Improving the Crossing Lemma by characterizing dense 2-planar and 3-planar graphs

Michael Kaufmann Tübingen University

18/09/2024 GD'2024 - Vienna

Motivation

Crossing Lemma is a classical result from combinatorial geometry, and proved by Leighton, and Ajtai, Chvatal, Newborn and Szemeredi 1983.

Made it into the 'Proofs from the Book'

Motivation

Crossing Lemma is a classical result from combinatorial geometry, and proved by Leighton, and Ajtai, Chvatal, Newborn and Szemeredi 1983.

Made it into the 'Proofs from the Book'

Theorem: Let G be a simple graph with n vertices, m edges, where $m \ge 4n$. Then $cr(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

Motivation

Crossing Lemma is a classical result from combinatorial geometry, and proved by Leighton, and Ajtai, Chvatal, Newborn and Szemeredi 1983.

Made it into the 'Proofs from the Book'

Theorem: Let G be a simple graph with n vertices, m edges, where $m \ge 4n$. Then $cr(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

Proof: Since $cr(G) \ge m - (3n - 6)$, we have $cr(G) - m + 3n \ge 0$

Let Γ be a crossing-minimal drawing of G, and a parameter $0 \le p \le 1$.

Let Γ be a crossing-minimal drawing of G, and a parameter $0 \le p \le 1$.

Let G_p be the graph induced by vertices drawn from V with probability p. n_p , m_p , X_p are the random variables for the cardinalities w.r.t. G_p .

Hence $E(X_p - m_p + 3n_p) \ge 0$.

Let Γ be a crossing-minimal drawing of G, and a parameter $0 \le p \le 1$.

Let G_p be the graph induced by vertices drawn from V with probability p. n_p , m_p , X_p are the random variables for the cardinalities w.r.t. G_p .

Hence $E(X_p - m_p + 3n_p) \ge 0$.

We have
$$E(n_p) = pn, E(m_p) = p^2m, E(X_p) = p^4cr(G)$$

By linearity of expectation $0 \leq E(X_p) - E(m_p) + 3E(n_p) \geq 0 = p^4 cr(G) - p^2 m + 3pn$.

Let Γ be a crossing-minimal drawing of G, and a parameter $0 \le p \le 1$.

Let G_p be the graph induced by vertices drawn from V with probability p. n_p , m_p , X_p are the random variables for the cardinalities w.r.t. G_p .

Hence
$$E(X_p - m_p + 3n_p) \geq 0$$
.

We have
$$E(n_p) = pn$$
, $E(m_p) = p^2m$, $E(X_p) = p^4cr(G)$

By linearity of expectation $0 \le E(X_p) - E(m_p) + 3E(n_p) \ge 0 = p^4 cr(G) - p^2 m + 3pn$.

Then $cr(G) \ge \frac{p^2m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$.

Choosing $p = \frac{4n}{m}$, we get $cr(G) \ge \frac{1}{64} \left[\frac{4m}{(n/m)^2} - \frac{3n}{(n/m)^3} \right] = \frac{1}{64} \frac{m^3}{n^2}$

That's all !

Let Γ be a crossing-minimal drawing of G, and a parameter $0 \le p \le 1$.

Theorem: Let G be a simple graph with n vertices, m edges, where $m \ge 4n$. Then $cr(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

Let Γ be a crossing-minimal drawing of G, and a parameter $0 \le p \le 1$.

Theorem: Let G be a simple graph with n vertices, m edges, where $m \ge 4n$. Then $cr(G) \ge \frac{1}{64} \frac{m^3}{n^2}$.

Proof:Since $cr(G) \ge m - (3n - 6)$, we have $cr(G) - m + 3n \ge 0$

Remove from G one non-planar edge at a time, until we have planarity: $\rightarrow cr(G) \ge m - (3n - 6)$

Remove from G one non-planar edge at a time, until we have planarity: $\rightarrow cr(G) \ge m - (3n - 6)$

For improvement, increase the right-hand side! Apply density bounds beyond planarity ! I.e. 1-planar graphs have $\leq 4n$ edges, 2-planar $\leq 5n$, etc

Remove from G one non-planar edge at a time, until we have planarity: $\rightarrow cr(G) \ge m - (3n - 6)$

For improvement, increase the right-hand side! Apply density bounds beyond planarity ! I.e. 1-planar graphs have $\leq 4n$ edges, 2-planar $\leq 5n$, etc Now it goes like this:

Remove from G an edge with ≥ 2 crossings, as long as $m \geq 4n$, then $\geq n$ edges with ≥ 1 crossings

$$\rightarrow cr(G) \ge 2(m-4n) + n = 2m - 7n \text{ if } m \ge 4n \\ \rightarrow \text{ With } p = 7m/n, \text{ we get } cr(G) \ge \frac{1}{49} \frac{m^3}{n^2}$$

Remove from G one non-planar edge at a time, until we have planarity: $\rightarrow cr(G) \ge m - (3n - 6)$

For improvement, increase the right-hand side! Apply density bounds beyond planarity ! I.e. 1-planar graphs have $\leq 4n$ edges, 2-planar $\leq 5n$, etc Now it goes like this:

Remove from G an edge with ≥ 2 crossings, as long as $m \geq 4n$, then $\geq n$ edges with ≥ 1 crossings

$$\rightarrow cr(G) \ge 2(m-4n) + n = 2m - 7n \text{ if } m \ge 4n \\ \rightarrow \text{ With } p = 7m/n, \text{ we get } cr(G) \ge \frac{1}{49} \frac{m^3}{n^2}$$

Even better:

Remove from G an edge with ≥ 3 crossings, as long as $m \geq 5n$, then n edges with ≥ 2 crossings, then n with ≥ 1 crossing

$$\rightarrow cr(G) \ge 3(m-5n)+2n+n=3m-13n$$
 if $m \ge 5n$
or even

 $\begin{array}{l} \underline{\text{Even better:}} \\ \to cr(G) \ge 3(m-5n) + 2n + n = 3m - 13n \quad \text{if } m \ge 5n \\ \text{or even} \\ cr(G) \ge 4(m-5.5n) + 3(n/2) + 2n + n = 4m - 18n \quad \text{if } m \ge 5.5n \end{array}$

 $\frac{\text{Even better:}}{\to cr(G) \ge 3(m-5n) + 2n + n = 3m - 13n} \quad \text{if } m \ge 5n$ or even $cr(G) \ge 4(m-5.5n) + 3(n/2) + 2n + n = 4m - 18n \quad \text{if } m \ge 5.5n$

Pach, Radoicic, Tardos and Toth 06 roughly followed those lines: $\rightarrow cr(G) \ge \frac{7}{3}m - \frac{25}{3}n$ $\rightarrow cr(G) \ge \frac{1}{31.08}\frac{m^3}{n^2} = 0.032\frac{m^3}{n^2}$

 $\begin{array}{l} \underline{\text{Even better:}} \\ \to cr(G) \ge 3(m-5n) + 2n + n = 3m - 13n \quad \text{if } m \ge 5n \\ \text{or even} \\ cr(G) \ge 4(m-5.5n) + 3(n/2) + 2n + n = 4m - 18n \quad \text{if } m \ge 5.5n \end{array}$

Pach, Radoicic, Tardos and Toth 06 roughly followed those lines: $\rightarrow cr(G) \ge \frac{7}{3}m - \frac{25}{3}n$ $\rightarrow cr(G) \ge \frac{1}{31.08}\frac{m^3}{n^2} = 0.032\frac{m^3}{n^2}$

or even Ackerman 2014 (bound for 4-planarity): $\rightarrow cr(G) \ge 5(m-6n) + 4(n/2) + 3(n/2) + 2n + n = 5m - 23.5n$ if $m \ge 6n$

 $\frac{\text{Even better:}}{\to cr(G) \ge 3(m-5n) + 2n + n = 3m - 13n} \quad \text{if } m \ge 5n$ or even $cr(G) \ge 4(m-5.5n) + 3(n/2) + 2n + n = 4m - 18n \quad \text{if } m \ge 5.5n$

Pach, Radoicic, Tardos and Toth 06 roughly followed those lines: $\rightarrow cr(G) \ge \frac{7}{3}m - \frac{25}{3}n$ $\rightarrow cr(G) \ge \frac{1}{31.08}\frac{m^3}{n^2} = 0.032\frac{m^3}{n^2}$

$$\begin{array}{l} \begin{array}{l} \text{or even Ackerman 2014 (bound for 4-planarity):} \\ \hline \rightarrow cr(G) \geq 5(m-6n) + 4(n/2) + 3(n/2) + 2n + n = 5m - 23.5n \\ & \text{if } m \geq 6n \end{array} \\ \end{array}$$

$$\begin{array}{l} \underline{\text{Even better:}} \\ \to cr(G) \ge 3(m-5n) + 2n + n = 3m - 13n \quad \text{ if } m \ge 5n \\ \text{or even} \\ cr(G) \ge 4(m-5.5n) + 3(n/2) + 2n + n = 4m - 18n \quad \text{ if } m \ge 5.5n \end{array}$$

Pach, Radoicic, Tardos and Toth 06 roughly followed those lines: $\rightarrow cr(G) \ge \frac{7}{3}m - \frac{25}{3}n$ $\rightarrow cr(G) \ge \frac{1}{31.08}\frac{m^3}{n^2} = 0.032\frac{m^3}{n^2}$

or even Ackerman 2014 (bound for 4-planarity):
→
$$cr(G) \ge 5(m-6n) + 4(n/2) + 3(n/2) + 2n + n = 5m - 23.5n$$

if $m \ge 6n$
→ $cr(G) \ge \frac{1}{29} \frac{m^3}{n^2} = 0.034 \frac{m^3}{n^2}$

One way for improvement: Density of 5-planar graphs !

Optimal 2-planar graphs have 5n - 10 edges Optimal 3-planar graphs have about 5.5n - 11 edges

Optimal 2-planar graphs have 5n - 10 edges Optimal 3-planar graphs have about 5.5n - 11 edges

Optimal 2-planar graphs have a drawing with planar pentagons filled with pentagrams (call them F_5^2 's].

Optimal 3-planar graphs have a drawing with planar hexagons filled with 8 edges (call them F_6^3 's]

Optimal 2-planar graphs have 5n - 10 edges Optimal 3-planar graphs have about 5.5n - 11 edges

Optimal 2-planar graphs have a drawing with planar pentagons filled with pentagrams (call them F_5^2 's].

Optimal 3-planar graphs have a drawing with planar hexagons filled with 8 edges (call them F_6^3 's]

Optimal 2-planar graphs have 5n - 10 edges Optimal 3-planar graphs have about 5.5n - 11 edges

Optimal 2-planar graphs have a drawing with planar pentagons filled with pentagrams (call them F_5^2 's].

Optimal 3-planar graphs have a drawing with planar hexagons filled with 8 edges (call them F_6^3 's]

Theorem:

Any graph G that admits a 2-planar F_5^2 -free drawing has $\leq 4.5n$ edges. If additionally, the drawing is even F_6^2 -free, then $m \leq \frac{13}{3}n$

Theorem:

Any graph G that admits a 2-planar F_5^2 -free drawing has $\leq 4.5n$ edges. If additionally, the drawing is even F_6^2 -free, then $m \leq \frac{13}{3}n$

Theorem:

Any graph G that admits a 3-planar F_6^3 -free drawing has $\leq 5n$ edges. Proof: Discharging!

Theorem:

Any graph G that admits a 2-planar F_5^2 -free drawing has $\leq 4.5n$ edges. If additionally, the drawing is even F_6^2 -free, then $m \leq \frac{13}{3}n$

Theorem:

Any graph G that admits a 3-planar F_6^3 -free drawing has $\leq 5n$ edges. Proof: Discharging!

Corollary:

For every 2-planar drawing of any graph with $n \ge 3$ vertices and $\frac{13}{3}(n-2) + x$ edges for $x \in [0, \frac{2}{3}(n-2)]$, the number of F_5^2 and F_6^2 configurations is at least x.

Consequences for the Crossing Lemma

Counting:

So assume m > 5n and let D be a crossing-minimal drawing of G. From D, we iteratively remove the edge with the most crossings until 5n edges are left. So, first ≥ 5 crossings for m_5 edges $\rightarrow 5m_5$

Then 4 crossings for $4m_4$ edges $\rightarrow 4m_4$ Then remove m_3 edges from $m_3 F_6^3$ configurations $\rightarrow 3m_3$ Then $m \le 5n$.

In total, this is $\geq 5m_4 + 4m_4 + 3m_3$ crossings.

Now, from each of the $m_3 F_6^3$ configs we can delete 2 more edges with 3 cross. $\rightarrow 6m_3$

Consequences for the Crossing Lemma

Counting:

So assume m > 5n and let D be a crossing-minimal drawing of G. From D, we iteratively remove the edge with the most crossings until 5n edges are left. So, first ≥ 5 crossings for m_5 edges $\rightarrow 5m_5$

Then 4 crossings for $4m_4$ edges $\rightarrow 4m_4$ Then remove m_3 edges from $m_3 F_6^3$ configurations $\rightarrow 3m_3$ Then $m \le 5n$.

In total, this is $\geq 5m_4 + 4m_4 + 3m_3$ crossings.

Now, from each of the $m_3 F_6^3$ configs we can delete 2 more edges with 3 cross. $\rightarrow 6m_3$

Consequences for the Crossing Lemma

Counting:

So assume m > 5n and let D be a crossing-minimal drawing of G. From D, we iteratively remove the edge with the most crossings until 5n edges are left. So, first ≥ 5 crossings for m_5 edges $\rightarrow 5m_5$ Then 4 crossings for $4m_4$ edges $\rightarrow 4m_4$

Then remove m_3 edges from $m_3 F_6^3$ configurations $\rightarrow 3m_3$ Then $m \leq 5n$.

In total, this is $\geq 5m_4 + 4m_4 + 3m_3$ crossings.

Now, from each of the $m_3 F_6^3$ configs we can delete 2 more edges with 3 cross. $\rightarrow 6m_3$

Possibly, we can delete more m_3^- edges with 3 cross. $\rightarrow 3m_3^-$ Then 2-planarity has been reached !

New bound for the Crossing Lemma

From here, we have $\geq \frac{7}{3}(5n - 2m_3 - m_3^-) - \frac{25}{3}n$ crossings [PRTT06] In total, it can be bounded by $\geq 4m - \frac{50}{3}n$.

New bound for the Crossing Lemma

From here, we have $\geq \frac{7}{3}(5n - 2m_3 - m_3^-) - \frac{25}{3}n$ crossings [PRTT06] In total, it can be bounded by $\geq 4m - \frac{50}{3}n$.

Theorem: This can be refined to $cr(G) \ge \frac{73}{18}m - \frac{503}{18}n$

New bound for the Crossing Lemma

From here, we have $\geq \frac{7}{3}(5n - 2m_3 - m_3^-) - \frac{25}{3}n$ crossings [PRTT06] In total, it can be bounded by $\geq 4m - \frac{50}{3}n$.

Theorem: This can be refined to $cr(G) \ge \frac{73}{18}m - \frac{503}{18}n$

There, the probabilistic argument can be applied, then

Corollary

In *k*-planar graphs, we have at most km/2 crossings. Hence $\frac{1}{27.4}m^3/n^2 \le cr(G) \le km/2$

Theorem:For k-planar graphs with n vertices and m edges, we have $m \le 3.72\sqrt{kn}$.Previously, we had 3.81

- Sharpen the bounds for 4-planar: 4-planar graphs without F_6^4 might have $\leq 5.5n$

– Sharpen the bounds for 4-planar: 4-planar graphs without F_6^4 might have $\leq 5.5n$

- Find a tight bound for 5-planar graph

– Sharpen the bounds for 4-planar: 4-planar graphs without F_6^4 might have $\leq 5.5n$

- Find a tight bound for 5-planar graph

- Prove the conjecture of [PRTT]: $cr(G) \ge \frac{25}{6}m - \frac{35}{3}n$

– Sharpen the bounds for 4-planar: 4-planar graphs without F_6^4 might have $\leq 5.5n$

- Find a tight bound for 5-planar graph

- Prove the conjecture of [PRTT]: $cr(G) \ge \frac{25}{6}m - \frac{35}{3}n$

THANK YOU !