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Proof scheme

If we find, for each component X of I,
an independent set of size at least 0.5|X |:
Let X be the union of those sets. By
construction,|X | ≥ 0.5|E | and no two vertices of X are
adjacent:

A bipartite planar subgraph has at most 2n − 4 edges, thus
the desired bound of 4n − 8 follows.

⇒ Corresp. edges of X do not intersect in Γ , i.e., form planar
subgraph
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C1 : e crosses an edge of odd cycle C

v3

If v has degree one, then X is not critical.

v ′

Edge corresponding to v ′ also crosses e1 or e2 → X is not
pseudoforrest

⇒ C1 cannot occur

e3

Γ I

C

If e crosses both e3 and e2k+1, then X was not pseudoforrest.
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C3: e crosses an edge e′ ̸∈ C

v ′

e′ also has to cross either e1 or e2
We have tree T rooted at v1 with v1v

′ ∈ T and v ′v ∈ T .

Let u be vertex on second lowest level with children
u1, . . . , uk .

u
uie′
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e(u)

e(u1) e(uk)

Leaves are involved only in crossing with e(u).

At most one of the two curves can be blocked

e(par(u))

⇒ In both C2 and C3, we can identify an uncrossed edge
for any two consecutive edges of cycle.

Γ
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Part IV

For any component with odd cycle we can identify at least three
such edges.

Every non-homotopic copy of an edge is identified at most twice.

e3

e2

e1 e′1

e′2

e′3

⇒ We have sufficiently many edges such that we can uniquely
assign one to every critical component
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3-planar

Initial: Charge every face |V (f )|+ |f | − 4, where V (f ) is the set of
original vertices.

Goal: Every face f should satisfy ch(f ) ≥ 0.5|V (f )|.

Problematic faces:

2 −1

−1 ̸≥ 0 0 ̸≥ 0.5

Bipartite 3-planar graphs have at most 4n − 8 edges.

Use discharging argument on planarization P(Γ )
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Rich immediate
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Local Charge: Subdivision faces

f is a 2-7 face → gets initial charge of
2 + 7− 4 = 5.

We subdivide face f along the following
hypothetical edge into fa and fb

fa fb

fa is a 2-4 face → would have 2 charge
fb is a 2-5 face → would have 3 charge

ch(f ) = ch(fa) + ch(fb) holds.

Can redistribute this local charge w.o.
arguing about the remainder of a face
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Example

At some point in our charging analysis we arrive at such a case:

v0

v2

v1

Goal is to recharge the 0-pentagon in
the middle.

Assumption: red region is empty

Subdivide this face along the edge (v0, v1) → we obtain a 2-triangle
which can distribute 0.5 charge to the pentagon.

v5

v ′

v0v
′ has three crossings → Segment of

v0v2 until its intersection with v1v5 is
crossing free.
v1v5 has three crossings → Segment
of v1v5 until intersection with v0v2 is
crossing free
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Applications

Crossing number of bipartite graphs

Edge density of bipartite k-planar graphs.

Edge density of bipartite gap k-planar graphs.

Characterization of complete bipartite graphs.

Biplanar crossing number of complete bipartite graphs

cr(G ) ≥ 1
18.1

m3

n2 ⇒ cr(G ) ≥ 1
16.5

m3

n2

m ≤ 3.005
√
kn ⇒ m ≤ 2.871

√
kn

m ≤ 4.25
√
kn ⇒ m ≤ 4.06

√
kn

K5,a with a ≥ 13, K6,b with b ≥ 9 and K7,c with c ≥ 7 are not
3-planar and not gap-planar.

cr2(Kp,q) ≥ p(p−1)q(q−1)
213 ⇒ cr2(Kp,q) ≥ p(p−1)q(q−1)
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Thank you!
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