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Motivation – Euler’s formula

For any planar graph with n ≥ 3, we have: e ≤ 3n − 6

and equality holds for triangulations

Definition
A matchstick graph is a plane graph with unit length edges.
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Matchstick graphs
Construction:

Theorem (Swanepoel, Lavollée, 2022)

The maximum number of edges a matchstick graph on n
vertices can have, is

⌊3n −
√

12n − 3⌋.
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1-planar unit distance graphs
A drawn graph is 1-plane if each edge is crossed at most once.

Theorem (Pach, Tóth, 1997)

The maximum number of edges of a 1-planar graph is

4n − 8.

Theorem (G., Tóth, 2023)

For the maximum number of edges a 1-planar unit distance
graph can have, u1(n), we have

⌊3n −
√

12n − 3⌋ ≤ u1(n) ≤ 3n − 4
√

n/10.
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Sketch of the proof

1. Take a maximal
plane subgraph G

2. Add the remain-
ing edges in red

3. Split each red
edge into two half-
edges

4. Count the half-
edges for each face
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Counting halfedges
Triangles

Quadrilaterals

# Halfedges: 0 # Halfedges: ≤ 2

Key Lemma

A face ϕ with m ≥ 5 edges has at most

2 (t(ϕ)− m/10)

halfedges, where t(ϕ) is the number of edges needed to
triangulate ϕ.

Panna Gehér On 1-planar unit distance graphs



8/17

Counting halfedges
Triangles

Quadrilaterals

# Halfedges: 0 # Halfedges: ≤ 2

Key Lemma

A face ϕ with m ≥ 5 edges has at most

2 (t(ϕ)− m/10)

halfedges, where t(ϕ) is the number of edges needed to
triangulate ϕ.

Panna Gehér On 1-planar unit distance graphs



8/17

Counting halfedges
Triangles

Quadrilaterals

# Halfedges: 0

# Halfedges: ≤ 2

Key Lemma

A face ϕ with m ≥ 5 edges has at most

2 (t(ϕ)− m/10)

halfedges, where t(ϕ) is the number of edges needed to
triangulate ϕ.

Panna Gehér On 1-planar unit distance graphs



8/17

Counting halfedges
Triangles Quadrilaterals

# Halfedges: 0

# Halfedges: ≤ 2

Key Lemma

A face ϕ with m ≥ 5 edges has at most

2 (t(ϕ)− m/10)

halfedges, where t(ϕ) is the number of edges needed to
triangulate ϕ.

Panna Gehér On 1-planar unit distance graphs



8/17

Counting halfedges
Triangles Quadrilaterals

# Halfedges: 0

# Halfedges: ≤ 2

Key Lemma

A face ϕ with m ≥ 5 edges has at most

2 (t(ϕ)− m/10)

halfedges, where t(ϕ) is the number of edges needed to
triangulate ϕ.

Panna Gehér On 1-planar unit distance graphs



8/17

Counting halfedges
Triangles Quadrilaterals

# Halfedges: 0 # Halfedges: ≤ 2

Key Lemma

A face ϕ with m ≥ 5 edges has at most

2 (t(ϕ)− m/10)

halfedges, where t(ϕ) is the number of edges needed to
triangulate ϕ.

Panna Gehér On 1-planar unit distance graphs



8/17

Counting halfedges
Triangles Quadrilaterals

# Halfedges: 0 # Halfedges: ≤ 2

Key Lemma

A face ϕ with m ≥ 5 edges has at most

2 (t(ϕ)− m/10)

halfedges, where t(ϕ) is the number of edges needed to
triangulate ϕ.

Panna Gehér On 1-planar unit distance graphs



9/17

Meaning of the Key Lemma

1. Take a maximal
plane subgraph G

2. Add the remain-
ing edges in red

3. Split each red
edge into two half-
edges

4. Count the half-
edges for each face
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End of proof

We call an edge good if it bounds a face with m ≥ 5 edges.

There are a lot of. . .
1. good edges: ✓ by the Key Lemma

2. triangles:

area is big ⇒ perimeter is big
⇒ lots of good edges ✓

3. quadrilaterals:

”quite a lot of” triangles
or good edges ✓
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k -planar unit distance graphs
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k -planar unit distance graphs

A drawn graph is k -plane if an
edge is crossed at most k times

A forbidden subgraph for k = 4:

Theorem (Pach, Tóth, 1997)

The maximum number of edges of a k-planar graph is: c · n
√

k.

Theorem (Rote, 2023 and G., Tóth, 2023)

For the maximum number of edges of a k-planar unit distance
graph, uk (n), we have

2Ω(log k/ log log k)n ≤ uk (n) ≤ c 4
√

kn.
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Ideas of the proofs
▶ Lower bound:

we use the construction of Erdős

▶ Upper bound:
we use a strengthened version of the ’Crossing lemma’

if e ≥ 4n, then cr(G) ≥ c · e5

n4

but a k -planar graph can have at most ke
2 crossings ✓
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Open questions
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Open questions
1. Regular matchstick graphs:

0 1 2 3
.

Question:
Is there a 5-regular 1-planar unit distance graph?
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Open questions
2. Constructions with more than ⌊3n −

√
12n − 3⌋ edges

⇒ 3-planar unit distance graph with ≈ 3.5n edges

▶ k = 1: ?
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Thank you for your attention!
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