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Proof scheme

If we find, for each component X of Z,

an independent set of size at least 0.5|X]:

Let X be the union of those sets. By
construction,|X'| > 0.5|E| and no two vertices of X are

adjacent:

= Corresp. edges of X do not intersect in [, i.e., form planar
subgraph

A bipartite planar subgraph has at most 2n — 4 edges, thus
the desired bound of 4n — 8 follows.
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C1 : e crosses an edge of odd cycle C
If e crosses both e3 and ey, 1, then X was not pseudoforrest.

If v has degree one, then X is not critical. ./<I

Edge corresponding to v’ also crosses e; or e — X is not
pseudoforrest

= (C1 cannot occur
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C2: e is uncrossed
C3: e crosses an edge ¢’ & C
e’ also has to cross either e; or e,
We have tree T rooted at v; with vqv/ € T and v/iv € T.

L et u be vertex on second lowest level with children
ui, ..., Ug.
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Leaves are involved only in crossing with e(u).

At most one of the two curves can be blocked

= In both C2 and C3, we can identify an uncrossed edge
for any two consecutive edges of cycle.
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For any component with odd cycle we can identify at least three
such edges.

Every non-homotopic copy of an edge is identified at most twice.

= We have sufficiently many edges such that we can uniquely
assign one to every critical component
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Bipartite 3-planar graphs have at most 4n — 8 edges.

Use discharging argument on planarization P(I")

Initial: Charge every face |V/(f)| + |f| — 4, where V/(f) is the set of
original vertices.

Goal: Every face f should satisfy ch(f) > 0.5/ V/(f)].

Problematic faces:

VAN

-120 0% 0.5
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f is a 2-7 face — gets initial charge of
24+7—4=5.

We subdivide face f along the following
hypothetical edge into f, and f

f, is a 2-4 face — would have 2 charge
fp iIs @ 2-5 face — would have 3 charge

ch(f) = ch(f;) + ch(fp) holds.

Can redistribute this local charge w.o.
arguing about the remainder of a face
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Example

At some point in our charging analysis we arrive at such a case:

VO Goal is to recharge the 0-pentagon in
the middle.

Assumption: red region is empty

C'LI V1 vov’ has three crossings — Segment of
voVo until its intersection with v;vs is
crossing free.

/ Vo v1Vs has three crossings — Segment

VvV of v1vs until intersection with vyws is
crossing free

Subdivide this face along the edge (vp, vi) — we obtain a 2-triangle
which can distribute 0.5 charge to the pentagon.
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Crossing number of bipartite graphs

3
cr(G) > 181 m- N cr(G) > 161_5%

Edge density of bipartite k-planar graphs.

m < 3.005v'kn = m < 2.871vkn

Edge density of bipartite gap k-planar graphs.
m < 4.25Vkn = m < 4.06vkn

Characterization of complete bipartite graphs.

Ks o with a > 13, Kg p with b > 9 and K7 . with ¢ > 7 are not
3-planar and not gap-planar.

Biplanar crossing number of complete bipartite graphs

cra(Kpq) > PE=HAID — (K, ) > Ple=Dala=l)
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Open problems

® Edge density of bipartite quasiplanar graphs

® Edge density of (bipartite) k-gap-planar graphs for
k> 1.

® Edge density of (bipartite) k-planar graphs for (k > 4)
k>5

— Automatic approach [A] to charging method /

application of density formula [K]

Thank you!

[A]: Appel et. al. : Every Planar Map is Four-Colorable, Contemporary Mathematics, vol. 98
[K]: Kaufmann et. al., The Density Formula: One Lemma to Bound Them All, GD24
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