

Quantum Algorithms $|f\otimes r\rangle$ One-Sided Crossing Minimization

Susanna Caroppo, Giordano Da Lozzo, Giuseppe Di Battista
 Roma Tre University

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

Input: a bipartite graph G = (U, V, E) with a fixed linear ordering of U

- OSCM problem is \mathcal{NP} -complete [Eades et al. 1994]
 - Even for sparse graphs [Muñoz et al. 2001]

- OSCM problem is \mathcal{NP} -complete [Eades et al. 1994]
 - Even for sparse graphs [Muñoz et al. 2001]
- Its importance in GD was first put in evidence by Sugiyama [Sugiyama et al. 1981]

- OSCM problem is \mathcal{NP} -complete [Eades et al. 1994]
 - Even for sparse graphs [Muñoz et al. 2001]
- Its importance in GD was first put in evidence by Sugiyama [Sugiyama et al.
- Exact solutions for OSCM has been searched with branch-and-cut techniques [Jünger et al. 1995, Mutzel et al. 1998, Valls et al. 1996]

- OSCM problem is \mathcal{NP} -complete [Eades et al. 1994]
 - Even for sparse graphs [Muñoz et al. 2001]
- Its importance in GD was first put in evidence by Sugiyama [Sugiyama et al.
- Exact solutions for OSCM has been searched with branch-and-cut techniques [Jünger et al. 1995, Mutzel et al. 1998, Valls et al. 1996]
- A $\mathcal{O}^*(2^n)$ time and space exact classic algorithm can be obtained [Bodlaender et. al 2009]
- A $\mathcal{O}^*(4^n)$ time and polynomial space exact classic algorithm can be obtained [Bodlaender et. al 2009]

- OSCM problem is \mathcal{NP} -complete [Eades et al. 1994]
 - Even for sparse graphs [Muñoz et al. 2001]
- Its importance in GD was first put in evidence by Sugiyama [Sugiyama et al.
- Exact solutions for OSCM has been searched with branch-and-cut techniques [Jünger et al. 1995, Mutzel et al. 1998, Valls et al. 1996]
- A $\mathcal{O}^*(2^n)$ time and space exact classic algorithm can be obtained [Bodlaender et. al 2009]
- A $\mathcal{O}^*(4^n)$ time and polynomial space exact classic algorithm can be obtained [Bodlaender et. al 2009]
- The parameterized version of the problem has been widely investigated [Dujmovic et al. 2004,2008, Fernau et al. 2010, Kenyon-Mathieu et al. 2007, Alon et al. 2009]

- OSCM problem is \mathcal{NP} -complete [Eades et al. 1994]
 - Even for sparse graphs [Muñoz et al. 2001]
- Its importance in GD was first put in evidence by Sugiyama [Sugiyama et al.
- Exact solutions for OSCM has been searched with branch-and-cut techniques [Jünger et al. 1995, Mutzel et al. 1998, Valls et al. 1996]
- A $\mathcal{O}^*(2^n)$ time and space exact classic algorithm can be obtained [Bodlaender et. al 2009]
- A $\mathcal{O}^*(4^n)$ time and polynomial space exact classic algorithm can be obtained [Bodlaender et. al 2009]
- The parameterized version of the problem has been widely investigated [Dujmovic et al. 2004,2008, Fernau et al. 2010, Kenyon-Mathieu et al. 2007, Alon et al. 2009]
 - Currently the best FPT results is $\mathcal{O}(k2^{\sqrt{2k}})$ [Kobayashi et al. 2015]

Classic		
time space		
$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(2^n)$	
$\mathcal{O}^*(4^n)$	$\mathcal{O}^*(poly(n))$	

Classic		Quantum	
time	space	time	space
$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(1.728^n)$	$\mathcal{O}^*(1.728^n)$
$\mathcal{O}^*(4^n)$	$\mathcal{O}^*(poly(n))$		

Classic		Quantum	
time	space	time	space
$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(1.728^n)$	$\mathcal{O}^*(1.728^n)$
$\mathcal{O}^*(4^n)$	$\mathcal{O}^*(poly(n))$		

Classic		Quantum	
time	space	time	space
$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(1.728^n)$	$\mathcal{O}^*(1.728^n)$
$\mathcal{O}^*(4^n)$	$\mathcal{O}^*(poly(n))$		

Classic		Quantum	
time	space	time	space
$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(1.728^n)$	$\mathcal{O}^*(1.728^n)$
$\mathcal{O}^*(4^n)$	$\mathcal{O}^*(poly(n))$	$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(poly(n))$

Classic		Quantum	
time	space	time	space
$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(1.728^n)$	$\mathcal{O}^*(1.728^n)$
$\mathcal{O}^*(4^n)$	$\mathcal{O}^*(poly(n))$	$\mathcal{O}^*(2^n)$	$\mathcal{O}^*(poly(n))$

• Qubit

- Qubit
 - $|\gamma
 angle$

• Qubit

• $|\gamma\rangle = \alpha_1 |0\rangle + \alpha_2 |1\rangle, \, \alpha_1, \alpha_2 \in \mathcal{C}$

- Qubit
 - $|\gamma\rangle = \alpha_1 |0\rangle + \alpha_2 |1\rangle, \, \alpha_1, \alpha_2 \in \mathcal{C}$
- Superposition

• Qubit

- $|\gamma\rangle = \alpha_1 |0\rangle + \alpha_2 |1\rangle, \, \alpha_1, \alpha_2 \in \mathcal{C}$
- Superposition
 - $|\phi\rangle$

- Qubit
 - $|\gamma\rangle = \alpha_1 |0\rangle + \alpha_2 |1\rangle, \, \alpha_1, \alpha_2 \in \mathcal{C}$
- Superposition

•
$$|\phi\rangle = \alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle$$

- Qubit
 - $|\gamma\rangle = \alpha_1 |0\rangle + \alpha_2 |1\rangle, \, \alpha_1, \alpha_2 \in \mathcal{C}$
- Superposition

•
$$|\phi\rangle = \alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle = \sum_{x \in \{0,1\}^2} \alpha_x |x\rangle$$

- Qubit
 - $|\gamma\rangle = \alpha_1 |0\rangle + \alpha_2 |1\rangle, \, \alpha_1, \alpha_2 \in \mathcal{C}$
- Superposition
 - $|\phi\rangle = \alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle = \sum_{x \in \{0,1\}^2} \alpha_x |x\rangle$
- Quantum computation

- Qubit
 - $|\gamma\rangle = \alpha_1 |0\rangle + \alpha_2 |1\rangle, \, \alpha_1, \alpha_2 \in \mathcal{C}$
- Superposition

•
$$|\phi\rangle = \alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle = \sum_{x \in \{0,1\}^2} \alpha_x |x\rangle$$

• Quantum computation

$$\sum_{x \in \{0,1\}^n} \alpha_x |x\rangle \begin{cases} ---\\ ---\\ \vdots\\ \vdots\\ ---\\ \vdots\\ ---\\ ---\\ ---\\ \vdots\\ ---$$

- Qubit
 - $|\gamma\rangle = \alpha_1 |0\rangle + \alpha_2 |1\rangle, \, \alpha_1, \alpha_2 \in \mathcal{C}$
- Superposition

•
$$|\phi\rangle = \alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle = \sum_{x \in \{0,1\}^2} \alpha_x |x\rangle$$

• Quantum computation

- Qubit
 - $|\gamma\rangle = \alpha_1 |0\rangle + \alpha_2 |1\rangle, \, \alpha_1, \alpha_2 \in \mathcal{C}$
- Superposition

•
$$|\phi\rangle = \alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle = \sum_{x \in \{0,1\}^2} \alpha_x |x\rangle$$

• Quantum computation

Quantum tools
• Quantum Random Access Memory (QRAM)

- Quantum Random Access Memory (QRAM)
 - This model of computation enables us to use quantum search primitives that involve condition checking on data stored in a random access memory

- Quantum Random Access Memory (QRAM)
 - This model of computation enables us to use quantum search primitives that involve condition checking on data stored in a random access memory

$ x\rangle$ (address)	$ d_x angle$ (data)
00	110
01	101
10	001
11	111

- Quantum Random Access Memory (QRAM)
 - This model of computation enables us to use quantum search primitives that involve condition checking on data stored in a random access memory
- $\alpha_0 |00\rangle |000\rangle + \alpha_1 |01\rangle |000\rangle + \alpha_2 10 |000\rangle + \alpha_3 |11\rangle |000\rangle$

$ x\rangle$ (address)	$ d_x angle$ (data)
00	110
01	101
10	001
11	111

- Quantum Random Access Memory (QRAM)
 - This model of computation enables us to use quantum search primitives that involve condition checking on data stored in a random access memory
- $\alpha_0 |00\rangle |000\rangle + \alpha_1 |01\rangle |000\rangle + \alpha_2 10 |000\rangle + \alpha_3 |11\rangle |000\rangle$

$\left x \right\rangle$ (address)	$\left \; \left d_x ight angle \;$ (data)
00	110
01	101
10	001
11	111

- Quantum Random Access Memory (QRAM)
 - This model of computation enables us to use quantum search primitives that involve condition checking on data stored in a random access memory
- $\alpha_0 |00\rangle |000\rangle + \alpha_1 |01\rangle |000\rangle + \alpha_2 10 |000\rangle + \alpha_3 |11\rangle |000\rangle$

$ x\rangle$ (address)	$ d_x angle$ (data)
00	110
01	101
10	001
11	111

- Quantum Random Access Memory (QRAM)
 - This model of computation enables us to use quantum search primitives that involve condition checking on data stored in a random access memory
- $\alpha_0 |00\rangle |000\rangle + \alpha_1 |01\rangle |000\rangle + \alpha_2 10 |000\rangle + \alpha_3 |11\rangle |000\rangle$

$ x\rangle$ (address)	$ d_x angle$ (data)
00	110
01	101
10	001
11	111

```
\alpha_1 |01\rangle |000\rangle ——
```

 $\alpha_2 |10\rangle |000\rangle$ ——

 $\alpha_3 |11\rangle |000\rangle$ ——

- Quantum Random Access Memory (QRAM)
 - This model of computation enables us to use quantum search primitives that involve condition checking on data stored in a random access memory
- $\alpha_0 |00\rangle |000\rangle + \alpha_1 |01\rangle |000\rangle + \alpha_2 10 |000\rangle + \alpha_3 |11\rangle |000\rangle$

$ x\rangle$ (address)	$ d_x angle$ (data)
00	110
01	101
10	001
11	111

- Quantum Random Access Memory (QRAM)
 - This model of computation enables us to use quantum search primitives that involve condition checking on data stored in a random access memory
- $\alpha_0 |00\rangle |000\rangle + \alpha_1 |01\rangle |000\rangle + \alpha_2 10 |000\rangle + \alpha_3 |11\rangle |000\rangle$

$ x\rangle$ (address)	$ d_x angle$ (data)
00	110
01	101
10	001
11	111

- Quantum Random Access Memory (QRAM)
 - This model of computation enables us to use quantum search primitives that involve condition checking on data stored in a random access memory
- $\alpha_0 |00\rangle |000\rangle + \alpha_1 |01\rangle |000\rangle + \alpha_2 10 |000\rangle + \alpha_3 |11\rangle |000\rangle \rightarrow \alpha_0 |00\rangle |110\rangle + \alpha_1 |01\rangle |101\rangle + \alpha_2 10 |001\rangle + \alpha_3 |11\rangle |111\rangle$

$\left x \right\rangle$ (address)	$ d_x angle$ (data)
00	110
01	101
10	001
11	111

• Quantum Minimum Finding (QMF) [Durr 1996]

- Quantum Minimum Finding (QMF) [Durr 1996]
 - Given a table T of size N the algorithms finds the index y such that T[y] is minimized in time $\mathcal{O}(\sqrt{N})$

• Set problem

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition
- Ambainis et al. [SODA 2019] introduced a quantum framework designed to speedup several classic exponential-time and space algorithms

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition
- Ambainis et al. [SODA 2019] introduced a quantum framework designed to speedup several classic exponential-time and space algorithms

Lemma Let \mathcal{P} be an optimization problem over a set X.

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition
- Ambainis et al. [SODA 2019] introduced a quantum framework designed to speedup several classic exponential-time and space algorithms

Lemma Let \mathcal{P} be an optimization problem over a set X. Let |X| = n and let $OPT_{\mathcal{P}}(X)$ be the optimal value for \mathcal{P} over X.

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition
- Ambainis et al. [SODA 2019] introduced a quantum framework designed to speedup several classic exponential-time and space algorithms

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition
- Ambainis et al. [SODA 2019] introduced a quantum framework designed to speedup several classic exponential-time and space algorithms

$$OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W|=k} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + f_{\mathcal{P}}(W, S \setminus W) \}$$

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition
- Ambainis et al. [SODA 2019] introduced a quantum framework designed to speedup several classic exponential-time and space algorithms

$$OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W| = k} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + f_{\mathcal{P}}(W, S \setminus W) \}$$

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition
- Ambainis et al. [SODA 2019] introduced a quantum framework designed to speedup several classic exponential-time and space algorithms

$$OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W| = k} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + f_{\mathcal{P}}(W, S \setminus W) \}$$

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition
- Ambainis et al. [SODA 2019] introduced a quantum framework designed to speedup several classic exponential-time and space algorithms

$$OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W| = k} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + f_{\mathcal{P}}(W, S \setminus W) \}$$

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition
- Ambainis et al. [SODA 2019] introduced a quantum framework designed to speedup several classic exponential-time and space algorithms

$$OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W| = k} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + \frac{f_{\mathcal{P}}(W, S \setminus W)}{f_{\mathcal{P}}(W, S \setminus W)} \}$$

- Set problem
 - The solution for a set X can be determined by considering optimal solutions for all partitions $(S, X \setminus S)$ of X with |S| = k, for any fixed positive k, using polynomial time for each partition
- Ambainis et al. [SODA 2019] introduced a quantum framework designed to speedup several classic exponential-time and space algorithms

Lemma Let \mathcal{P} be an optimization problem over a set X. Let |X| = n and let $OPT_{\mathcal{P}}(X)$ be the optimal value for \mathcal{P} over X. Suppose that there exists a polynomial-time computable function $f_{\mathcal{P}}: 2^X \times 2^X \to \mathbb{R}$ such that, for any $S \subseteq X$, it holds that for any $k \in [|S| - 1]$:

$$OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W| = k} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + f_{\mathcal{P}}(W, S \setminus W) \}$$

Then, $OPT_{\mathcal{P}}(X)$ can be computed by a quantum algorithm that uses QRAM in $\mathcal{O}^*(1.728^n)$ time and space.

• The main idea is to

- The main idea is to
 - Precompute solutions (pre-processing) for smaller subsets using classic dynamic programming and save the results in the QRAM

- The main idea is to
 - Precompute solutions (pre-processing) for smaller subsets using classic dynamic programming and save the results in the QRAM
 - Recombine the results of the precomputation step to obtain the optimal solution for the whole set (recursively) applying Quantum Minimum Finding (QMF)

Quantum

Classic

Quantum

Classic

																						pre-processing classic precomputed optimal solutions are stored in QRAM
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

QRAM

Quantum

Classic

		d i p	$egin{array}{c} d \\ e \\ p \end{array}$	e	p		$\begin{vmatrix} a \\ f \\ m \end{vmatrix}$	$\int m$	m	q		g	$\begin{array}{c} g \\ l \\ o \end{array}$	l r	l o r		$b \\ c \\ n$	$b \\ c$	h	С			pre-processing classic precomputed optimal solutions are stored in QRAM
--	--	-------------	--	---	---	--	---	----------	---	---	--	---	--	--------	-------------	--	---------------	----------	---	---	--	--	--

QRAM

 $a \quad b \quad c \quad d \quad e \quad f \quad g \quad h \quad i \quad l \quad m \quad n \quad o \quad p \quad q \quad r$

Quantum

Classic

		d i p	$\left egin{array}{c} d \\ e \\ p \end{array} ight $	(e	p		$\begin{vmatrix} a \\ f \\ m \end{vmatrix}$	$\begin{vmatrix} f \\ m \end{vmatrix}$	m	q		g	$\begin{array}{c} g \\ l \\ o \end{array}$	l r	l o r		$b \\ c \\ n$	$b \\ c$	h	С			pre-processing classic precomputed optimal solutions are stored in QRAM
--	--	-------------	--	---	---	---	--	---	--	---	---	--	---	--	-----	-------------	--	---------------	----------	---	---	--	--	--

QRAM

Quantum

Classic

		d i p	$\begin{pmatrix} d \\ e \\ p \end{pmatrix}$	e	p		$\begin{vmatrix} a \\ f \\ m \end{vmatrix}$	$\begin{vmatrix} f \\ m \end{vmatrix}$	m	q		g	g l o	l r	l o r		b c n	$b \\ c$	h	С		pre-processing classic precomputed optimal solutions are stored in QRAM
--	--	-------------	---	---	---	--	---	--	---	---	--	---	-------------	--------	-------------	--	-------------	----------	---	---	--	--

Quantum

Classic

		d i p	$egin{array}{c} d \\ e \\ p \end{array}$	e	<i>p</i>		$\begin{vmatrix} a \\ f \\ m \end{vmatrix}$	$\left {f\atop m} \right $	m	q		g	g l o	l r	l o r		$b \\ c \\ n$	b c	h	С			pre-processing classic precomputed optimal solutions are stored in QRAM
--	--	-------------	--	---	----------	--	---	-----------------------------	---	---	--	---	-------------	--------	-------------	--	---------------	--------	---	---	--	--	--

QRAM

Quantum

Classic

|--|

puted ons QRAM

Quantum

Classic

		d i p	$\left \begin{array}{c} d\\ e\\ p\end{array}\right $		e	p			a f m	$\int m$	m	q		g	$\begin{array}{c} g \\ l \\ o \end{array}$	l r	l o r		$b \\ c \\ n$	$\begin{bmatrix} b \\ c \end{bmatrix}$	h	с			pre-processing classic precomputed optimal solutions are stored in QRAM
--	--	-------------	--	--	---	---	--	--	-------	----------	---	---	--	---	--	--------	-------------	--	---------------	--	---	---	--	--	--

QRAM

Quantum

Classic

	$\left egin{array}{c} d \\ i \\ p \end{array} ight $	$\begin{bmatrix} d \\ e \\ p \end{bmatrix}$	e	0)	p		$\begin{vmatrix} a \\ f \\ m \end{vmatrix}$	$\int m$	m	q		g	$\begin{array}{c} g \\ l \\ o \end{array}$	l r	l o r		b c n	$\begin{bmatrix} b \\ c \end{bmatrix}$	h	С			pre-processing classic precomputed optimal solutions are stored in QRAM
--	--	---	---	----	---	--	---	----------	---	---	--	---	--	--------	-------------	--	-------------	--	---	---	--	--	--

QRAM

• Time complexity of the classic pre-processing

• Time complexity of the classic pre-processing

•
$$\mathcal{O}^*\left(\binom{n}{\leq (1-\alpha)\frac{n}{4}}\right) = \mathcal{O}^*(1.728^n)$$

• Time complexity of the classic pre-processing

•
$$\mathcal{O}^*\left(\binom{n}{\leq (1-\alpha)\frac{n}{4}}\right) = \mathcal{O}^*(1.728^n)$$

Number of solutions calculated and stored during the pre-processing

• Time complexity of the classic pre-processing

•
$$\mathcal{O}^*\left(\binom{n}{\leq (1-\alpha)\frac{n}{4}}\right) = \mathcal{O}^*(1.728^n)$$

• Time complexity of the quantum part

• Time complexity of the classic pre-processing

•
$$\mathcal{O}^*\left(\binom{n}{\leq (1-\alpha)\frac{n}{4}}\right) = \mathcal{O}^*(1.728^n)$$

• Time complexity of the quantum part

•
$$\mathcal{O}^*\left(\sqrt{\binom{n}{\frac{n}{2}}\binom{\frac{n}{2}}{\frac{n}{4}}\binom{n}{\frac{\alpha n}{4}}}\right) = \mathcal{O}^*\left(1.728^n\right)$$

• Time complexity of the classic pre-processing

•
$$\mathcal{O}^*\left(\binom{n}{\leq (1-\alpha)\frac{n}{4}}\right) = \mathcal{O}^*(1.728^n)$$

• Time complexity of the quantum part

•
$$\mathcal{O}^*\left(\sqrt{\binom{n}{\frac{n}{2}}\binom{\frac{n}{2}}{\frac{n}{4}}\binom{n}{\frac{\alpha n}{4}}}\right) = \mathcal{O}^*\left(1.728^n\right)$$

QMF over all subsets of size n/2

• Time complexity of the classic pre-processing

•
$$\mathcal{O}^*\left(\binom{n}{\leq (1-\alpha)\frac{n}{4}}\right) = \mathcal{O}^*(1.728^n)$$

• Time complexity of the quantum part

•
$$\mathcal{O}^*\left(\sqrt{\binom{n}{\frac{n}{2}}\binom{\frac{n}{2}}{\frac{n}{4}}\binom{n}{\frac{\alpha n}{4}}}\right) = \mathcal{O}^*\left(1.728^n\right)$$

QMF over all subsets of size n/4

• Time complexity of the classic pre-processing

•
$$\mathcal{O}^*\left(\binom{n}{\leq (1-\alpha)\frac{n}{4}}\right) = \mathcal{O}^*(1.728^n)$$

• Time complexity of the quantum part

•
$$\mathcal{O}^*\left(\sqrt{\binom{n}{\frac{n}{2}}\binom{\frac{n}{2}}{\frac{n}{4}}\binom{n}{\frac{\alpha n}{4}}}\right) = \mathcal{O}^*\left(1.728^n\right)$$

QMF over all subsets of size $\alpha n/4$

• Time complexity of the classic pre-processing

•
$$\mathcal{O}^*\left(\binom{n}{\leq (1-\alpha)\frac{n}{4}}\right) = \mathcal{O}^*(1.728^n)$$

• Time complexity of the quantum part

•
$$\mathcal{O}^*\left(\sqrt{\binom{n}{\frac{n}{2}}\binom{\frac{n}{2}}{\frac{n}{4}}\binom{n}{\frac{\alpha n}{4}}}\right) = \mathcal{O}^*\left(1.728^n\right)$$

• α is selected to balance quantum and classic complexities

• Time complexity of the classic pre-processing

•
$$\mathcal{O}^*\left(\binom{n}{\leq (1-\alpha)\frac{n}{4}}\right) = \mathcal{O}^*(1.728^n)$$

• Time complexity of the quantum part

•
$$\mathcal{O}^*\left(\sqrt{\binom{n}{\frac{n}{2}}\binom{\frac{n}{2}}{\frac{n}{4}}\binom{n}{\frac{\alpha n}{4}}}\right) = \mathcal{O}^*\left(1.728^n\right)$$

- α is selected to balance quantum and classic complexities
- The resulting space and time complexity is $\mathcal{O}^*(1.728^n)$

• Time complexity of the classic pre-processing

•
$$\mathcal{O}^*\left(\binom{n}{\leq (1-\alpha)\frac{n}{4}}\right) = \mathcal{O}^*(1.728^n)$$

• Time complexity of the quantum part

•
$$\mathcal{O}^*\left(\sqrt{\binom{n}{\frac{n}{2}}\binom{\frac{n}{2}}{\frac{n}{4}}\binom{n}{\frac{\alpha n}{4}}}\right) = \mathcal{O}^*\left(1.728^n\right)$$

- α is selected to balance quantum and classic complexities
- The resulting space and time complexity is $\mathcal{O}^*(1.728^n)$
 - The time and space complexity of the best classic algorithm is $\mathcal{O}^*(2^n)$

• OSCM is a set problem

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- OSCM is a set problem
 - The optimal solution must respect the recurrence

 $OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W|=k} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + f_{\mathcal{P}}(W, S \setminus W) \}$

• The number of crossings between the two partitions can be computed in polynomial time

- OSCM is a set problem
 - The optimal solution must respect the recurrence

- The number of crossings between the two partitions can be computed in polynomial time
- There exists a quantum algorithm that solves OSCM using $\mathcal{O}^*(1.728^n)$ time and space

Lemma Let \mathcal{P} be an optimization problem over a set X. Let |X| = n and let $OPT_{\mathcal{P}}(X)$ be the optimal value for \mathcal{P} over X. Suppose that there exists a polynomial-time computable function $f_{\mathcal{P}}: 2^X \times 2^X \to \mathbb{R}$ and a constant $c_{\mathcal{P}}$ such that, for any $S \subseteq X$, it holds that: • If $|S| \leq c_{\mathcal{P}}$, then $OPT_{\mathcal{P}}(S) = f_{\mathcal{P}}(S, \emptyset)$.

• If $|S| > c_{\mathcal{P}}$, then

$$OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W| = \frac{|S|}{2}} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + f_{\mathcal{P}}(W, S \setminus W) \}$$

We have that, $OPT_{\mathcal{P}}(X)$ can be computed by a quantum algorithm without using QRAM in $\mathcal{O}^*(2^n)$ time and polynomial space.

Lemma Let \mathcal{P} be an optimization problem over a set X. Let |X| = n and let $OPT_{\mathcal{P}}(X)$ be the optimal value for \mathcal{P} over X. Suppose that there exists a polynomial-time computable function $f_{\mathcal{P}}: 2^X \times 2^X \to \mathbb{R}$ and a constant $c_{\mathcal{P}}$ such that, for any $S \subseteq X$, it holds that: • If $|S| \leq c_{\mathcal{P}}$, then $OPT_{\mathcal{P}}(S) = f_{\mathcal{P}}(S, \emptyset)$.

• If $|S| > c_{\mathcal{P}}$, then

$$OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W| = \frac{|S|}{2}} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + f_{\mathcal{P}}(W, S \setminus W) \}$$

We have that, $OPT_{\mathcal{P}}(X)$ can be computed by a quantum algorithm without using QRAM in $\mathcal{O}^*(2^n)$ time and polynomial space.

• It does not interrupt the recursion

Lemma Let \mathcal{P} be an optimization problem over a set X. Let |X| = n and let $OPT_{\mathcal{P}}(X)$ be the optimal value for \mathcal{P} over X. Suppose that there exists a polynomial-time computable function $f_{\mathcal{P}}: 2^X \times 2^X \to \mathbb{R}$ and a constant $c_{\mathcal{P}}$ such that, for any $S \subseteq X$, it holds that: • If $|S| \leq c_{\mathcal{P}}$, then $OPT_{\mathcal{P}}(S) = f_{\mathcal{P}}(S, \emptyset)$.

• If $|S| > c_{\mathcal{P}}$, then

$$OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W| = \frac{|S|}{2}} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + f_{\mathcal{P}}(W, S \setminus W) \}$$

We have that, $OPT_{\mathcal{P}}(X)$ can be computed by a quantum algorithm without using QRAM in $\mathcal{O}^*(2^n)$ time and polynomial space.

• It does not interrupt the recursion
Lemma Let \mathcal{P} be an optimization problem over a set X. Let |X| = n and let $OPT_{\mathcal{P}}(X)$ be the optimal value for \mathcal{P} over X. Suppose that there exists a polynomial-time computable function $f_{\mathcal{P}}: 2^X \times 2^X \to \mathbb{R}$ and a constant $c_{\mathcal{P}}$ such that, for any $S \subseteq X$, it holds that: • If $|S| \leq c_{\mathcal{P}}$, then $OPT_{\mathcal{P}}(S) = f_{\mathcal{P}}(S, \emptyset)$.

• If $|S| > c_{\mathcal{P}}$, then

$$OPT_{\mathcal{P}}(S) = \min_{W \subset S, |W| = \frac{|S|}{2}} \{ OPT_{\mathcal{P}}(W) + OPT_{\mathcal{P}}(S \setminus W) + f_{\mathcal{P}}(W, S \setminus W) \}$$

We have that, $OPT_{\mathcal{P}}(X)$ can be computed by a quantum algorithm without using QRAM in $\mathcal{O}^*(2^n)$ time and polynomial space.

- It does not interrupt the recursion
- It does not use any QRAM

a b c d e f g h

•
$$Q(n) \leq \sqrt{\mathcal{O}\left(\binom{n}{n/2}\right)} \left(Q(\lfloor n/2 \rfloor) + Q(n/2) + poly(n)\right)$$

• The running time of the algorithm obeys the recurrence

•
$$Q(n) \leq \sqrt{\mathcal{O}\left(\binom{n}{n/2}\right)} \left(Q(\lfloor n/2 \rfloor) + Q(n/2) + poly(n)\right)$$

• The total running time is bounded by $\mathcal{O}^*(2^n)$

•
$$Q(n) \leq \sqrt{\mathcal{O}\left(\binom{n}{n/2}\right)} \left(Q(\lfloor n/2 \rfloor) + Q(n/2) + poly(n)\right)$$

- The total running time is bounded by $\mathcal{O}^*(2^n)$
- We can bound the space complexity in terms of qubits used during the computation

•
$$Q(n) \leq \sqrt{\mathcal{O}\left(\binom{n}{n/2}\right)} \left(Q(\lfloor n/2 \rfloor) + Q(n/2) + poly(n)\right)$$

- The total running time is bounded by $\mathcal{O}^*(2^n)$
- We can bound the space complexity in terms of qubits used during the computation
 - At height *i* of the computation tree we use $\frac{n}{2^i}$ qubits

•
$$Q(n) \leq \sqrt{\mathcal{O}\left(\binom{n}{n/2}\right)} \left(Q(\lfloor n/2 \rfloor) + Q(n/2) + poly(n)\right)$$

- The total running time is bounded by $\mathcal{O}^*(2^n)$
- We can bound the space complexity in terms of qubits used during the computation
 - At height *i* of the computation tree we use $\frac{n}{2^i}$ qubits
 - The computation tree has height $\log n$

•
$$Q(n) \leq \sqrt{\mathcal{O}\left(\binom{n}{n/2}\right)} \left(Q(\lfloor n/2 \rfloor) + Q(n/2) + poly(n)\right)$$

- The total running time is bounded by $\mathcal{O}^*(2^n)$
- We can bound the space complexity in terms of qubits used during the computation
 - At height *i* of the computation tree we use $\frac{n}{2^i}$ qubits
 - The computation tree has height $\log n$
- The number of qubits is at most $\sum_{i=0}^{\log n} \frac{n}{2^i} = 2n$

•
$$Q(n) \leq \sqrt{\mathcal{O}\left(\binom{n}{n/2}\right)} \left(Q(\lfloor n/2 \rfloor) + Q(n/2) + poly(n)\right)$$

- The total running time is bounded by $\mathcal{O}^*(2^n)$
- We can bound the space complexity in terms of qubits used during the computation
 - At height *i* of the computation tree we use $\frac{n}{2^i}$ qubits
 - The computation tree has height $\log n$
- The number of qubits is at most $\sum_{i=0}^{\log n} \frac{n}{2^i} = 2n$
 - Recall that the time complexity of the best classic algorithm using polynomial space is $\mathcal{O}^*(4^n)$

• Quantum computing can be used to improve classic bounds related to hard graph drawing problems

- Quantum computing can be used to improve classic bounds related to hard graph drawing problems
- Quantum dynamic programming, quantum minimum finding, and quantum divide and conquer are powerful tools for tackling several set-based problems

- Quantum computing can be used to improve classic bounds related to hard graph drawing problems
- Quantum dynamic programming, quantum minimum finding, and quantum divide and conquer are powerful tools for tackling several set-based problems
- A different perspecitve:

- Quantum computing can be used to improve classic bounds related to hard graph drawing problems
- Quantum dynamic programming, quantum minimum finding, and quantum divide and conquer are powerful tools for tackling several set-based problems
- A different perspecitve: Are there polynomial time solvable graph drawing problems whose current complexity bounds can be improved using quantum dynamic programming?

Thank you for your attention!