

Parameterized Algorithms for Beyond Planar Crossing Numbers

Miriam Münch, Ignaz Rutter 18. September 2024

crossing number of $G = \min$. # crossings in any drawing of G

Param. Algorithms for Beyond Planar Crossing Numbers | M. Münch, I. Rutter | 18. September 2024

not 1-planar

not 1-planar

not 1-planar

\mathcal{D} -crossing number of $G = \min$. # crossings in any \mathcal{D} -drawing of G

\mathcal{D} - crossing number of $G = \min$. # crossings in any \mathcal{D} -drawing of G

can deviate significantly from each other [Chimani et al., Beusekom et al.]

 \mathcal{D} - crossing number of $G = \min$. # crossings in any \mathcal{D} -drawing of G

- can deviate significantly from each other [Chimani et al., Beusekom et al.]
- computing crossing number is NP-complete [Garey, Johnson]

 \mathcal{D} - crossing number of $G = \min$. # crossings in any \mathcal{D} -drawing of G

- can deviate significantly from each other [Chimani et al., Beusekom et al.]
- computing crossing number is NP-complete [Garey, Johnson]
- crossing number can be computed in FPT-time [Grohe]

 \mathcal{D} - crossing number of $G = \min$. # crossings in any \mathcal{D} -drawing of G

- can deviate significantly from each other [Chimani et al., Beusekom et al.]
- computing crossing number is NP-complete [Garey, Johnson]
- crossing number can be computed in FPT-time [Grohe]

Can decide whether $crn(G) \le c$ in time $f(c)n^{O(1)}$

 \mathcal{D} - crossing number of $G = \min$. # crossings in any \mathcal{D} -drawing of G

- can deviate significantly from each other [Chimani et al., Beusekom et al.]
- recognizing beyond-planar graph classes often NP-complete

Can decide whether $crn(G) \le c$ in time $f(c)n^{O(1)}$

2

 \mathcal{D} - crossing number of $G = \min$. # crossings in any \mathcal{D} -drawing of G

- can deviate significantly from each other [Chimani et al., Beusekom et al.]
- recognizing beyond-planar graph classes often NP-complete
- 1-planar crossing number can be computed in FPT-time [Hamm, Hliněný] Can decide whether crn(G) ≤ c in time $f(c)n^{O(1)}$

 \mathcal{D} - crossing number of $G = \min$. # crossings in any \mathcal{D} -drawing of G

- can deviate significantly from each other [Chimani et al., Beusekom et al.]
- recognizing beyond-planar graph classes often NP-complete
- 1-planar crossing number can be computed in FPT-time [Hamm, Hliněný]

Can we decide \mathcal{D} -crn(G) $\leq c$ in time $f(c)n^{O(1)}$?

Beyond-planar graph classes usually defined via forbidden patterns

Beyond-planar graph classes usually defined via forbidden patterns

Goal: Combinatorial formalization

Beyond-planar graph classes usually defined via forbidden patterns

Goal: Combinatorial formalization

Meta-Theorem

For any set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F} is FPT w.r.t. c.

Beyond-planar graph classes usually defined via forbidden patterns

Goal: Combinatorial formalization

Meta-Theorem

For any set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F} is FPT w.r.t. c.

For any beyond-planar graph class D that is defined by finitely many forbidden patterns, computing D-crn(G) is FPT.

Beyond-planar graph classes usually defined via forbidden patterns

Goal: Combinatorial formalization

Meta-Theorem

For any set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F} is FPT w.r.t. c.

For any beyond-planar graph class D that is defined by finitely many forbidden patterns, computing D-crn(G) is FPT.

based on Grohe's approach

Beyond-planar graph classes usually defined via forbidden patterns

Goal: Combinatorial formalization

Meta-Theorem

For any set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F} is FPT w.r.t. c.

For any beyond-planar graph class D that is defined by finitely many forbidden patterns, computing D-crn(G) is FPT.

based on Grohe's approach

Phase 1: Bound treewidth w.r.t. beyond-planar crossing number

Beyond-planar graph classes usually defined via forbidden patterns

Goal: Combinatorial formalization

Meta-Theorem

For any set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F} is FPT w.r.t. c.

For any beyond-planar graph class D that is defined by finitely many forbidden patterns, computing D-crn(G) is FPT.

based on Grohe's approach

Phase 1: Bound treewidth w.r.t. beyond-planar crossing number

Phase 2: Solve problem on graphs of bounded treewidth via Courcelle

- crossing in P → crossing in drawing required
- crossing in drawing that is absent in P does not help to avoid P

- crossing in P → crossing in drawing required
- crossing in drawing that is absent in P does not help to avoid P

Forbidden in 1-planar drawings:

- crossing in P → crossing in drawing required
- crossing in drawing that is absent in P does not help to avoid P
- allow mapping edge in P to part of edge in drawing

Forbidden in 1-planar drawings:

- crossing in P → crossing in drawing required
- crossing in drawing that is absent in P does not help to avoid P
- allow mapping edge in P to part of edge in drawing

Forbidden in 1-planar drawings:

Crossing Patterns – Definition

real / crossing / subdivision

A crossing pattern is a graph $P = (V_P, E_P)$ with $V_P = R \cup C \cup S$ s.t.

Forbidden Patterns

1-planar

Crossing Patterns – Definition

real / crossing / subdivision

A crossing pattern is a graph $P = (V_P, E_P)$ with $V_P = R \cup C \cup S$ s.t.

each vertex in S has degree 1,

Forbidden Patterns

1-planar

Crossing Patterns – Definition

real / crossing / subdivision

A crossing pattern is a graph $P = (V_P, E_P)$ with $V_P = R \cup C \cup S$ s.t.

- each vertex in S has degree 1,
- each vertex in C has degree 4,

Forbidden Patterns

1-planar

A crossing pattern is a graph $P = (V_P, E_P)$ with $V_P = R \cup C \cup S$ s.t.

- each vertex in S has degree 1,
- each vertex in C has degree 4,
- each vertex in R and each vertex in S has at least one neighbor in C.

Forbidden Patterns

1-planar

A crossing pattern is a graph $P = (V_P, E_P)$ with $V_P = R \cup C \cup S$ s.t.

- each vertex in S has degree 1,
- each vertex in C has degree 4,
- each vertex in R and each vertex in S has at least one neighbor in C.

Forbidden Patterns

A crossing pattern is a graph $P = (V_P, E_P)$ with $V_P = R \cup C \cup S$ s.t.

- each vertex in S has degree 1,
- each vertex in C has degree 4,
- each vertex in R and each vertex in S has at least one neighbor in C.

Forbidden Patterns

A crossing pattern is a graph $P = (V_P, E_P)$ with $V_P = R \cup C \cup S$ s.t.

- each vertex in S has degree 1,
- each vertex in C has degree 4,
- each vertex in R and each vertex in S has at least one neighbor in C.

Forbidden Patterns

Fan-crossing free?

Fan-crossing free?

Fan-crossing free?

Allowed Operations:

(*i*) delete isolated vertices

UNIVERSITÄT PASSAU

Fan-crossing free?

Allowed Operations:

- (i) delete isolated vertices
- (*ii*) subdivide edge by introducing subdivision vertex

UNIVERSITÄT PASSAU

Fan-crossing free?

Allowed Operations:

- (i) delete isolated vertices
- (*ii*) subdivide edge by introducing subdivision vertex
- (iii) smooth a crossing

UNIVERSITÄT PASSAU

Fan-crossing free?

Allowed Operations:

(i) delete isolated vertices

(*ii*) subdivide edge by introducing subdivision vertex

(iii) smooth a crossing

Fan-crossing free?

Allowed Operations:

(i) delete isolated vertices

(*ii*) subdivide edge by introducing subdivision vertex

(iii) smooth a crossing

UNIVERSITÄT PASSAU

Fan-crossing free?

Allowed Operations:

- (i) delete isolated vertices
- (*ii*) subdivide edge by introducing subdivision vertex
- (iii) smooth a crossing
- (*iv*) delete edge that is not incident to a crossing vertex

UNIVERSITÄT PASSAU

Fan-crossing free?

Allowed Operations:

(i) delete isolated vertices

(*ii*) subdivide edge by introducing subdivision vertex

(iii) smooth a crossing

UNIVERSITÄT PASSAU

Fan-crossing free?

Allowed Operations:

(i) delete isolated vertices

(*ii*) subdivide edge by introducing subdivision vertex

(iii) smooth a crossing

Fan-crossing free?

Allowed Operations:

(i) delete isolated vertices

(*ii*) subdivide edge by introducing subdivision vertex

(iii) smooth a crossing

Fan-crossing free?

Allowed Operations:

(i) delete isolated vertices

(*ii*) subdivide edge by introducing subdivision vertex

(iii) smooth a crossing

Fan-crossing free?

Allowed Operations:

- (i) delete isolated vertices
- (*ii*) subdivide edge by introducing subdivision vertex
- (iii) smooth a crossing

UNIVERSITÄT

Fan-crossing free?

Allowed Operations:

- (i) delete isolated vertices
- (*ii*) subdivide edge by introducing subdivision vertex
- (iii) smooth a crossing

UNIVERSITÄT

Fan-crossing free?

Allowed Operations:

(i) delete isolated vertices

(*ii*) subdivide edge by introducing subdivision vertex

(iii) smooth a crossing

Fan-crossing free?

Allowed Operations:

(i) delete isolated vertices

(*ii*) subdivide edge by introducing subdivision vertex

(iii) smooth a crossing

Fan-crossing free? NO!

Allowed Operations:

- (i) delete isolated vertices
- (*ii*) subdivide edge by introducing subdivision vertex
- (iii) smooth a crossing
- (*iv*) delete edge that is not incident to a crossing vertex

For any fixed set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with at most c crossings that avoids all patterns in \mathcal{F} is FPT with respect to c.

For any fixed set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with at most c crossings that avoids all patterns in \mathcal{F} is FPT with respect to c.

Lemma [Grohe]

There is a linear-time algo that, given a graph G, either

recognizes: every *F*-free drawing has > c crossings,

For any fixed set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with at most c crossings that avoids all patterns in \mathcal{F} is FPT with respect to c.

Lemma [Grohe]

There is a linear-time algo that, given a graph G, either

recognizes: every *F*-free drawing has > c crossings, reject!

For any fixed set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with at most c crossings that avoids all patterns in \mathcal{F} is FPT with respect to c.

Lemma [Grohe]

There is a linear-time algo that, given a graph G, either

- recognizes: every *F*-free drawing has > *c* crossings, reject!
- recognizes tw(G) ≤ w or

For any fixed set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with at most c crossings that avoids all patterns in \mathcal{F} is FPT with respect to c.

Lemma [Grohe]

There is a linear-time algo that, given a graph G, either

- recognizes: every *F*-free drawing has > c crossings, reject!
- recognizes tw(G) ≤ w or

move to Phase 2

move to Phase 2

Goal:

For any fixed set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with at most c crossings that avoids all patterns in \mathcal{F} is FPT with respect to c.

Lemma [Grohe]

There is a linear-time algo that, given a graph G, either

- recognizes: every *F*-free drawing has > c crossings, reject!
- recognizes tw(G) ≤ w or
- finds large hex-grid in G.

Param. Algorithms for Beyond Planar Crossing Numbers | M. Münch, I. Rutter | 18. September 2024

For any fixed set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with at most c crossings that avoids all patterns in \mathcal{F} is FPT with respect to c.

Lemma [Grohe]

There is a linear-time algo that, given a graph G, either

- recognizes: every \mathcal{F} -free drawing has > c crossings, reject!
- move to Phase 2 recognizes $tw(G) \leq w$ or
 - finds large hex-grid in G.

Todo!

planar

drawing of G with $\leq c$ crossings principal large cycles crossing-free

planar

drawing of G with $\leq c$ crossings principal large cycles crossing-free

planar

drawing of G' with $\leq c$ crossings

drawing of G' with $\leq c$ crossings

• |V(G')| < |V(G)|
UNIVERSITÄT PASSAU

drawing of G' with $\leq c$ crossings

|V(G')| < |V(G)|

G admits drawing with \leq c crossings that avoids all patterns in \mathcal{F}

UNIVERSITÄT PASSAU

drawing of G' with $\leq c$ crossings

• |V(G')| < |V(G)|

G admits drawing with \leq c crossings that avoids all patterns in \mathcal{F} \Rightarrow G' admits drawing with \leq *c* crossings that avoids all patterns in \mathcal{F}

UNIVERSITÄT PASSAU

drawing of G' with $\leq c$ crossings

|V(G')| < |V(G)|

G' admits a drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F}

drawing of G' with $\leq c$ crossings

|V(G')| < |V(G)|

G' admits a drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F}

drawing of G' with $\leq c$ crossings

|V(G')| < |V(G)|

G' admits a drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F}

drawing of G' with $\leq c$ crossings

|V(G')| < |V(G)|

G' admits a drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F} $\Rightarrow G$ admits a drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F}

drawing of G' with $\leq c$ crossings

• |V(G')| < |V(G)|

all blue edges uncrossed!

G' admits a drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F} $\Rightarrow G$ admits a drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F}

move to Phase 2

Goal:

For any fixed set \mathcal{F} of crossing patterns, testing whether a graph G admits drawing with at most c crossings that avoids all patterns in \mathcal{F} is FPT with respect to c.

Lemma [Grohe]

There is a linear-time algo that, given a graph G, either

- recognizes: every *F*-free drawing has > c crossings, reject!
- recognizes tw(G) ≤ w or
- finds large hex-grid in G.

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

- no edge in $F \subseteq E$ is involved in a crossing
- no pattern in *F* contained
- ≤ c crossings

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

 \rightarrow express existence of suitable planarization

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

 \rightarrow express existence of suitable planarization

 $e \in E \setminus F$

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

 \rightarrow express existence of suitable planarization

╳

×

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

-X-

╳

 \rightarrow express existence of suitable planarization

╳

╳

-X-

-X-

2 subdivision dummies

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

 \rightarrow express existence of suitable planarization

$\bullet \times \times \Box \times \times \Box \times \times \bullet$

- c crossing dummies
- 2 subdivision dummies

Input: free variables x_1, \ldots, x_c , y_1, \ldots, y_c

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

 \rightarrow express existence of suitable planarization

Input: free variables x_1, \ldots, x_c , y_1, \ldots, y_c

vertices in C, x_i identified with y_i

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

 \rightarrow express existence of suitable planarization

Input: free variables x_1, \ldots, x_c , y_1, \ldots, y_c

vertices in C, x_i identified with y_i

$$x_i \downarrow y_i$$

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

 \rightarrow express existence of suitable planarization

Input: free variables $x_1, \ldots, x_c, y_1, \ldots, y_c$ vertices in C, x_i identified with y_i

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

 \rightarrow express existence of suitable planarization

Input: free variables x_1, \ldots, x_c , y_1, \ldots, y_c

vertices in C, x_i identified with y_i

• pairwise distinct (except $x_i = y_i$)

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

 \rightarrow express existence of suitable planarization

Input: free variables $x_1, \ldots, x_c, y_1, \ldots, y_c$

vertices in C, x_i identified with y_i

- pairwise distinct (except $x_i = y_i$)
- no self-crossings

Goal: $\varphi_{\mathcal{F}}(F) \vDash G \Leftrightarrow G$ has (F, \mathcal{F}, c) -good drawing

 \rightarrow express existence of suitable planarization

Input: free variables $x_1, \ldots, x_c, y_1, \ldots, y_c$

vertices in C, x_i identified with y_i

- pairwise distinct (except $x_i = y_i$)
- no self-crossings
- described graph is planar

ERSITÄT

a_{3}^{1} a_{2}^{1} Ρ a_2^2 a_3^2 a_{1}^{1} a_{1}^{4} a_{1}^{2} a_{1}^{3} $\varphi_{P} = \exists a_{1}^{1} \in R \ \exists a_{1}^{2}, a_{1}^{3} \in C \ \exists a_{1}^{4} \in R \ \exists a_{2}^{1}, a_{3}^{1} \in S \ \exists a_{2}^{2}, a_{3}^{2} \in C \ \exists a_{2}^{3} \in R$ isCrossing (a_1^2, a_2^2) \land isCrossing (a_1^3, a_3^2) $\exists E_1, E_2, E_3 \subseteq E$

a_{3}^{1} a_{2}^{1} Ρ a_2^2 a_3^2 a_{1}^{1} a_{1}^{4} a_{1}^{2} a_{1}^{3} $\varphi_{P} = \exists a_{1}^{1} \in R \quad \exists a_{1}^{2}, a_{1}^{3} \in C \quad \exists a_{1}^{4} \in R \quad \exists a_{2}^{1}, a_{3}^{1} \in S \quad \exists a_{2}^{2}, a_{3}^{2} \in C \quad \exists a_{2}^{3} \in R$ isCrossing (a_1^2, a_2^2) \land isCrossing (a_1^3, a_3^2) $\exists E_1, E_2, E_3 \subseteq E$ $\bigwedge_{i\neq i}$ disjoint(E_i, E_j)

a_{3}^{1} a_2^1 a_2^2 a_3^2 a_{1}^{1} a_{1}^{4} a_1^2 a_{1}^{3} $\varphi_{P} = \exists a_{1}^{1} \in R \ \exists a_{1}^{2}, a_{1}^{3} \in C \ \exists a_{1}^{4} \in R \ \exists a_{2}^{1}, a_{3}^{1} \in S \ \exists a_{2}^{2}, a_{3}^{2} \in C \ \exists a_{2}^{3} \in R$ isCrossing(a_1^2, a_2^2) \land isCrossing(a_1^3, a_3^2) $\exists E_1, E_2, E_3 \subseteq E$ $\bigwedge_{i\neq i}$ disjoint(E_i, E_j) chain($E_1, a_1^1, a_1^2, a_1^3, a_1^4$) \land chain($E_2, ...$) \land chain($E_3, ...$)

Param. Algorithms for Beyond Planar Crossing Numbers | M. Münch, I. Rutter | 18. September 2024

9

- $\exists E_1, E_2, E_3 \subseteq E$ $\bigwedge_{i \neq i} \text{ disjoint}(E_i, E_j)$
- chain($E_1, a_1^1, a_1^2, a_1^3, a_1^4$) \land chain($E_2, ...$) \land chain($E_3, ...$)

 $\varphi_{\mathcal{F}} = \mathsf{planar}^{\times} \land \bigwedge_{P \in \mathcal{F}} \neg \varphi_P$

chain = path s.t.

• internal vertices in $C \cup S$

given vertices in correct order

$$\begin{split} \varphi_{P} &= \exists a_{1}^{1} \in R \ \exists a_{1}^{2}, a_{1}^{3} \in C \ \exists a_{1}^{4} \in R \ \exists a_{2}^{1}, a_{3}^{1} \in S \ \exists a_{2}^{2}, a_{3}^{2} \in C \ \exists a_{2}^{3} \in R \\ &\text{isCrossing}(a_{1}^{2}, a_{2}^{2}) \land \text{isCrossing}(a_{1}^{3}, a_{3}^{2}) \\ &\exists E_{1}, E_{2}, E_{3} \subseteq E \\ & & & & & \\ & & & & \\ & & & \\ &$$

 $\varphi_{\mathcal{F}} = planar^{\times} \land \bigwedge_{P \in \mathcal{F}} \neg \varphi_P$

size depends only on c and pattern-size

chain = path s.t.

• internal vertices in $C \cup S$

given vertices in correct order

```
\begin{split} \varphi_{P} &= \exists a_{1}^{1} \in R \ \exists a_{1}^{2}, a_{1}^{3} \in C \ \exists a_{1}^{4} \in R \ \exists a_{2}^{1}, a_{3}^{1} \in S \ \exists a_{2}^{2}, a_{3}^{2} \in C \ \exists a_{2}^{3} \in R \\ &\text{isCrossing}(a_{1}^{2}, a_{2}^{2}) \land \text{isCrossing}(a_{1}^{3}, a_{3}^{2}) \\ &\exists E_{1}, E_{2}, E_{3} \subseteq E \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &
```

 $\varphi_{\mathcal{F}} = planar^{\times} \land \bigwedge_{P \in \mathcal{F}} \neg \varphi_P$

- size depends only on c and pattern-size
- treewidth does not increase by subdividing edges

chain = path s.t.

■ internal vertices in *C* ∪ *S*

given vertices in correct order

$$\begin{split} \varphi_{P} &= \exists a_{1}^{1} \in R \quad \exists a_{1}^{2}, a_{1}^{3} \in C \quad \exists a_{1}^{4} \in R \quad \exists a_{2}^{1}, a_{3}^{1} \in S \quad \exists a_{2}^{2}, a_{3}^{2} \in C \quad \exists a_{2}^{3} \in R \\ &\text{isCrossing}(a_{1}^{2}, a_{2}^{2}) \land \text{isCrossing}(a_{1}^{3}, a_{3}^{2}) \\ &\exists E_{1}, E_{2}, E_{3} \subseteq E \\ & & & & & \\ & & & & \\ &$$

 $\varphi_{\mathcal{F}} = planar^{\times} \land \bigwedge_{\boldsymbol{P} \in \mathcal{F}} \neg \varphi_{\boldsymbol{P}}$

- size depends only on c and pattern-size
- treewidth does not increase by subdividing edges

chain = path s.t.

■ internal vertices in *C* ∪ *S*

given vertices in correct order

$$\begin{split} \varphi_{P} &= \exists a_{1}^{1} \in R \ \exists a_{1}^{2}, a_{1}^{3} \in C \ \exists a_{1}^{4} \in R \ \exists a_{2}^{1}, a_{3}^{1} \in S \ \exists a_{2}^{2}, a_{3}^{2} \in C \ \exists a_{2}^{3} \in R \\ &\text{isCrossing}(a_{1}^{2}, a_{2}^{2}) \land \text{isCrossing}(a_{1}^{3}, a_{3}^{2}) \\ &\exists E_{1}, E_{2}, E_{3} \subseteq E \\ & & & & & \\ & & & & \\ & & & \\ &$$

 $\varphi_{\mathcal{F}} = planar^{\times} \land \bigwedge_{P \in \mathcal{F}} \neg \varphi_{P}$

- size depends only on c and pattern-size
- treewidth does not increase by subdividing edges

Courcelle

Theorem

For any fixed set of crossing patterns \mathcal{F} , testing whether a graph G admits drawing with $\leq c$ crossings that avoids all patterns in \mathcal{F} is FPT w.r.t. c. chain = path s.t.

- internal vertices in *C* ∪ *S*
- given vertices in correct order

$$\begin{split} \varphi_{P} &= \exists a_{1}^{1} \in R \ \exists a_{1}^{2}, a_{1}^{3} \in C \ \exists a_{1}^{4} \in R \ \exists a_{2}^{1}, a_{3}^{1} \in S \ \exists a_{2}^{2}, a_{3}^{2} \in C \ \exists a_{2}^{3} \in R \\ &\text{isCrossing}(a_{1}^{2}, a_{2}^{2}) \land \text{isCrossing}(a_{1}^{3}, a_{3}^{2}) \\ &\exists E_{1}, E_{2}, E_{3} \subseteq E \\ & & & & & \\ & & & & \\ & & & \\ &$$

10

combinatorial formalization crossing patterns

10

combinatorial formalization crossing patterns

Meta-Theorem

10

combinatorial formalization crossing patterns

Meta-Theorem

For any fixed set of crossing patterns \mathcal{F} , testing whether a graph G admits drawing with at most c crossings that avoids all patterns in \mathcal{F} is FPT with respect to c.

extendable to 2-layer setting

10

combinatorial formalization crossing patterns

Meta-Theorem

- extendable to 2-layer setting
- extendable to SEFE

10

combinatorial formalization crossing patterns

Meta-Theorem

- extendable to 2-layer setting
- extendable to SEFE
- not applicable if graph class relies on topological properties

10

combinatorial formalization crossing patterns

Meta-Theorem

- extendable to 2-layer setting
- extendable to SEFE
- not applicable if graph class relies on topological properties

combinatorial formalization crossing patterns

Meta-Theorem

- extendable to 2-layer setting
- extendable to SEFE
- not applicable if graph class relies on topological properties

