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Q
∑
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• This model of computation enables us to use quantum search primitives that
involve condition checking on data stored in a random access memory
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• Quantum Minimum Finding (QMF) [Durr 1996]

• Given a table T of size N the algorithms finds the index y such that
T [y] is minimized in time O(

√
N)
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• The main idea is to

• Precompute solutions (pre-processing) for smaller subsets using classic
dynamic programming and save the results in the QRAM

• Recombine the results of the precomputation step to obtain the optimal
solution for the whole set (recursively) applying Quantum Minimum
Finding (QMF)
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• The resulting space and time complexity is O∗(1.728n)

• The time and space complexity of the best classic algorithm is O∗(2n)

• Time complexity of the classic pre-processing

• O∗
((

n
≤(1−α) n

4

))
= O∗(1.728n)

• Time complexity of the quantum part

• O∗
(√(

n
n
2

)( n
2
n
4

)(
n

αn
4

))
= O∗ (1.728n)

• α is selected to balance quantum and classic complexities
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Quantum Dynamic Programming for OSCM
• OSCM is a set problem

OP TP(S) = min
W ⊂S,|W |=k

{OP TP(W ) + OP TP(S \ W ) + fP(W, S \ W )}

a b c d e f g

h il mno

a b c d e f g

h i lm no

• There exists a quantum algorithm that solves OSCM using O∗(1.728n)
time and space

• The number of crossings between the two partitions can be computed in
polynomial time

• The optimal solution must respect the recurrence
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Quantum Divide and Conquer for Set Problems
Lemma Let P be an optimization problem over a set X. Let |X| = n and let OPTP(X) be
the optimal value for P over X. Suppose that there exists a polynomial-time computable
function fP : 2X × 2X → R and a constant cP such that, for any S ⊆ X, it holds that:
• If |S| ≤ cP, then OPTP(S) = fP(S, ∅).
• If |S| > cP, then

OPTP(S) = min
W⊂S,|W |= |S|

2

{OPTP(W ) + OPTP(S \ W ) + fP(W, S \ W )}

We have that, OPTP(X) can be computed by a quantum algorithm without using QRAM in
O∗(2n) time and polynomial space.

• It does not interrupt the recursion
• It does not use any QRAM
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Complexity Analysis
• The running time of the algorithm obeys the recurrence

• Q(n) ≤
√

O
((

n
n/2

))(
Q(⌊n/2⌋) + Q(n/2) + poly(n)

)
• The total running time is bounded by O∗(2n)

• Recall that the time complexity of the best classic algorithm using
polynomial space is O∗(4n)

• We can bound the space complexity in terms of qubits used during the
computation

• The number of qubits is at most
∑log n

i=0
n
2i = 2n

• At height i of the computation tree we use n
2i qubits

• The computation tree has height log n



Take away



Take away

• Quantum computing can be used to improve classic bounds related to hard
graph drawing problems



Take away

• Quantum computing can be used to improve classic bounds related to hard
graph drawing problems

• Quantum dynamic programming, quantum minimum finding, and
quantum divide and conquer are powerful tools for tackling several
set-based problems



Take away

• Quantum computing can be used to improve classic bounds related to hard
graph drawing problems

• Quantum dynamic programming, quantum minimum finding, and
quantum divide and conquer are powerful tools for tackling several
set-based problems

• A different perspecitve:



Take away

• Quantum computing can be used to improve classic bounds related to hard
graph drawing problems

• Quantum dynamic programming, quantum minimum finding, and
quantum divide and conquer are powerful tools for tackling several
set-based problems

• A different perspecitve: Are there polynomial time solvable graph drawing
problems whose current complexity bounds can be improved using
quantum dynamic programming?



Thank you for your attention!


