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Abstract

It is a well known question of Bose, Hurtado, Rivera-Campo, and
Wood, whether there exists a positive constant c < 1, such that
(the edges of) every complete geometric graph on n points can be
partitioned into at most cn plane graphs (that is, noncrossing
subgraphs).

Example with n = 6 and c = 1/2:
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Abstract

We answer ’yes’ in the special case where the underlying point set
P is dense, which means that the ratio between the maximum and
the minimum distances in P is of the order of Θ(

√
n).

And leave the general question open!
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Background

ä Points in general position: no three points are collinear

ä Obviously, every complete geometric graph of n vertices can be
decomposed into n− 1 plane stars.

ä There is an intimate relationship between the above problem
and another old (and still unsolved) question in combinatorial
geometry, due to Aronov, Erdős, Goddard, Kleitman, Kluger-
man, Pach, and Schulman (1991).
Two segments are said to cross each other if they do not share
an endpoint and they have an interior point in common.

Problem

Does there exist a positive constant c such that every complete
geometric graph on n vertices has cn pairwise crossing edges?
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Dense point sets

For a set A of n points in the plane, consider the ratio

D(A) =
max{|ab| : a, b ∈ A, a 6= b}
min{|ab| : a, b ∈ A, a 6= b}

,

where |ab| is the Euclidean distance between points a and b.
An n-element point set A satisfying the condition D(A) ≤ αn1/2,
for some constant α ≥ α0, is said to be α-dense.

An example with α = 5:
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Preliminaries
Observation. If a suitable large subset P ′ ⊂ P (i.e., |P ′| = Ω(n))
can be partitioned into at most c′|P ′| noncrossing subgraphs,
where c′ < 1, then the entire set P can be partitioned into at most
cn noncrossing subgraphs, where c = c(c′) < 1.

How?: add stars to the decomposition of P ′: Example with n = 8
and c = 5/8:
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Starting the proof

Q: What should be P ′? It can be B!

Lemma

(Pach, Saghafian, and Schnider 2023). Let B =
⋃4
i=1Bi be a set

of 4m points, where |B1| = |B2| = |B3| = |B4| = m, such that for
every choice pi ∈ Bi, for i = 1, 2, 3, 4, p4 lies inside the convex hull
of {p1, p2, p3}. Then the complete geometric graph K4m[B] can
be decomposed into at most 3m plane subgraphs.

Example with m = 8:
1

2

3

4
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Decomposition of K4m[B]:

1 all stars emanating from points in B1 connecting to all points
in B1 and B2 together with all stars emanating from points in
B3 connecting to all points in B3 and B4

2 all stars emanating from points in B2 connecting to all points
in B2 and B3 together with all stars emanating from points in
B4 connecting to all points in B4 and B1

3 all stars emanating from points in B1 connecting to all points
in B1 and B3 together with all stars emanating from points in
B2 connecting to all points in B2 and B4

4 4

3

4
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2

1

2 33 2

Figure: Sketch of the 3m plane subgraphs in the lemma.
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Proof sketch

We show that every α-dense n-element point set A contains a
subset B with m = Ω(n) and satisfying the conditions.

Let k = k(α) ≥ 3α2 and set n0 = d12k2/α2e. We distinguish
between n ≤ n0, and n ≥ n0.

• n ≤ n0: Recall that there is a decomposition of Kn[A] into
n− 1 stars. Note that n− 1 ≤ cn for n ≤ n0 provided that
c < 1 is large enough.

• n ≥ n0: Let A be an n-element α-dense set.

• Since D(A) ≤ α
√
n, we may assume that A is contained in

an axis-aligned square Q of side-length α
√
n.

• Subdivide Q into k2 axis-parallel squares, called cells, of
side-length α

√
n/k. Let Σ be the set of all k2 cells in Q.
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Proof sketch

A cell σ ∈ Σ is said to be rich if it contains at least n/(3k2) points
of A, and poor otherwise. Let R ⊂ Σ denote the set of rich cells.

Lemma

There are at least k2

3α2 rich cells; that is, |R| ≥ k2

3α2 .

It remains to find four rich cells in a suitable configuration – with
one in the middle:
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Proof sketch

• Let P = conv(R). Note that P is a lattice polygon whose
vertices are in the (k + 1)× (k + 1) grid G subdividing Q.

• As a lattice polygon P has v(P ) ≤ c′k2/3 vertices in G.

• For k > (24c′ · α2)3 we have

k2

3α2
− 8c′ k5/3 > 0.

Setting k(α) = d(24c′ · α2)3e+ 1 will ensure the desired
four-cell configuration:

2

3

1

4
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Proof sketch

Lemma

There exist four rich cells σ′1, σ
′
2, σ
′
3, σ
′
4, such that for any four

points ai ∈ σ′i ∩A, i = 1, 2, 3, 4, we have a4 ∈ ∆a1a2a3.

Let C ⊂ R denote the set of rich cells incident to vertices of P .

2

3

1

4

Figure: Left: The set of rich cells in Q. Center: the star triangulation K
from a boundary cell in C. Here |R| = 22 and |C| = 7. Right: a set of
four rich cells as in the lemma.
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Finishing the proof

We use the point set structure guaranteed by the lemma.

• A cell σ ∈ Σ is rich if it contains at least n/(3k2) points in A,
where k(α) ∼ α6.

• Consider four rich cells σ1, σ2, σ3, σ4, such that for any four
points ai ∈ σi ∩A, i = 1, 2, 3, 4, we have a4 ∈ ∆a1a2a3.

• Let Bi = A ∩ σi, for i = 1, 2, 3, 4. We may assume that
|B1| = |B2| = |B3| = |B4| = m = dn/(3k2)e.

We conclude that the edge-set of Kn[A] can be decomposed into
at most

n− 4m+ 3m = n−m ≤
(

1− 1

3k2

)
n

plane subgraphs. We can set c(α) = 1− 1
3k2(α)

, thus

c(α) ≤ 1− Ω
(
α−12

)
.
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Another scenario: random point sets

Corollary

Let A be a set of n random points uniformly distributed in [0, 1]2,
and let n→∞. There exists an absolute constant c < 1 such
that, with probability tending to 1, the complete geometric graph
induced by A can be decomposed into at most cn plane subgraphs.

The result can be deduced from that for dense sets; however, here
is a direct proof:
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Random point sets

Proof:

Figure: The four distinguished subsquares are shaded.

• The expected number of points in each subsquare is n/25.
With probability tending to 1 as n→∞, each of the four
subsquares contains at least n/50 points in A.

• As such, a structure with four rich cells is obtained, as before,
and the corollary follows.
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