The Density Formula One Lemma to Bound them All

Michael Kaufmann Universität Tübingen

Meghana M. Reddy ETH Zürich

Boris Klemz Universität Würzburg

Felix Schröder Charles University Prague

32nd International Symposium on Graph Drawing and Network Visualization

Kristin Knorr Freie Universität Berlin

Torsten Ueckerdt Karlsruhe Institute of Technology

Vienna, September 18, 2024

▷ no self-crossings ▷ finite number of crossings ▷ no three edges through 1 point ▷ no touchings

a vertex or crossing.

no self-crossings
finite number of crossings
no three edges through 1 point
no touchings

non-homotopic and simple drawings:

lens = region bounded by two edge parts

simple drawing

no lenses

a vertex or crossing.

no self-crossings
finite number of crossings
no three edges through 1 point
no touchings

non-homotopic and simple drawings:

lens = region bounded by two edge parts

simple drawing

no lenses

$$\mathcal{X} = \{ \operatorname{crossings} \} \qquad E = -$$

 $\{ \text{ edges } \} = E_{\mathbf{x}} \cup E_{\mathbf{p}}$

 $\begin{array}{ll} \triangleright \text{ no loops} & \rhd \\ \triangleright \text{ parallel edges allowed} & \triangleright \\ \triangleright \text{ connected, } n \geq 3 \text{ vertices} & \triangleright \\ \end{array}$

$$\mathcal{X} = \{ \text{ crossings} \} \qquad E = \{$$

 $\mathcal{S} = \{ \text{ segments } \} = \mathcal{S}_{in} \cup \mathcal{S}_{out}$

no self-crossings
finite number of crossings
no three edges through 1 point
no touchings

▷ no loops ▷ parallel edges allowed \triangleright connected, $n \geq 3$ vertices

$$\mathcal{X} = \{ \text{ crossings} \} \qquad E = \{$$

$$\mathcal{S} = \{ \text{ segments } \} = \mathcal{S}_{in} \cup \mathcal{S}_{o}$$

||c|| =size of cell c =#vertices + # segments

▷ no self-crossings ▷ finite number of crossings ▷ no three edges through 1 point ▷ no touchings

Density Formula

Theorem. (Density Formula) For any $t \in \mathbb{R}$ and any connected drawing of any graph G = (V, E), $|E| \ge 1$, we have

$$|E| = t(|V| - 2) - \sum_{c \in \mathcal{C}} \left(\frac{t - 1}{4} ||c|| - t \right) - |\mathcal{X}|$$

Density Formula

Theorem. (Density Formula) For any $t \in \mathbb{R}$ and any connected drawing of any graph G = (V, E), $|E| \ge 1$, we have

$$|E| = t(|V| - 2) - \sum_{c \in \mathcal{C}} \left(\frac{t - 1}{4} ||c|| - t \right) - |\mathcal{X}|$$

special cases

$$t = 4 \quad |E| = 4 \left(|V| - 2 \right) + \frac{7}{4} |\mathcal{C}_3| + |\mathcal{C}_4| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{2} |\mathcal{C}_6| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{2} |\mathcal{C}_6| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{4} |\mathcal{C}_6| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{4} |\mathcal{C}_6| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{4} |\mathcal{C}_6| + \frac{1}{4$$

$\mathcal{Z}_6|-\cdots-|\mathcal{X}|$

Density Formula

Theorem. (Density Formula) For any $t \in \mathbb{R}$ and any connected drawing of any graph G = (V, E), $|E| \ge 1$, we have

$$|E| = t(|V| - 2) - \sum_{c \in \mathcal{C}} \left(\frac{t - 1}{4} ||c|| - t \right) - |\mathcal{X}|$$

special cases

$$t = 4 \quad |E| = 4 \left(|V| - 2 \right) + \frac{7}{4} |\mathcal{C}_3| + |\mathcal{C}_4| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{2} |\mathcal{C}_6| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{2} |\mathcal{C}_6| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{4} |\mathcal{C}_6| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{4} |\mathcal{C}_6| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{4} |\mathcal{C}_6| + \frac{1}{4$$

$$\mathcal{C}_3:$$
 \checkmark $\mathcal{C}_4:$ \checkmark $\mathcal{C}_5:$ \checkmark

General approach:

 \triangleright apply the formula with a specific t \triangleright upper bounds on $|\mathcal{C}_3|, |\mathcal{C}_4|, \ldots$ in terms of $|\mathcal{X}|$ and/or |V|, |E|

Crossing Formula?

Theorem. (Crossing Formula?) For any $t \in \mathbb{R}$ and any connected drawing of any graph G = (V, E), $|E| \ge 1$, we have

$$|\mathcal{X}| = t(|V| - 2) - \sum_{c \in \mathcal{C}} \left(\frac{t - 1}{4} ||c|| - t \right) - |E|$$

special cases

$$t = 4 \quad |\mathcal{X}| = 4 \left(|V| - 2\right) + \frac{7}{4} |\mathcal{C}_3| + |\mathcal{C}_4| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{2} |\mathcal{C}_6| + \frac{1}{2} |\mathcal{C}_6| + \frac{1}{2} |\mathcal{C}_6| - \frac{1}{2} |\mathcal{C}_6| + \frac{1}{$$

General approach:

 \triangleright apply the formula with a specific t \triangleright upper bounds on $|\mathcal{C}_3|, |\mathcal{C}_4|, \ldots$ in terms of $|\mathcal{X}|$ and/or |V|, |E|

$$|E| = t(|V| - 2) - \sum_{c \in \mathcal{C}} \left(\frac{t - 1}{4} ||c|| - t \right) - |\mathcal{X}|$$

Theorem (Pach + Tóth, 1997)

n-vertex 1-planar graphs have $\leq 4n - 8$ edges.

$$|E| = t(|V| - 2) - \sum_{c \in \mathcal{C}} \left(\frac{t - 1}{4} ||c|| - t \right) - |\mathcal{X}|$$

Theorem (Pach + Tóth, 1997) *n*-vertex 1-planar graphs have $\leq 4n - 8$ edges.

$$|E| = t(|V| - 2) - \sum_{c \in \mathcal{C}} \left(\frac{t - 1}{4} ||c|| - t \right) - |\mathcal{X}|$$

Theorem (Pach + Tóth, 1997) *n*-vertex 1-planar graphs have $\leq 4n - 8$ edges.

$$t = 4 \quad |E| = 4 (n-2) + \frac{7}{4} |c_3| + |\mathcal{C}_4| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{2} |\mathcal{C}_6|$$
$$\mathcal{C}_3: \underbrace{\checkmark}_3: \underbrace{\checkmark}_4: \underbrace{+}_4: \underbrace{+}_4: \underbrace{\checkmark}_4: \mathcal{C}_5: \underbrace{\checkmark}_5: \underbrace{\rightthreetimes}_5: \underbrace{\rightthreetimes}$$

$$|E| = t(|V| - 2) - \sum_{c \in \mathcal{C}} \left(\frac{t - 1}{4} ||c|| - t \right) - |\mathcal{X}|$$

Theorem (Pach + Tóth, 1997) *n*-vertex 1-planar graphs have $\leq 4n - 8$ edges.

$$t = 4 \quad |E| \le 4(n-2) + \frac{7}{4}|c_3| + |\mathcal{C}_4| + \frac{1}{4}|\mathcal{C}_5| - \frac{1}{2}|\mathcal{C}_6|$$
$$\mathcal{C}_3: \underbrace{\checkmark}_3: \underbrace{\checkmark}_4: \underbrace{+}_4: \underbrace{+}_4: \underbrace{\leftarrow}_4: \underbrace{\leftarrow}_5: \underbrace{\checkmark}_5: \underbrace{\rightthreetimes}_5: \underbrace{\rightthreetimes}_5:$$

$$|E| = t(|V| - 2) - \sum_{c \in \mathcal{C}} \left(\frac{t - 1}{4} ||c|| - t \right) - |\mathcal{X}|$$

Theorem (Pach + Tóth, 1997) *n*-vertex 1-planar graphs have $\leq 4n - 8$ edges.

Proof using the Density Formula:

$$t = 4 \quad |E| \leq 4 (n-2) + \frac{7}{4} |c_3| + |\mathcal{C}_4| + \frac{1}{4} |\mathcal{C}_5| - \frac{1}{2} |\mathcal{C}_6|$$

$$\mathcal{C}_3: \underbrace{\checkmark}_{5} \mathcal{C}_4: \underbrace{\uparrow}_{4} \mathcal{C}_5: \underbrace{\checkmark}_{5} \mathcal{C}_5: \underbrace{\rightthreetimes}_{5} \mathcal{C}_5: \underbrace{\rightthreetimes}_{5}$$

If |E| = 4n - 8, all cells must be 5

 $|E| \le 4n - 8$

Overview	density $=$	max. $\#$ edges for n vertices
1-planar 2-planar 3-planar 4-planar	$4n - 8 \\ 5n - 10 \\ 5.5n - \Theta(1) \\ 6n - \Theta(1)$	Pach-Tóth '97 Pach-Tóth '97 Pach-Radoičić-Tardos-Tóth '06 Ackerman '15
simple quasiplanar non-hom. quasiplanar	$6.5n - 20 \\ 8n - 20$	Ackerman-Tardos '07 Ackerman-Tardos '07
0-bend RAC 1-bend RAC 2-bend RAC	4n - 10 5n - 10 $10n - \Theta(1)$	Didimo-Eades-Liotta '11 Kaufmann-Klemz-Knorr-Reddy-SU Kaufmann-Klemz-Knorr-Reddy-SU
1 ⁺ -real face 2 ⁺ -real face k ⁺ -real face	$5n - 10$ $4n - 8$ $\frac{k}{k-2}(n-2)$	Binucci-Di Battista-Didimo-Hong-K Binucci-Di Battista-Didimo-Hong-K Binucci-Di Battista-Didimo-Hong-K
fan-planar	5n - 10	(Kaufmann-Ueckerdt '22) Ackerma

Jeckerdt '24 Jeckerdt '24

Kaufmann-Liotta-Morin-Tappini '23 Kaufmann-Liotta-Morin-Tappini '23 Kaufmann-Liotta-Morin-Tappini '23

an-Keszegh '23

Overview	density $=$	max. $\#$ edges for n vertices
1-planar 2-planar 3-planar 4-planar	$4n - 8 \\ 5n - 10 \\ 5.5n - \Theta(1) \\ 6n - \Theta(1)$	Pach-Tóth '97 Pach-Tóth '97 Pach-Radoičić-Tardos-Tóth '06 Ackerman '15
simple quasiplanar non-hom. quasiplanar	$6.5n - 20 \\ 8n - 20$	Ackerman-Tardos '07 Ackerman-Tardos '07
0-bend RAC 1-bend RAC 2-bend RAC	$4n - 10 \\ 5n - 10 \\ 10n - \Theta(1)$	Didimo-Eades-Liotta '11 Kaufmann-Klemz-Knorr-Reddy-SU Kaufmann-Klemz-Knorr-Reddy-SU
1 ⁺ -real face 2 ⁺ -real face k ⁺ -real face	$5n - 10$ $4n - 8$ $\frac{k}{k-2}(n-2)$	Binucci-Di Battista-Didimo-Hong-K Binucci-Di Battista-Didimo-Hong-K Binucci-Di Battista-Didimo-Hong-K
fan-planar	5n - 10	(Kaufmann-Ueckerdt '22) Ackerma

Jeckerdt '24 Jeckerdt '24

Kaufmann-Liotta-Morin-Tappini '23 Kaufmann-Liotta-Morin-Tappini '23 Kaufmann-Liotta-Morin-Tappini '23

an-Keszegh '23

Theorem. (Density Formula) For any $t \in \mathbb{R}$ and any connected drawing of any graph G = (V, E), $|E| \ge 1$, we have

$$\sum_{c \in \mathcal{C}} \left(\frac{t-1}{4} ||c|| - t \right) - |\mathcal{X}|$$

Theorem. (Density Formula) For any $t \in \mathbb{R}$ and any connected drawing of any graph G = (V, E), $|E| \ge 1$, we have

Proof.

$$\triangleright |\mathcal{S}| = |E| + 2|\mathcal{X}|$$

$$\triangleright \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}|$$

$$\sum_{c \in \mathcal{C}} \left(\frac{t-1}{4} ||c|| - t \right) - |\mathcal{X}|$$

Theorem. (Density Formula) For any $t \in \mathbb{R}$ and any connected drawing of any graph G = (V, E), $|E| \ge 1$, we have

Proof.

$$\triangleright |\mathcal{S}| = |E| + 2|\mathcal{X}|$$

$$\triangleright \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} ||c|| = 2|\mathcal{S}| + \sum_{v \in$$

$$\sum_{c \in \mathcal{C}} \left(\frac{t-1}{4} ||c|| - t \right) - |\mathcal{X}|$$

$\left(\frac{||c||}{4} - 1\right) = |E| + |\mathcal{X}| - |\mathcal{C}|$

Theorem. (Density Formula) For any $t \in \mathbb{R}$ and any connected drawing of any graph G = (V, E), $|E| \ge 1$, we have

Proof.

$$\triangleright |\mathcal{S}| = |E| + 2|\mathcal{X}|$$

$$\triangleright \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} \left(\sum_{v \in V} ||c|| + 2|\mathcal{S}| + \sum_{v \in V} ||c|| + 2|\mathcal{S}| \right)$$

 \triangleright planarization has $|V| + |\mathcal{X}|$ vertices, $|\mathcal{S}|$ edges, $|\mathcal{C}|$ faces

 \triangleright Euler's Formula: $|V| + |\mathcal{X}| - |\mathcal{S}| + |\mathcal{C}| = 2 \implies |E| = |V| - 2 + |\mathcal{C}| - |\mathcal{X}|$

$$\sum_{c \in \mathcal{C}} \left(\frac{t-1}{4} ||c|| - t \right) - |\mathcal{X}|$$

$\left(\frac{||c||}{4} - 1\right) = |E| + |\mathcal{X}| - |\mathcal{C}|$

Theorem. (Density Formula) For any $t \in \mathbb{R}$ and any connected drawing of any graph G = (V, E), $|E| \ge 1$, we have

Proof.

$$\triangleright |\mathcal{S}| = |E| + 2|\mathcal{X}|$$

$$\triangleright \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} \left(\sum_{v \in V} ||c|| + 2|\mathcal{S}| + \sum_{v \in V} ||c|| = 2|\mathcal{S}| + \sum$$

 \triangleright planarization has $|V|+|\mathcal{X}|$ vertices, $|\mathcal{S}|$ edges, $|\mathcal{C}|$ faces

 $\triangleright \text{ Euler's Formula: } |V| + |\mathcal{X}| - |\mathcal{S}| + |\mathcal{C}| = 2 \implies |E| = |V| - 2 + |\mathcal{C}| - |\mathcal{X}|$

 $\implies 0 = |V| - 2 - (|E| + |\mathcal{X}| - |\mathcal{C}|) \implies 0 = |V| - 2 - \sum_{c \in \mathcal{C}} \left(\frac{||c||}{4} - 1\right)$

$$\sum_{c \in \mathcal{C}} \left(\frac{t-1}{4} ||c|| - t \right) - |\mathcal{X}|$$

$\left(\frac{||c||}{4} - 1\right) = |E| + |\mathcal{X}| - |\mathcal{C}|$

 $|\mathcal{C}| - |\mathcal{X}|$ $\sum_{c \in \mathcal{C}} \left(\frac{||c||}{4} - 1 \right)$

Theorem. (Density Formula) For any $t \in \mathbb{R}$ and any connected drawing of any graph G = (V, E), $|E| \ge 1$, we have

Proof.

$$\triangleright |\mathcal{S}| = |E| + 2|\mathcal{X}|$$

$$\triangleright \sum_{c \in \mathcal{C}} ||c|| = 2|\mathcal{S}| + \sum_{v \in V} \deg(v) = 4|E| + 4|\mathcal{X}| \implies \sum_{c \in \mathcal{C}} \left(\sum_{v \in \mathcal{C}} ||c|| + 2|\mathcal{S}| + \sum_{v \in V} \log(v) = 4|E| + 4|\mathcal{X}| \right)$$

 \triangleright planarization has $|V|+|\mathcal{X}|$ vertices, $|\mathcal{S}|$ edges, $|\mathcal{C}|$ faces

 $\triangleright \text{ Euler's Formula: } |V| + |\mathcal{X}| - |\mathcal{S}| + |\mathcal{C}| = 2 \implies |E| = |V| - 2 + |\mathcal{C}| = 2$

$$\implies 0 = |V| - 2 - (|E| + |\mathcal{X}| - |\mathcal{C}|) \implies 0 = |V| - 2 - |\mathcal{X}| = |\mathcal{X}| =$$

|E| = t(|V| - 2)

$$\sum_{c \in \mathcal{C}} \left(\frac{t-1}{4} ||c|| - t \right) - |\mathcal{X}|$$

$\left(\frac{||c||}{4} - 1\right) = |E| + |\mathcal{X}| - |\mathcal{C}|$

$$\begin{aligned} |\mathcal{C}| - |\mathcal{X}| & | \times 1 \\ \sum_{c \in \mathcal{C}} \left(\frac{||c||}{4} - 1 \right) & | \times (t - 1) \\ - \sum_{c \in \mathcal{C}} \left(\frac{t - 1}{4} ||c|| - t \right) - |\mathcal{X}| \end{aligned}$$

$$|\mathcal{S}_{\rm in}| = 2|\mathcal{X}| - |E_{\rm x}|$$

$$|\mathcal{S}_{in}| = 2|\mathcal{X}| - |E_x|$$

Lemma

In any non-homotopic drawing we have

$$|\mathcal{S}_{in}| \ge 3 \# 3$$
-cells +2#

4 -cells + 4 -cells

$$|\mathcal{S}_{in}| = 2|\mathcal{X}| - |E_x|$$

Lemma

In any non-homotopic drawing we have

$$|\mathcal{S}_{in}| \ge 3 \# 3$$
-cells +2#

Proof idea

4 -cells + 4 -cells

$$|\mathcal{S}_{\rm in}| = 2|\mathcal{X}| - |E_{\rm x}|$$

Lemma

In any non-homotopic drawing we have

$$|\mathcal{S}_{in}| \ge 3 \# \sqrt[3]{-\text{cells}} + 2 \#$$

Proof idea

4 -cells + 4 -cells

$$|\mathcal{S}_{\rm in}| = 2|\mathcal{X}| - |E_{\rm x}|$$

Lemma

In any non-homotopic drawing we have

$$|\mathcal{S}_{in}| \ge 3\#\sqrt[3]{-\text{cells}} + 2\#$$

Proof idea

4 -cells + 4 -cells

 $|\mathcal{S}_{in}| \ge 3\#\sqrt[3]{-\text{cells}} + 2\#\sqrt[4]{-\text{cells}} + \#\sqrt[4]{-\text{cells}}$

$$|E| = t(|V| - 2) -$$

Theorem (Pach + Tóth, 1997)

n-vertex 2-planar graphs have $\leq 5n - 10$ edges

 $-\sum_{c \in \mathcal{C}} \left(\frac{t-1}{4} ||c|| - t \right) - |\mathcal{X}|$

 $|\mathcal{S}_{in}| \ge 3\#\sqrt[3]{-\text{cells}} + 2\#\sqrt[4]{-\text{cells}} + \#\sqrt[4]{-\text{cells}}$

$$|E| = t(|V| - 2) -$$

Theorem (Pach + Tóth, 1997) *n*-vertex 2-planar graphs have $\leq 5n - 10$ edges

- 2 crossings at each inner segment
- ≤ 2 inner segments at each crossing

 $\sum_{c \in \mathcal{C}} \left(\frac{t-1}{4} ||c|| - t \right) - |\mathcal{X}|$

 $|\mathcal{S}_{in}| \ge 3\#\sqrt[3]{-\text{cells}} + 2\#\sqrt[4]{-\text{cells}} + \#\sqrt[4]{-\text{cells}}$

$$|E| = t(|V| - 2) -$$

Theorem (Pach + Tóth, 1997) *n*-vertex 2-planar graphs have $\leq 5n - 10$ edges

Proof using the Density Formula:

2 crossings at each inner segment

 ≤ 2 inner segments at each crossing

$$t = 5 \quad |E| = 5(n-2) + 2|\mathcal{C}_3| + |\mathcal{C}_4| + 0|\mathcal{C}_5| - 1|\mathcal{C}_6| - 1|\mathcal{C}$$

 $\implies |E| \le 5(n-2) + |\mathcal{S}_{in}| - |\mathcal{X}| \le 5(n-2)$

 $-\sum_{c \in \mathcal{C}} \left(\frac{t-1}{4} ||c|| - t \right) - |\mathcal{X}|$

 $-\cdots - |\mathcal{X}|$

n-vertex non-hom. 1-bend RAC graphs have $\leq 5n - 10$ edges. *n*-vertex non-hom. 2-bend RAC graphs have $\leq 10n - 19$ edges.

 $2|\mathcal{X}| - |E_{\mathrm{x}}| = |\mathcal{S}_{\mathrm{in}}| \ge 3\# 3 + 2\# 4 + \# 4$

t = 5: $|E| \le 5(n-2) + 2|\mathcal{C}_3| + |\mathcal{C}_4| - |\mathcal{X}|$

n-vertex non-hom. 1-bend RAC graphs have $\leq 5n - 10$ edges. *n*-vertex non-hom. 2-bend RAC graphs have $\leq 10n - 19$ edges.

Proof.

$$\geq 1$$
 convex bend at each* $\sqrt[3]{3}$ -cell and $\sqrt[4]{4}$ -cell $\implies k|E_x| \geq k|E_x|$

 $2|\mathcal{X}| - |E_{\mathrm{x}}| = |\mathcal{S}_{\mathrm{in}}| \ge 3\# 3 + 2\# 4 + \# 4$

t = 5: $|E| \le 5(n-2) + 2|\mathcal{C}_3| + |\mathcal{C}_4| - |\mathcal{X}|$

n-vertex non-hom. 1-bend RAC graphs have $\leq 5n - 10$ edges. *n*-vertex non-hom. 2-bend RAC graphs have $\leq 10n - 19$ edges.

Proof.

$$\geq 1 \text{ convex bend at each}^* \quad \boxed{3}^{-} \text{cell and } \underbrace{4}^{-} \text{cell} \quad \Longrightarrow \quad k|E_x| \geq \\ \implies 2|\mathcal{X}| + (k-1)|E_x| \geq 4 \# \underbrace{3}^{-} + 2 \# \underbrace{4}^{-} + 2 \# \underbrace{4}^{-} - 1 = 4|\mathcal{C}_3| \\ \implies 2|\mathcal{C}_3| + 2|\mathcal{C}_3$$

 $2|\mathcal{X}| - |E_{\mathrm{x}}| = |\mathcal{S}_{\mathrm{in}}| \ge 3\# 3 + 2\# 4 + \# 4$

t = 5: $|E| \le 5(n-2) + 2|\mathcal{C}_3| + |\mathcal{C}_4| - |\mathcal{X}|$

n-vertex non-hom. 1-bend RAC graphs have $\leq 5n - 10$ edges. *n*-vertex non-hom. 2-bend RAC graphs have $\leq 10n - 19$ edges.

Proof.

$$\geq 1 \text{ convex bend at each}^* \quad \boxed{3}^{-} \text{cell and } \underbrace{4}^{-} \text{cell} \quad \Longrightarrow \quad k|E_x| \geq \\ \implies 2|\mathcal{X}| + (k-1)|E_x| \geq 4\# \underbrace{3}^{-} + 2\# \underbrace{4}^{-} + 2\# \underbrace{4}^{-} - 1 = 4|\mathcal{C}_3| \\ \implies 2|\mathcal{C}_3| + 2|\mathcal{C}_3| +$$

$$|E| \le 5(n-2) + 2|\mathcal{C}_3| + |\mathcal{C}_4| - |\mathcal{X}| \le 5(n-2) + \frac{k-1}{2}|E| + \frac{1}{2}$$
$$k = 1: \quad |E| \le 5(n-2) + \frac{1}{2}$$
$$k = 2: \quad \frac{|E|}{2} \le 5(n-2) + \frac{1}{2} \implies |E| \le 1$$

 $2|\mathcal{X}| - |E_{\mathrm{x}}| = |\mathcal{S}_{\mathrm{in}}| \ge 3\# 3 + 2\# 4 + \# 4$

t = 5: $|E| \le 5(n-2) + 2|\mathcal{C}_3| + |\mathcal{C}_4| - |\mathcal{X}|$

3 + # 4 - 1 $+2|\mathcal{C}_4|-1$ $|\mathcal{C}_4| - |\mathcal{X}| \le \frac{k-1}{2}|E_x| + \frac{1}{2}$

 $\leq 10(n-2) + 1$

Overview	density $=$	max. $\#$ edges for n vertices
1-planar 2-planar 3-planar 4-planar	$\begin{array}{c} 4n-8\\ 5n-10\\ 5.5n-\Theta(1)\\ 6n-\Theta(1) \end{array}$	Pach-Tóth '97 Pach-Tóth '97 Pach-Radoičić-Tardos-Tóth '06 Ackerman '15
simple quasiplanar non-hom. quasiplanar	$6.5n - 20 \\ 8n - 20$	Ackerman-Tardos '07 Ackerman-Tardos '07
0-bend RAC 1-bend RAC 2-bend RAC	$4n - 10 \\ 5n - 10 \\ 10n - \Theta(1)$	Didimo-Eades-Liotta '11 Kaufmann-Klemz-Knorr-Reddy-SU Kaufmann-Klemz-Knorr-Reddy-SU
1 ⁺ -real face 2 ⁺ -real face k ⁺ -real face	$5n - 10$ $4n - 8$ $\frac{k}{k-2}(n-2)$	Binucci-Di Battista-Didimo-Hong-K Binucci-Di Battista-Didimo-Hong-K Binucci-Di Battista-Didimo-Hong-K
fan-planar	5n - 10	(Kaufmann-Ueckerdt '22) Ackerma

Jeckerdt '24 Jeckerdt '24

Kaufmann-Liotta-Morin-Tappini '23 Kaufmann-Liotta-Morin-Tappini '23 Kaufmann-Liotta-Morin-Tappini '23

an-Keszegh '23

Lower Bound for Quasiplanar Graphs

 \triangleright cycle C (n edges) \triangleright 2-hops inside *C* (*n* edges) \triangleright 2-hops outside C (n edges) \triangleright 3-hops along C (n edges) \triangleright 2 zig-zag paths inside C (2(n-5) edges) \triangleright 2 zig-zag paths outside C (2(n-5) edges)