0

e i pd a f m q g l o r b c h n

d e i pa f m q g l o rb c h n

a d e f i m p qb c g h l n o r

0

0 01 1

1

QMF

QMF

1 101 1 1 10 1 1 10 1 1 10 QMF
Quantum

Classic

n/2

n/4

αn/4

pre-processing
classic precomputed
optimal solutions
are stored in QRAM

Complexity Analysis

Complexity Analysis
• Time complexity of the classic pre-processing

Complexity Analysis
• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

Complexity Analysis
• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

Number of solutions calculated and stored during the pre-processing

Complexity Analysis
• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

• Time complexity of the quantum part

Complexity Analysis
• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

• Time complexity of the quantum part

• O∗
(√(

n
n
2

)(n
2
n
4

)(
n

αn
4

))
= O∗ (1.728n)

Complexity Analysis
• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

• Time complexity of the quantum part

• O∗
(√(

n
n
2

)(n
2
n
4

)(
n

αn
4

))
= O∗ (1.728n)

QMF over all subsets of size n/2

Complexity Analysis
• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

• Time complexity of the quantum part

• O∗
(√(

n
n
2

)(n
2
n
4

)(
n

αn
4

))
= O∗ (1.728n)

QMF over all subsets of size n/4

Complexity Analysis
• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

• Time complexity of the quantum part

• O∗
(√(

n
n
2

)(n
2
n
4

)(
n

αn
4

))
= O∗ (1.728n)

QMF over all subsets of size αn/4

Complexity Analysis
• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

• Time complexity of the quantum part

• O∗
(√(

n
n
2

)(n
2
n
4

)(
n

αn
4

))
= O∗ (1.728n)

• α is selected to balance quantum and classic complexities

Complexity Analysis

• The resulting space and time complexity is O∗(1.728n)

• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

• Time complexity of the quantum part

• O∗
(√(

n
n
2

)(n
2
n
4

)(
n

αn
4

))
= O∗ (1.728n)

• α is selected to balance quantum and classic complexities

Complexity Analysis

• The resulting space and time complexity is O∗(1.728n)

• The time and space complexity of the best classic algorithm is O∗(2n)

• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

• Time complexity of the quantum part

• O∗
(√(

n
n
2

)(n
2
n
4

)(
n

αn
4

))
= O∗ (1.728n)

• α is selected to balance quantum and classic complexities

Quantum Dynamic Programming for OSCM

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h i lm no

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h i lm no

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h i lm no

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h i lm no

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h i lm no

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h il mno

a b c d e f g

h i lm no

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h il mno

a b c d e f g

h i lm no

3 crossings 3 crossings

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h il mno

a b c d e f g

h i lm no

2 crossings 2 crossings

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h i lm no

a b c d e f g

h il mno

5 crossings 16 crossings

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h il mno

a b c d e f g

h i lm no

• The number of crossings between the two partitions can be computed in
polynomial time

• The optimal solution must respect the recurrence

Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W) + OP TP(S \ W) + fP(W, S \ W)}

a b c d e f g

h il mno

a b c d e f g

h i lm no

• There exists a quantum algorithm that solves OSCM using O∗(1.728n)
time and space

• The number of crossings between the two partitions can be computed in
polynomial time

• The optimal solution must respect the recurrence

Quantum Divide and Conquer for Set Problems

Quantum Divide and Conquer for Set Problems
Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R and a constant cP such that, for any S ⊆ X, it holds that:
• If |S| ≤ cP, then OPTP(S) = fP(S, ∅).
• If |S| > cP, then

OPTP(S) = min
W⊂S,|W |= |S|

2

{OPTP(W) + OPTP(S \ W) + fP(W, S \ W)}

We have that, OPTP(X) can be computed by a quantum algorithm without using QRAM in
O∗(2n) time and polynomial space.

Quantum Divide and Conquer for Set Problems
Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R and a constant cP such that, for any S ⊆ X, it holds that:
• If |S| ≤ cP, then OPTP(S) = fP(S, ∅).
• If |S| > cP, then

OPTP(S) = min
W⊂S,|W |= |S|

2

{OPTP(W) + OPTP(S \ W) + fP(W, S \ W)}

We have that, OPTP(X) can be computed by a quantum algorithm without using QRAM in
O∗(2n) time and polynomial space.

• It does not interrupt the recursion

Quantum Divide and Conquer for Set Problems
Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R and a constant cP such that, for any S ⊆ X, it holds that:
• If |S| ≤ cP, then OPTP(S) = fP(S, ∅).
• If |S| > cP, then

OPTP(S) = min
W⊂S,|W |= |S|

2

{OPTP(W) + OPTP(S \ W) + fP(W, S \ W)}

We have that, OPTP(X) can be computed by a quantum algorithm without using QRAM in
O∗(2n) time and polynomial space.

• It does not interrupt the recursion

Quantum Divide and Conquer for Set Problems
Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R and a constant cP such that, for any S ⊆ X, it holds that:
• If |S| ≤ cP, then OPTP(S) = fP(S, ∅).
• If |S| > cP, then

OPTP(S) = min
W⊂S,|W |= |S|

2

{OPTP(W) + OPTP(S \ W) + fP(W, S \ W)}

We have that, OPTP(X) can be computed by a quantum algorithm without using QRAM in
O∗(2n) time and polynomial space.

• It does not interrupt the recursion
• It does not use any QRAM

Quantum Divide and Conquer for Set Problems

Quantum Divide and Conquer for Set Problems

n

Quantum Divide and Conquer for Set Problems

n

a b c d e f g h

Quantum Divide and Conquer for Set Problems

n

a b c d e f g h
0 1 1 1 10 0 0 QMF

Quantum Divide and Conquer for Set Problems

n

0 1

a b c d e f g h
0 1 1 1 10 0 0 QMF

Quantum Divide and Conquer for Set Problems

n

0 1

n/2 n/2

a b c d e f g h
0 1 1 1 10 0 0

d ea f gb c h

QMF

Quantum Divide and Conquer for Set Problems

n

0 1

n/2 n/2

a b c d e f g h
0 1 1 1 10 0 0

d ea f

1 100
gb c h

1 1 00

QMF

QMF

Quantum Divide and Conquer for Set Problems

n

0 1

0 1 0 1

n/2 n/2

n/4 n/4 n/4n/4

a b c d e f g h

g h b c

0 1 1 1 10 0 0

d ea f

1 100
gb c h

1 1 00

ed a f

QMF

QMF

Quantum Divide and Conquer for Set Problems

n

0 1

0 1 0 1

n/2 n/2

n/4 n/4 n/4n/4

a b c d e f g h

g h b c
0 1 0 1

0 1 1 1 10 0 0

d ea f

1 100
gb c h

1 1 00

ed
01

a f

0 1

QMF

QMF

QMF

Complexity Analysis

Complexity Analysis
• The running time of the algorithm obeys the recurrence

Complexity Analysis
• The running time of the algorithm obeys the recurrence

• Q(n) ≤
√

O
((

n
n/2

))(
Q(⌊n/2⌋) + Q(n/2) + poly(n)

)

Complexity Analysis
• The running time of the algorithm obeys the recurrence

• Q(n) ≤
√

O
((

n
n/2

))(
Q(⌊n/2⌋) + Q(n/2) + poly(n)

)
• The total running time is bounded by O∗(2n)

Complexity Analysis
• The running time of the algorithm obeys the recurrence

• Q(n) ≤
√

O
((

n
n/2

))(
Q(⌊n/2⌋) + Q(n/2) + poly(n)

)
• The total running time is bounded by O∗(2n)
• We can bound the space complexity in terms of qubits used during the

computation

Complexity Analysis
• The running time of the algorithm obeys the recurrence

• Q(n) ≤
√

O
((

n
n/2

))(
Q(⌊n/2⌋) + Q(n/2) + poly(n)

)
• The total running time is bounded by O∗(2n)
• We can bound the space complexity in terms of qubits used during the

computation
• At height i of the computation tree we use n

2i qubits

Complexity Analysis
• The running time of the algorithm obeys the recurrence

• Q(n) ≤
√

O
((

n
n/2

))(
Q(⌊n/2⌋) + Q(n/2) + poly(n)

)
• The total running time is bounded by O∗(2n)
• We can bound the space complexity in terms of qubits used during the

computation
• At height i of the computation tree we use n

2i qubits
• The computation tree has height log n

Complexity Analysis
• The running time of the algorithm obeys the recurrence

• Q(n) ≤
√

O
((

n
n/2

))(
Q(⌊n/2⌋) + Q(n/2) + poly(n)

)
• The total running time is bounded by O∗(2n)
• We can bound the space complexity in terms of qubits used during the

computation

• The number of qubits is at most
∑log n

i=0
n
2i = 2n

• At height i of the computation tree we use n
2i qubits

• The computation tree has height log n

Complexity Analysis
• The running time of the algorithm obeys the recurrence

• Q(n) ≤
√

O
((

n
n/2

))(
Q(⌊n/2⌋) + Q(n/2) + poly(n)

)
• The total running time is bounded by O∗(2n)

• Recall that the time complexity of the best classic algorithm using
polynomial space is O∗(4n)

• We can bound the space complexity in terms of qubits used during the
computation

• The number of qubits is at most
∑log n

i=0
n
2i = 2n

• At height i of the computation tree we use n
2i qubits

• The computation tree has height log n

Take away

Take away

• Quantum computing can be used to improve classic bounds related to hard
graph drawing problems

Take away

• Quantum computing can be used to improve classic bounds related to hard
graph drawing problems

• Quantum dynamic programming, quantum minimum finding, and
quantum divide and conquer are powerful tools for tackling several
set-based problems

Take away

• Quantum computing can be used to improve classic bounds related to hard
graph drawing problems

• Quantum dynamic programming, quantum minimum finding, and
quantum divide and conquer are powerful tools for tackling several
set-based problems

• A different perspecitve:

Take away

• Quantum computing can be used to improve classic bounds related to hard
graph drawing problems

• Quantum dynamic programming, quantum minimum finding, and
quantum divide and conquer are powerful tools for tackling several
set-based problems

• A different perspecitve: Are there polynomial time solvable graph drawing
problems whose current complexity bounds can be improved using
quantum dynamic programming?

Thank you for your attention!

