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Then cr(G) > £ mp43”” =5 - %.

Choosing p = 4—nf",
we get cr(G) > 614[(,7‘}%2 — (,7?—,',,’7)3] = 4m3/n?

That's all !
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Even better:
Remove from G an edge with > 3 crossings, as long as m > 5n,
then n edges with > 2 crossings, then n with > 1 crossing

—cr(G)>3(m—5n)4+2n+n=3m—13n if m>5n
or even ....
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Even better:
—cr(G)>3(m—5n)4+2n+n=3m—13n  if m>5n
or even
cr(G) >4(m—55n)4+3(n/2)+2n+n=4m—18n if m > 5.5n

Pach, Radoicic, Tardos and Toth 06 roughly followed those lines:

— cr(G) > Im— 2n
— cr(G) > 5oz ™ = 0.0327

or even Ackerman 2014 (bound for 4-planarity):
— cr(G) >5(m—6n)+4(n/2)+3(n/2) +2n+n=5m—23.5n
3 3 if m Z on

One way for improvement: Density of 5-planar graphs |
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A closer look to 2/3-planar graphs

Theorem:

Any graph G that admits a 2-planar F2-free drawing has < 4.5n edges.
If additionally, the drawing is even F2-free, then m < %n

Theorem:
Any graph G that admits a 3-planar FZ-free drawing has < 5n edges.

Proof: Discharging!

Corollary:

For every 2-planar drawing of any graph with n > 3 vertices and
B(n—2)+ x edges for x € [0, £(n — 2)], the number of FZ and FZ
configurations is at least x.
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Consequences for the Crossing Lemma

Counting:

So assume m > 5n and let D be a crossing-minimal drawing of G.
From D, we iteratively remove the edge with the most crossings until
5n edges are left.

So, first > 5 crossings for ms edges — 5mys

Then 4 crossings for 4m, edges — 4my

Then remove m3 edges from mj F63 configurations — 3mj3

Then m < 5n.

In total, this is > 5my4 + 4m4 + 3m3 crossings.

Now, from each of the ms F¢ configs we can delete 2 more edges with

3 cross. — 6m;3

Possibly, we can delete more m; edges X
with 3 cross. — 3my < >
Then 2-planarity has been reached !
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New bound for the Crossing Lemma

From here, we have > £(5n — 2m3 — m3’) — 2n crossings [PRTTO6]

In total, it can be bounded by|> 4m — 2n.

Theorem:
This can be refined to cr(G) > £2m — 22n

There, the probabilistic argument can be applied, then
cr(G) > 573'%




Corollary

In k-planar graphs, we have at most km/2 crossings.

Hence s22m?/n* < cr(G) < km/2

Theorem:
For k-planar graphs with n vertices and m edges, we have

m < 3.72v kn. Previously, we had 3.81
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THANK YOU !






