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Tübingen University

[page]1



Motivation

Crossing Lemma is a classical result from combinatorial geometry,
and proved by Leighton, and Ajtai, Chvatal, Newborn and Szemeredi 1983.

Made it into the ’Proofs from the Book’



Motivation

Crossing Lemma is a classical result from combinatorial geometry,
and proved by Leighton, and Ajtai, Chvatal, Newborn and Szemeredi 1983.

Made it into the ’Proofs from the Book’

Theorem:
Let G be a simple graph with n vertices, m edges,

where m ≥ 4n. Then cr(G ) ≥ 1
64

m3

n2 .



Motivation

Crossing Lemma is a classical result from combinatorial geometry,
and proved by Leighton, and Ajtai, Chvatal, Newborn and Szemeredi 1983.

Made it into the ’Proofs from the Book’

Theorem:
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64

m3

n2 .

Proof:
Since cr(G ) ≥ m − (3n − 6), we have cr(G )−m + 3n ≥ 0
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Let Γ be a crossing-minimal drawing of G , and a parameter 0 ≤ p ≤ 1.

Let Gp be the graph induced by vertices drawn from V with probability p.
np,mp,Xp are the random variablesfor the cardinalities w.r.t. Gp.

Hence E (Xp −mp + 3np) ≥ 0.

We have E (np) = pn,E (mp) = p2m,E (Xp) = p4cr(G )

By linearity of expectation
0 ≤ E (Xp)− E (mp) + 3E (np) ≥ 0 = p4cr(G )− p2m + 3pn .

Then cr(G ) ≥ p2m−3pn
p4 = m

p2 − 3n
p3 .

Choosing p = 4n
m ,

we get cr(G ) ≥ 1
64 [

4m
(n/m)2 −

3n
(n/m)3 ] =

1
64m

3/n2

That’s all !
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Even better:
Remove from G an edge with ≥ 3 crossings, as long as m ≥ 5n,
then n edges with ≥ 2 crossings, then n with ≥ 1 crossing

→ cr(G ) ≥ 3(m − 5n) + 2n + n = 3m − 13n if m ≥ 5n
or even ....
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One way for improvement: Density of 5-planar graphs !
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Theorem:
Any graph G that admits a 2-planar F 2

5 -free drawing has ≤ 4.5n edges.
If additionally, the drawing is even F 2

6 -free, then m ≤ 13
3 n

Theorem:
Any graph G that admits a 3-planar F 3

6 -free drawing has ≤ 5n edges.

Proof: Discharging!

Corollary:
For every 2-planar drawing of any graph with n ≥ 3 vertices and
13
3 (n − 2) + x edges for x ∈ [0, 2

3 (n − 2)], the number of F 2
5 and F 2

6

configurations is at least x .



Consequences for the Crossing Lemma
Counting:
So assume m > 5n and let D be a crossing-minimal drawing of G.
From D, we iteratively remove the edge with the most crossings until
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So, first ≥ 5 crossings for m5 edges → 5m5

Then 4 crossings for 4m4 edges → 4m4

Then remove m3 edges from m3 F 3
6 configurations → 3m3
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In total, this is ≥ 5m4 + 4m4 + 3m3 crossings.

Now, from each of the m3 F 3
6 configs we can delete 2 more edges with

3 cross. → 6m3
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Consequences for the Crossing Lemma
Counting:
So assume m > 5n and let D be a crossing-minimal drawing of G.
From D, we iteratively remove the edge with the most crossings until
5n edges are left.
So, first ≥ 5 crossings for m5 edges → 5m5

Then 4 crossings for 4m4 edges → 4m4

Then remove m3 edges from m3 F 3
6 configurations → 3m3

Then m ≤ 5n.

In total, this is ≥ 5m4 + 4m4 + 3m3 crossings.

Now, from each of the m3 F 3
6 configs we can delete 2 more edges with

3 cross. → 6m3

Possibly, we can delete more m−
3 edges

with 3 cross. → 3m−
3

Then 2-planarity has been reached !
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From here, we have ≥ 7
3 (5n − 2m3 −m−

3 )− 25
3 n crossings [PRTT06]

In total, it can be bounded by ≥ 4m − 50
3 n.

Theorem:
This can be refined to cr(G ) ≥ 73

18m − 503
18 n

There, the probabilistic argument can be applied, then

cr(G ) ≥ 1
27.4

m3

n2



Corollary

In k-planar graphs, we have at most km/2 crossings.

Hence 1
27.4m

3/n2 ≤ cr(G ) ≤ km/2

Theorem:
For k-planar graphs with n vertices and m edges, we have
m ≤ 3.72

√
kn. Previously, we had 3.81
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THANK YOU !




