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Motivation — Euler’s formula

For any planar graph with n > 3, we have: e < 3n—6
and equality holds for triangulations

Definition
A matchstick graph is a plane graph with unit length edges.
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Matchstick graphs

Construction:
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Matchstick graphs

Construction:

Theorem (Swanepoel, Lavollée, 2022)

The maximum number of edges a matchstick graph on n

vertices can have, is
|3n—v12n—3].
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1-planar unit distance graphs
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1-planar unit distance graphs
A drawn graph is 1-plane if each edge is crossed at most once.
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1-planar unit distance graphs
A drawn graph is 1-plane if each edge is crossed at most once.

Theorem (Pach, Téth, 1997)
The maximum number of edges of a 1-planar graph is
4n — 8.
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1-planar unit distance graphs
A drawn graph is 1-plane if each edge is crossed at most once.

Y
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Theorem (Pach, Téth, 1997)
The maximum number of edges of a 1-planar graph is
4n — 8.

Theorem (G., Toth, 2023)

For the maximum number of edges a 1-planar unit distance
graph can have, uy(n), we have

|3n —v12n— 3| < uy(n) < 3n— +/n/10.
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Sketch of the proof
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Sketch of the proof

1. Take a maximal
plane subgraph G

2. Add the remain-

ing edges in red
3. Split each red
edge into two half-

edges

4. Count the half-
edges for each face
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Counting halfedges

Triangles
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Counting halfedges

Triangles

Panna Gehér On 1-planar unit distance graphs



Counting halfedges

Triangles

# Halfedges: 0
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Counting halfedges
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Counting halfedges

Triangles Quadrilaterals
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Counting halfedges

Triangles Quadrilaterals
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# Halfedges: 0 # Halfedges: < 2
Key Lemma

A face ¢ with m > 5 edges has at most

2(t(¢) — m/10)
halfedges, where t(¢) is the number of edges needed to
triangulate ¢.
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Meaning of the Key Lemma

1. Take a maximal
plane subgraph G

2. Add the remain-

ing edges in red

i 3. Split each red
edge into two half-
edges

4. Count the half-
edges for each face
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Meaning of the Key Lemma

1. Take a maximal
plane subgraph G

2. Add the remain-
ing edges in red

3. Split each red
edge into two half-
edges

4. Count the half-
edges for each face
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End of proof

We call an edge good if it bounds a face with m > 5 edges.
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End of proof

We call an edge good if it bounds a face with m > 5 edges.

There are a lot of. ..
1. good edges: v by the Key Lemma

2. triangles: 3. quadrilaterals:

area is big = perimeter is big ~ "quite a lot of” triangles
= lots of good edges v/ or good edges
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End of proof

We call an edge good if it bounds a face with m > 5 edges.
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k-planar unit distance graphs
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k-planar unit distance graphs

A drawn graph is k-plane if an
edge is crossed at most k times
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k-planar unit distance graphs

A drawn graph is k-plane if an
edge is crossed at most k times

A forbidden subgraph for k = 4:

Theorem (Pach, Téth, 1997)

The maximum number of edges of a k-planar graph is: ¢ - nV/k.
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k-planar unit distance graphs

A drawn graph is k-plane if an
edge is crossed at most k times

A forbidden subgraph for k = 4:

Theorem (Pach, Téth, 1997)

The maximum number of edges of a k-planar graph is: ¢ - nV/k.

Theorem (Rote, 2023 and G., T6th, 2023)

For the maximum number of edges of a k-planar unit distance
graph, ux(n), we have

2logk/loglogk) n <y (n) < cV/kn.
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Ideas of the proofs

» Lower bound:
we use the construction of Erdbs
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» Upper bound:
we use a strengthened version of the 'Crossing lemma’
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» Lower bound:
we use the construction of Erdbs

» Upper bound:
we use a strengthened version of the 'Crossing lemma’

if e>4n, then cr(G) > c- %f’
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|deas of the proofs

» Lower bound:
we use the construction of Erdbs

» Upper bound:
we use a strengthened version of the ’Crossing lemma’

if e>4n, then cr(G) > c- %f’

but a k-planar graph can have at most % crossings v’
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Open questions
1. Regular matchstick graphs:

X

0 1 2 3 4 5 6
(Harborth) (Kurz-Pinchasi) (Euler)

Question:
Is there a 5-regular 1-planar unit distance graph?
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Open questions
2. Constructions with more than |3n — +/12n — 3| edges
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Open questions
2. Constructions with more than |3n — v/12n — 3] edges

= 3-planar unit distance graph with ~ 3.5n edges
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Open questions
2. Constructions with more than |3n — v/12n — 3| edges
» k = 2: construction with ~ 3n — 1/8.3n edges (Simon)
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Thank you for your attention!
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