Crossing Numbers of Beyond Planar Graphs Re-revisited: A Framework Approach

Markus Chimani Torben Donzelmann Nick Kloster Melissa Koch Jan-Jakob Völlering Mirko H. Wagner

Theoretical Computer Science, Institute for Informatics, Osnabrück University

Crossing Number cr(G)

minimum number of edge crossings over all drawings of *G* in the plane

Crossing Number cr(G)

minimum number of edge crossings over all drawings of *G* in the plane

 $\operatorname{cr}(G) \leq 7$

Crossing Number cr(G)

minimum number of edge crossings over all drawings of *G* in the plane

$\mathfrak{B}({\it k})$ -Crossing Number ${ m cr}_{\mathfrak{B}({\it k})}({\it G})$

restriction to drawings respecting the beyond-planarity concept $\mathfrak{B}(k)$

Crossing Number cr(G)

minimum number of edge crossings over all drawings of *G* in the plane

 $\mathfrak{B}(k)$ -Crossing Number $\operatorname{cr}_{\mathfrak{B}(k)}(G)$ restriction to drawings respecting the beyond-planarity concept $\mathfrak{B}(k)$

k-Planar

at most k crossings per edge

k-Planar

at most k crossings per edge

3-planar, but not 2-planar

k-Planar

at most k crossings per edge

k-Gap-Planar

at most k gaps on each edge

k-Planar

at most k crossings per edge

k-Gap-Planar

at most k gaps on each edge

1-gap-planar

k-Planar

at most k crossings per edge

k-Gap-Planar

at most k gaps on each edge

k-Apex-Planar

there are *k* apex nodes whose removal makes the remaining subdrawing planar

k-Planar

at most k crossings per edge

k-Gap-Planar

at most k gaps on each edge

2-apex-planar

k-Apex-Planar

there are k apex nodes whose removal makes the remaining subdrawing planar

Crossing Ratio of Beyond Planarity Concept $\mathfrak{B}(\mathbf{k})$

How much worse can the $\mathfrak{B}(k)$ -crossing number be than the normal crossing number on graphs with *n* vertices?

$$\operatorname{cr}\operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$$

Crossing Ratio of Beyond Planarity Concept $\mathfrak{B}(\mathbf{k})$

How much worse can the $\mathfrak{B}(k)$ -crossing number be than the normal crossing number on graphs with *n* vertices?

$$\operatorname{cr}\operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$$

Known Bounds

for some concepts, but

[Chimani, Kindermann, Montecchiani, Valtr '19]

[van Beusekom, Parada, Speckmann '21]

Crossing Ratio of Beyond Planarity Concept $\mathfrak{B}(\mathbf{k})$

How much worse can the $\mathfrak{B}(k)$ -crossing number be than the normal crossing number on graphs with *n* vertices?

$$\operatorname{cr}\operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$$

Known Bounds

for some concepts, but

[Chimani, Kindermann, Montecchiani, Valtr '19]

[van Beusekom, Parada, Speckmann '21]

specialized constructions for each concept

Crossing Ratio of Beyond Planarity Concept $\mathfrak{B}(\mathbf{k})$

How much worse can the $\mathfrak{B}(k)$ -crossing number be than the normal crossing number on graphs with *n* vertices?

$$\operatorname{cr}\operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$$

Known Bounds

for some concepts, but

[Chimani, Kindermann, Montecchiani, Valtr '19]

[van Beusekom, Parada, Speckmann '21]

specialized constructions for each concept

mostly non-tight bounds for simple drawings

Our contribution

framework that yields short proofs of tight crossing ratio bounds

	previous best	our results
<i>k</i> -planar	$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{nk\sqrt{k}})$	$\Theta(\mathbf{n})$
k-vertex-planar	—	$\Theta(\mathbf{n})$
IC-planar	—	$\Theta(\mathbf{n})$
NIC-planar	—	$\Theta(\mathbf{n})$
NNIC-planar	—	$\Theta(n^2)$
k-fan-crossing-free	$\Omega(\mathbf{n^2/k^3}) \cap \mathcal{O}(\mathbf{n^2k^2})$	$\Theta(n^2/k)$
fan-planar (& variants)	$\Omega(\mathbf{n})\cap\mathcal{O}(\mathbf{n^2})$	$\Theta(n^2)$
k-edge-crossing	—	$\Theta(\mathbf{k})$
<i>k</i> -gap-planar	$\Omega(\mathbf{n}/\mathbf{k^3})\cap\mathcal{O}(\mathbf{nk}\sqrt{\mathbf{k}})$	$\Theta(\mathbf{n/k})$
k-apex-planar	$\Omega(\mathbf{n/k})\cap\mathcal{O}(\mathbf{n^{2}k^{2}})$	$\Theta(n^2/k)$
skewness-k	$\Omega({m n}/{m k})\cap {\cal O}({m n}{m k})$	$\Theta(\mathbf{n})$

 $\operatorname{cr} \operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$

Upper Bound

 $\operatorname{cr} \operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$

Upper Bound

 $\operatorname{cr} \operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$

Upper Bound

$$\frac{\operatorname{cr}_{k-\operatorname{planar}}(G)}{\operatorname{cr}(G)} \in \mathcal{O}\left(\begin{array}{ccc} 1 & \text{if } \operatorname{cr}(G) \leq k \\ & & \end{array}\right)$$

 $\operatorname{cr}\operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$

Upper Bound

$$\frac{\operatorname{cr}_{k-\operatorname{planar}}(G)}{\operatorname{cr}(G)} \in \mathcal{O} \left(\begin{array}{cc} 1 & \operatorname{if} \operatorname{cr}(G) \leq k \\ mk/m & \operatorname{if} m > 4n \end{array} \right)$$

 $\operatorname{cr}\operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$

Upper Bound

$$\frac{\operatorname{cr}_{k-\operatorname{planar}}(G)}{\operatorname{cr}(G)} \in \mathcal{O} \left(\begin{array}{cc} 1 & \operatorname{if} \operatorname{cr}(G) \leq k \\ mk/m & \operatorname{if} m > 4n \\ nk/k & \operatorname{else} \end{array} \right)$$

 $\operatorname{cr} \operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$

Upper Bound

$$\frac{\operatorname{cr}_{k\operatorname{-planar}}(G)}{\operatorname{cr}(G)} \in \mathcal{O} \begin{pmatrix} 1 & \text{if } \operatorname{cr}(G) \leq k \\ mk/m & \text{if } m > 4n \\ nk/k & \text{else} \end{pmatrix} \Rightarrow \operatorname{cr} \operatorname{ratio}_{k\operatorname{-planar}}(n) \in \mathcal{O}(n)$$

 $\operatorname{cr} \operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$

Upper Bound

$$\frac{\operatorname{cr}_{k\operatorname{-planar}}(G)}{\operatorname{cr}(G)} \in \mathcal{O} \begin{pmatrix} 1 & \text{if } \operatorname{cr}(G) \leq k \\ mk/m & \text{if } m > 4n \\ nk/k & \text{else} \end{pmatrix} \Rightarrow \operatorname{cr} \operatorname{ratio}_{k\operatorname{-planar}}(n) \in \mathcal{O}(n)$$

 $\operatorname{cr}\operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$

Upper Bound

utilize lower bounds on crossing number

$$\frac{\operatorname{cr}_{k\operatorname{-planar}}(G)}{\operatorname{cr}(G)} \in \mathcal{O} \begin{pmatrix} 1 & \text{if } \operatorname{cr}(G) \leq k \\ mk/m & \text{if } m > 4n \\ nk/k & \text{else} \end{pmatrix} \Rightarrow \operatorname{cr} \operatorname{ratio}_{k\operatorname{-planar}}(n) \in \mathcal{O}(n)$$

Lower Bound

construct a family of $\mathfrak{B}(k)$ -graphs $\{G_{\ell}\}$ that observes the bound

 $\operatorname{cr}\operatorname{ratio}_{\mathfrak{B}(k)}(n) = \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}(G)}$

Upper Bound

utilize lower bounds on crossing number

$$\frac{\operatorname{cr}_{k\operatorname{-planar}(G)}}{\operatorname{cr}(G)} \in \mathcal{O} \begin{pmatrix} 1 & \text{if } \operatorname{cr}(G) \leq k \\ mk/m & \text{if } m > 4n \\ nk/k & \text{else} \end{pmatrix} \Rightarrow \operatorname{cr} \operatorname{ratio}_{k\operatorname{-planar}}(n) \in \mathcal{O}(n)$$

Lower Bound

construct a family of $\mathfrak{B}(k)$ -graphs $\{G_{\ell}\}$ that observes the bound

cr ratio_{*k*-planar}(n) $\in \Omega(nk/k)$ with framework proof

Frame

K_{3,3} with colored **connections**

Frame

*K*_{3,3} with colored **connections**

Framework Graph G_{ℓ}

frame with connections replaced by **con-graphs**

Frame

 $K_{3,3}$ with colored **connections**

Framework Graph G_{ℓ}

frame with connections replaced by **con-graphs**

(*i*,*j*)-bundle *i* parallel paths of length *j*

Frame

 $K_{3,3}$ with colored **connections**

Framework Graph G_{ℓ}

frame with connections replaced by **con-graphs**

(**i**,**j**)-**bundle** *i* parallel paths of length *j*

planar drawings trivial

Frame

 $K_{3,3}$ with colored **connections**

Framework Graph G_{ℓ}

frame with connections replaced by **con-graphs**

(**i**,**j**)-**bundle** *i* parallel paths of length *j*

planar drawings trivial

Framework Color Idea

Framework Color Idea

red and yellow con-graphs can cross each other cheaply, but not $\mathfrak{B}(k)$ -legal

Framework Color Idea

red and yellow con-graphs can cross each other cheaply, but not $\mathfrak{B}(k)$ -legal

blue con-graphs are $\mathfrak{B}(k)$ -legally crossable, but costly
Framework Color Idea

red and yellow con-graphs can cross each other cheaply, but not $\mathfrak{B}(k)$ -legal

blue con-graphs are $\mathfrak{B}(k)$ -legally crossable, but costly

gray con-graphs can cross neither cheaply, nor $\mathfrak{B}(k)$ -legally

1. frame coloring

- 2. con-graphs
- **3.** drawing for upper bound on $\operatorname{cr}(G_\ell)$
- **4.** drawing for *k*-planarity
- **5.** lower bound on $\operatorname{cr}_{k-\operatorname{planar}}(G_{\ell})$

1. frame coloring

2. con-graphs

- **3.** drawing for upper bound on $\operatorname{cr}(G_\ell)$
- **4.** drawing for *k*-planarity
- **5.** lower bound on $\operatorname{cr}_{k-\operatorname{planar}}(G_{\ell})$

1. frame coloring

2. con-graphs

- **3.** drawing for upper bound on $\operatorname{cr}(G_\ell)$
- **4.** drawing for *k*-planarity
- **5.** lower bound on $\operatorname{cr}_{k-\operatorname{planar}}(G_{\ell})$

naïve drawing of frame and blue con-graphs

- 1. frame coloring
- 2. con-graphs
- 3. drawing for upper bound on $cr(G_{\ell})$
- **4.** drawing for *k*-planarity
- **5.** lower bound on $\operatorname{cr}_{k-\operatorname{planar}}(G_{\ell})$

naïve drawing of frame and blue con-graphs

width of red con-graph is k + 1

- 1. frame coloring
- 2. con-graphs
- 3. drawing for upper bound on $cr(G_{\ell})$
- **4.** drawing for *k*-planarity
- **5.** lower bound on $\operatorname{cr}_{k-\operatorname{planar}}(G_{\ell})$

naïve drawing of frame and blue con-graphs

width of red con-graph is k + 1

 $\operatorname{cr}(G_\ell) \leq k + 1 \in \mathcal{O}(k)$

1. frame coloring

2. con-graphs

3. drawing for upper bound on $cr(G_{\ell})$

4. drawing for *k*-planarity

5. lower bound on $\operatorname{cr}_{k-\operatorname{planar}}(G_{\ell})$

naïve drawing of frame and non-crossing con-graphs

- 1. frame coloring
- 2. con-graphs
- **3.** drawing for upper bound on $\operatorname{cr}(G_\ell)$
- 4. drawing for *k*-planarity
- **5.** lower bound on $\operatorname{cr}_{k-\operatorname{planar}}(G_{\ell})$

naïve drawing of frame and non-crossing con-graphs

```
(\ell k)^2 crossings on 2 \cdot \ell \cdot \ell k edges
```

- 1. frame coloring
- 2. con-graphs
- **3.** drawing for upper bound on $\operatorname{cr}(G_\ell)$
- 4. drawing for *k*-planarity
- **5.** lower bound on $\operatorname{cr}_{k-\operatorname{planar}}(G_{\ell})$

naïve drawing of frame and non-crossing con-graphs

```
(\ell k)^2 crossings on 2 \cdot \ell \cdot \ell k edges
```

at most k crossings per edge

- 1. frame coloring
- 2. con-graphs
- **3.** drawing for upper bound on $\operatorname{cr}(G_{\ell})$
- 4. drawing for *k*-planarity
- **5.** lower bound on $\operatorname{cr}_{k-\operatorname{planar}}(G_{\ell})$

- 1. frame coloring
- 2. con-graphs
- **3.** drawing for upper bound on $\operatorname{cr}(G_\ell)$
- 4. drawing for k-planarity
- 5. lower bound on $cr_{k-planar}(G_{\ell})$

Kuratowski Subdivision

a subdivided $K_{3,3}$ (or K_5)

Kuratowski Subdivision

a subdivided $K_{3,3}$ (or K_5)

Kuratowski Subdivision

a subdivided $K_{3,3}$ (or K_5)

has to be covered by a crossing

Kuratowski Subdivision

a subdivided $K_{3,3}$ (or K_5)

[Kuratowski '30]

has to be covered by a crossing

S : Kuratowski Subdivisions with the frame nodes as Kuratowksi nodes

Kuratowski Subdivision

a subdivided $K_{3,3}$ (or K_5)

has to be covered by a crossing

 $\mathcal{S}:$ Kuratowski Subdivisions with the frame nodes as Kuratowksi nodes

Kuratowski Subdivision

a subdivided $K_{3,3}$ (or K_5)

has to be covered by a crossing

 \mathcal{S} : Kuratowski Subdivisions with the frame nodes as Kuratowksi nodes

Kuratowski Subdivision

a subdivided $K_{3,3}$ (or K_5)

has to be covered by a crossing

 \mathcal{S} : Kuratowski Subdivisions with the frame nodes as Kuratowksi nodes

Kuratowski Subdivision

a subdivided $K_{3,3}$ (or K_5)

has to be covered by a crossing

 \mathcal{S} : Kuratowski Subdivisions with the frame nodes as Kuratowksi nodes

Kuratowski Subdivision

a subdivided $K_{3,3}$ (or K_5)

has to be covered by a crossing

 \mathcal{S} : Kuratowski Subdivisions with the frame nodes as Kuratowksi nodes

Kuratowski Subdivision

a subdivided $K_{3,3}$ (or K_5)

has to be covered by a crossing

 \mathcal{S} : Kuratowski Subdivisions with the frame nodes as Kuratowksi nodes

Lower Bound on $cr_{k-planar}(\boldsymbol{G}_{\ell})$

k-planar drawing

at most k crossings on yellow

k-planar drawing

at most k crossings on yellow

at least one red path *R* not crossed by yellow edge

k-planar drawing

at most k crossings on yellow

at least one red path *R* not crossed by yellow edge

subdrawing with *R* as red con-graph

has no red-yellow crossings

Lower Bound on $\operatorname{cr}_{k-\operatorname{planar}}(\mathbf{G}_{\ell})$

k-planar drawing

at most k crossings on yellow

at least one red path *R* not crossed by yellow edge

subdrawing with **R** as red con-graph

has no red-yellow crossings

 $\mathcal{S}' \subset \mathcal{S}$: Kuratowski Subdivisions with *R* as the red Kuratowski path

crossings on red and yellow

cover at most $3 \cdot k \cdot \frac{1}{1 \cdot \ell k}$ of \mathcal{S}'

crossings on red and yellow

cover at most $3 \cdot k \cdot \frac{1}{1 \cdot \ell k}$ of \mathcal{S}'

for $\ell \geq 4$: at least $\frac{1}{4}$ of S' is covered by:

crossings on red and yellow

cover at most $3 \cdot k \cdot \frac{1}{1 \cdot \ell k}$ of \mathcal{S}'

for $\ell \geq 4$: at least $\frac{1}{4}$ of S' is covered by:

blue-blue crossings

each covers at most $rac{1}{(\ell k)^2}$ of \mathcal{S}'

Lower Bound on $\operatorname{cr}_{k-\operatorname{planar}}(\mathbf{G}_{\ell})$

crossings on red and yellow

cover at most $3 \cdot k \cdot \frac{1}{1 \cdot \ell k}$ of \mathcal{S}'

for $\ell \geq 4$: at least $\frac{1}{4}$ of S' is covered by:

blue-blue crossings

each covers at most $\frac{1}{(\ell k)^2}$ of \mathcal{S}'

total number of crossings $\Omega((\ell k)^2) = \Omega(nk)$ crossings

- 1. frame coloring
- 2. con-graphs
- **3.** drawing for upper bound on $\operatorname{cr}(G_{\ell})$ $\rightarrow \mathcal{O}(k)$
- **4.** drawing for *k*-planarity
- 5. lower bound on $\operatorname{cr}_{k-\operatorname{planar}}(G_{\ell})$ $\rightarrow \Omega(nk)$

- 1. frame coloring
- 2. con-graphs
- **3.** drawing for upper bound on $\operatorname{cr}(G_{\ell})$ $\rightarrow \mathcal{O}(k)$
- **4.** drawing for *k*-planarity
- **5.** lower bound on $\mathbf{cr}_{k\text{-planar}}(\mathbf{G}_{\ell})$ $\rightarrow \Omega(nk)$

Lower Bound on $\operatorname{cr}_{k-\operatorname{planar}}(\boldsymbol{G}_{\ell})/\operatorname{cr}(\boldsymbol{G}_{\ell})$ $\rightarrow \Omega(nk/k)$

- 1. frame coloring
- 2. con-graphs
- **3.** drawing for upper bound on $\operatorname{cr}(G_{\ell})$ $\rightarrow \mathcal{O}(k)$
- **4.** drawing for *k*-planarity
- **5.** lower bound on $\mathbf{cr}_{k\text{-planar}}(\mathbf{G}_{\ell})$ $\rightarrow \Omega(nk)$

Lower Bound on cr ratio_{k-planar}(n) $\rightarrow \Omega(nk/k)$

Lower Bound on cr ratio_{k-planar}(n)

- 1. frame coloring
- 2. con-graphs
- **3.** drawing for upper bound on $\operatorname{cr}(G_{\ell})$ $\rightarrow \mathcal{O}(k)$
- **4.** drawing for *k*-planarity
- **5.** lower bound on $\mathbf{cr}_{k\text{-planar}}(\mathbf{G}_{\ell})$ $\rightarrow \Omega(nk)$

Lower Bound on cr ratio_{k-planar}(n) $\rightarrow \Omega(n)$

	previous best	our results
k-planar	$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{nk\sqrt{k}})$	Θ(n)
k-vertex-planar	_	$\Theta(\mathbf{n})$
IC-planar	_	$\Theta(\mathbf{n})$
NIC-planar	_	$\Theta(\mathbf{n})$
NNIC-planar	_	$\Theta(\mathbf{n^2})$
k-fan-crossing-free	$\Omega(\mathbf{n^2/k^3}) \cap \mathcal{O}(\mathbf{n^2k^2})$	$\Theta(n^2/k)$
adjacency- & fan-crossing	$\Omega(\mathbf{n})\cap\mathcal{O}(\mathbf{n^2})$	$\Theta(\mathbf{n^2})$
weakly & strongly fan-planar	$\Omega(\mathbf{n})\cap\mathcal{O}(\mathbf{n^2})$	$\Theta(\mathbf{n^2})$
k-edge-crossing	_	$\Theta(\mathbf{k})$
k-gap-planar	$\Omega(\mathbf{n}/\mathbf{k^3}) \cap \mathcal{O}(\mathbf{nk}\sqrt{\mathbf{k}})$	$\Theta(\mathbf{n}/\mathbf{k})$
k-apex-planar	$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{n^2k^2})$	$\Theta(n^2/k)$
skewness-k	$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{nk})$	$\Theta(\mathbf{n})$

$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{nk\sqrt{k}})$	$\Theta(\mathbf{n}) \\ \Theta(\mathbf{n})$
—	$\Theta(\mathbf{n})$
	$\Theta(\mathbf{n})$
_	$\Theta(\mathbf{n})$
_	$\Theta(\mathbf{n^2})$
$\Omega(\mathbf{n^2/k^3}) \cap \mathcal{O}(\mathbf{n^2k^2})$	$\Theta(\mathbf{n^2/k})$
$\Omega(\mathbf{n})\cap\mathcal{O}(\mathbf{n^2})$	$\Theta(\mathbf{n^2})$
$\Omega(\mathbf{n})\cap\mathcal{O}(\mathbf{n^2})$	$\Theta(\mathbf{n^2})$
_	$\Theta(\mathbf{k})$
$\Omega(\mathbf{n}/\mathbf{k^3}) \cap \mathcal{O}(\mathbf{nk}\sqrt{\mathbf{k}})$	$\Theta(\mathbf{n}/\mathbf{k})$
$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{n^2k^2})$	$\Theta(\mathbf{n^2/k})$
$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{nk})$	$\Theta(\mathbf{n})$
	$\Omega(\boldsymbol{n}) \cap \mathcal{O}(\boldsymbol{n}^2)$ $\Omega(\boldsymbol{n}) \cap \mathcal{O}(\boldsymbol{n}^2)$ $-$ $\Omega(\boldsymbol{n}/\boldsymbol{k}^3) \cap \mathcal{O}(\boldsymbol{n}\boldsymbol{k}\sqrt{\boldsymbol{k}})$ $\Omega(\boldsymbol{n}/\boldsymbol{k}) \cap \mathcal{O}(\boldsymbol{n}^2\boldsymbol{k}^2)$

	previous best	our results	
k-planar	$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{nk\sqrt{k}})$	$\Theta(\mathbf{n})$	+1
k-vertex-planar	_	$\Theta(\mathbf{n})$	+1
IC-planar	_	$\Theta(\mathbf{n})$	
NIC-planar	_	$\Theta(\mathbf{n})$	
NNIC-planar	—	$\Theta(\mathbf{n^2})$	
k-fan-crossing-free	$\Omega(\mathbf{n^2/k^3}) \cap \mathcal{O}(\mathbf{n^2k^2})$	$\Theta(n^2/k)$	+1
adjacency- & fan-crossing	$\Omega(\mathbf{n})\cap\mathcal{O}(\mathbf{n^2})$	$\Theta(\mathbf{n^2})$	
weakly & strongly fan-planar	$\Omega(\mathbf{n})\cap\mathcal{O}(\mathbf{n^2})$	$\Theta(\mathbf{n^2})$	
k-edge-crossing	—	$\Theta(\mathbf{k})$	+1
<i>k</i> -gap-planar	$\Omega(\mathbf{n}/\mathbf{k^3}) \cap \mathcal{O}(\mathbf{nk}\sqrt{\mathbf{k}})$	$\Theta(\mathbf{n/k})$	
k-apex-planar	$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{n^2k^2})$	$\Theta(n^2/k)$	+1
skewness-k	$\Omega(\mathbf{n/k})\cap\mathcal{O}(\mathbf{nk})$	$\Theta(\mathbf{n})$	+1

		our results
<i>k</i> -planar	$\Omega(\mathbf{n/k})\cap \mathcal{O}(\mathbf{nk}\sqrt{\mathbf{k}})$	$\Theta(\mathbf{n})$ =
k-vertex-planar	—	$\Theta(\mathbf{n})$ =
IC-planar	—	$\Theta(\mathbf{n})$
NIC-planar	—	$\Theta(\mathbf{n})$
NNIC-planar	—	$\Theta(n^2)$
k-fan-crossing-free	$\Omega(\mathbf{n^2/k^3}) \cap \mathcal{O}(\mathbf{n^2k^2})$	$\Theta(n^2/k)$ =
adjacency- & fan-crossing	$\Omega(\mathbf{n})\cap\mathcal{O}(\mathbf{n^2})$	$\Theta({\it n}^2)$ simple
weakly & strongly fan-planar	$\Omega(\mathbf{n})\cap\mathcal{O}(\mathbf{n^2})$	$\Theta(n^2)$
k-edge-crossing	—	$\Theta(\mathbf{k})$ =
<i>k</i> -gap-planar	$\Omega(\mathbf{n/k^3}) \cap \mathcal{O}(\mathbf{nk\sqrt{k}})$	$\Theta(\mathbf{n/k})$, so that the second sec
<i>k</i> -apex-planar	$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{n^2k^2})$	$\Theta(n^2/k)$ =
skewness-k	$\Omega(\mathbf{n/k}) \cap \mathcal{O}(\mathbf{nk})$	$\Theta(\mathbf{n})$ +1

 $\exists : already holds for \sup_{G \in \mathcal{G}_{\mathfrak{B}(k)}(n)} \frac{\operatorname{cr}_{\mathfrak{B}(k)}(G)}{\operatorname{cr}_{\mathfrak{B}(k+1)}(G)}$

simple : upper bound only for simple drawings