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Crossing Ratio of Beyond Planarity Concept 23 (k)
How much worse can the B (k)-crossing number be than the normal crossing
number on graphs with n vertices?

cr ratiog g (n) =  sup CFLK)(G)
GEGyyo(n) CT(G)

Known Bounds [Chimani, Kindermann, Montecchiani, Valtr '19]
for some concepts, but [van Beusekom, Parada, Speckmann '21]

specialized constructions for each concept

mostly non-tight bounds for simple drawings



Our contribution

framework that yields short proofs of tight crossing ratio bounds

previous best our results
k-planar Q(n/k) N O(nkvk) O(n)
k-vertex-planar — ©(n)
IC-planar — ©(n)
NIC-planar — ©(n)
NNIC-planar — 0O(n?)
k-fan-crossing-free Q(n?/k3) N O(n%k?) O(n?/k)
fan-planar (& variants) Q(n) N O(n?) O(n?)
k-edge-crossing — O(k)
k-gap-planar Q(n/k3) N O(nkvk) O(n/k)
k-apex-planar Q(n/k) N O(n%k?) O(n?/k)

(

skewness-k Q(n/k) N O(nk) ©
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. Crs (k) (G)
cr ratiog ) (n) = SUPGEGe (1 (n) fr((%)

Upper Bound
utilize lower bounds on crossing number

1 if cr(G) <k
Crk%“gr)@ ceO| mk/m ifm>4n = cr ratiokplanar(n) € O(n)
nk /k else

Lower Bound
construct a family of B(k)-graphs {G,} that observes the bound

cr ratiog planar(n) € (nk/k) with framework proof
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Framework Color Idea

red and yellow con-graphs can cross each
other cheaply, but not B (k)-legal

blue con-graphs are B (k)-legally crossable,
but costly

gray con-graphs can cross neither cheaply,
nor B(k)-legally
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yellow edge

subdrawing with R as red con-graph
has no red-yellow crossings
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