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Drawings of Graphs

Drawing D of a graph G in the plane:

vertices: pairwise distinct points

edges: Jordan arcs connecting end-vertices
- do not pass through vertices
- share only a finite number of points
- all common interior points are crossings
- no three edges cross in a common point

uncrossed edge: has no crossings
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Plane Drawings and Planar Graphs

Plane drawing D: all edges are uncrossed.

Planar graph G: admits a plane drawing

Outerplanar graph G: admits a plane drawing with
all vertices incident to one face
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Plane Drawings and Planar Graphs

Plane drawing D: all edges are uncrossed.

Planar graph G: admits a plane drawing

Outerplanar graph G: admits a plane drawing with
all vertices incident to one face

Ideal: All graphs are planar

Obvious questions: How to draw/visualize non-planar graphs?
How to measure non-planarity?

Reality: Most graphs are non-planar
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Some Classic Approaches to Non-Planarity

Crossing number cr(G) of a graph G:

smallest number of crossings in any drawing of G in the plane

dates back to World War II times [Turán, 1944][Zarankiewicz, 1955]

complexity: NP-complete [Garey, Johnson, 1983]
FPT in cr(G) [Grohe, 2004]

cr(Kn) and cr(Km,n) still unknown

draw G with few crossings
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Some Classic Approaches to Non-Planarity

Edge crossing number ecr(G) of a graph G:

smallest number of crossed edges in any drawing of G in the plane

introduced more than 60 years ago [Ringel, 1963]

complexity: open [Schaefer, 2018]

known for Kn [Ringel, 1963] and Kn,m [Mengersen, 1978]

relation to crossing number: ecr(G) ≤ cr(G)

draw G with many uncrossed edges
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Some Classic Approaches to Non-Planarity

Thickness θ(G) of a graph G:

smallest number of planar subgraphs of G whose union is G

studied since more than 60 years [Harary, 1961]

complexity: NP-complete [Mansfield, 1983]

known for Kn [Alekseev, Gončakov, 1976] and
for Kn,m for most values of m and n [Beineke, Harary, Moon, 1964]

draw few planar subgraphs of G that together give G
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no drawing of the whole graph



On the Uncrossed Number of Graphs4

Some Classic Approaches to Non-Planarity

Outerthickness θo(G) of a graph G:

smallest number of outerplanar subgraphs of G whose union is G

introduced 50 years ago [Guy, 1974]

complexity: open

θo(Kn) and θo(Kn,m) known [Guy, Nowakowski, 1990]

relation to thickness: θ(G) ≤ θo(G) ≤ 2θ(G) [Gonçalves, 2005]
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A New Approach to Non-Planarity

(edge) crossing number
maybe many crossed edges
drawing of the whole graph

(outer) thickness
all edges uncrossed

no drawing of the whole graph

different drawings of the whole graph
every edge uncrossed in at least one drawing

combine both
approaches
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A New Approach to Non-Planarity

Uncrossed Number unc(G) of a graph G:

smallest number k of drawings D1, . . . , Dk of G such that every
edge of G is uncrossed in at least one Di.

introduced last year at GD [Hliněný, Masǎŕık, 2023]

relation to thickness: θ(G) ≤ unc(G) ≤ θo(G) ≤ 2θ(G)

complete graph K7: unc(K7) = θo(K7) = 3

Conjectures: 1. unc(Kn) = θo(Kn) if n 6= 4
Conjectures: 2. unc(Km,n) = θo(Km,n) if min{m,n} 6= 2

draw few copies of G such that every edge is uncrossed in some copy
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A New Approach to Non-Planarity

Uncrossed Number unc(G) of a graph G:

smallest number k of drawings D1, . . . , Dk of G such that every
edge of G is uncrossed in at least one Di.

introduced last year at GD [Hliněný, Masǎŕık, 2023]

relation to thickness: θ(G) ≤ unc(G) ≤ θo(G) ≤ 2θ(G)

complete graph K7: unc(K7) = θo(K7) = 3

Conjectures: 1. unc(Kn) = θo(Kn) if n 6= 4
Conjectures: 2. unc(Km,n) = θo(Km,n) if min{m,n} 6= 2

draw few copies of G such that every edge is uncrossed in some copy

our starting point for this work
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Uncrossed Subdrawings

uncrossed subdrawing D′ of a drawing D of a graph G:

(sub)set of uncrossed edges of D, all vertices of D

represents a plane subgraph of G

uncrossed subdrawing D′ of a graph G:

D′ uncrossed in some drawing D of G



On the Uncrossed Number of Graphs6

Uncrossed Subdrawings

Lemma. Let D′ be an uncrossed subdrawing of a connected graph G.
1. For every edge xy of G, x and y are incident to a common face of D.
2. There is a connected uncrossed subdrawing D′′ of G that contains D′.
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Uncrossed Subdrawings

Lemma. Let D′ be an uncrossed subdrawing of a connected graph G.
1. For every edge xy of G, x and y are incident to a common face of D.
2. There is a connected uncrossed subdrawing D′′ of G that contains D′.
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Corollary. If G is connected then
every maximal uncrossed subdrawing of G is connected.
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Maximum Uncrossed Subdrawings

maximum uncrossed subdrawing D′ of a graph G:

number of edges of D′ is maximum over all uncrossed drawings of G

h(G): number of edges in D′
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Maximum Uncrossed Subdrawings

maximum uncrossed subdrawing D′ of a graph G:

number of edges of D′ is maximum over all uncrossed drawings of G

h(G): number of edges in D′

Observations.

Let G=(V,E) with |V |=n and |E|=m. Then

h(G) = m− ecr(G)

unc(G) ≥
⌈

m
h(G)

⌉
h(G) ≤ 3n− 6, unc(G) ≥

⌈
m

3n−6
⌉



On the Uncrossed Number of Graphs7

Maximum Uncrossed Subdrawings

maximum uncrossed subdrawing D′ of a graph G:

number of edges of D′ is maximum over all uncrossed drawings of G

h(G): number of edges in D′

Theorem [Ringel, 1963].

1. h(Kn) = 2n− 2 for every n ≥ 4.

2. Every uncrossed subdrawing of Kn with
2n− 2 edges forms a wheel graph Wn.

wheel graph W10
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Maximum Uncrossed Subdrawings

maximum uncrossed subdrawing D′ of a graph G:

number of edges of D′ is maximum over all uncrossed drawings of G

h(G): number of edges in D′

Theorem [Ringel, 1963].

1. h(Kn) = 2n− 2 for every n ≥ 4.

2. Every uncrossed subdrawing of Kn with
2n− 2 edges forms a wheel graph Wn.

wheel graph W10

Corollary. ecr(Kn) =
(
n
2

)
− 2n+ 2

unc(Kn) ≥
⌈

(n2)
2n−2

⌉
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Maximum Uncrossed Subdrawings

maximum uncrossed subdrawing D′ of a graph G:

number of edges of D′ is maximum over all uncrossed drawings of G

h(G): number of edges in D′

Theorem [Mengersen, 1978]. For every m ≤ n, we have

h(Km,n) =


2m− n− 2, for m = n

2m+ n− 1, for m < n < 2m

2m+ n, for 2m ≤ n

⇒ value of ecr(Km,n), lower bound for unc(Km,n)
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Uncrossed Conjectures for Kn and Km,n

Conjecture 1. unc(Kn) = θo(Kn) if n 6= 4

Conjecture 2. unc(Km,n) = θo(Km,n) if min{m,n} 6= 2

Theorem [Guy, Nowakowski, 1990].
For any integer n, resp. any two integers m,n with m ≤ n, we have

θo(Kn) =

{⌈
n+1
4

⌉
, for n 6= 7

3, for n = 7
resp. θo(Km,n) =

⌈
mn

2m+n−2
⌉
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Determining unc(Kn)

Theorem 1. For every positive integer n, it holds that

unc(Kn) =


dn+1

4 e, for n /∈ {4, 7}
3, for n = 7

1, for n = 4.
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unc(Kn) =


dn+1

4 e, for n /∈ {4, 7}
3, for n = 7

1, for n = 4.

General upper bound.

unc(Kn) ≤ θo(Kn) = dn+1
4 e for n 6= 7: by [Guy, Nowakowski, 1990]
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Determining unc(Kn)

Theorem 1. For every positive integer n, it holds that
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3, for n = 7

1, for n = 4.

Lower bound sketch.
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Determining unc(Kn)

Theorem 1. For every positive integer n, it holds that

unc(Kn) =


dn+1

4 e, for n /∈ {4, 7}
3, for n = 7

1, for n = 4.

Corollary. Conjecture 1 is true.
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Determining unc(Km,n)

Theorem 2. For all positive integers m and n with m ≤ n, it holds that

unc(Km,n) =


d mn
2m+n−2e, for m ≤ n ≤ 2m− 2

d mn
2m+n−1e, for n = 2m− 1

d mn
2m+ne, for 6 ≤ 2m ≤ n

1, for m ≤ 2.

Proof Idea. similar path as for unc(Kn), more complicated

use uncrossed subdrawings called
double-cycles (with leaves):

not outerplanar, but all missing
black-white edges can be added
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Determining unc(Km,n)

six double-cycles with leaves that cover K9,24:
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Determining unc(Km,n)

Theorem 2. For all positive integers m and n with m ≤ n, it holds that

unc(Km,n) =


d mn
2m+n−2e, for m ≤ n ≤ 2m− 2

d mn
2m+n−1e, for n = 2m− 1

d mn
2m+ne, for 6 ≤ 2m ≤ n

1, for m ≤ 2.

Corollary. Conjecture 2 is not true.

For example: unc(K4,7) = 2 and θo(K4,7) = 3



On the Uncrossed Number of Graphs11

Bounding h(G) and unc(G) for General Graphs

Theorem 3. Every connected graph G with n ≥ 3 vertices and m ≥ 0

edges satisfies h(G) ≤
(
3n− 5 +

√
(3n− 5)2 − 4m

)
/ 2
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Bounding h(G) and unc(G) for General Graphs

Theorem 3. Every connected graph G with n ≥ 3 vertices and m ≥ 0

edges satisfies h(G) ≤
(
3n− 5 +

√
(3n− 5)2 − 4m

)
/ 2

Corollary. Every connected graph G with n ≥ 3 vertices and m ≥ 0
edges satisfies

unc(G) ≥

 m(
3n− 5 +

√
(3n− 5)2 − 4m

)
/ 2


⇒ First nontrivial lower bound for unc(G)

always at least as good as trivial bound
⌈

m
3n−6

⌉
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Computational Problems

EdgeCrossingNumber
Question: Does G have edge crossing number ecr(G) ≤ k?

MaximumUncrossedSubdrawing
Question: Does G have an uncrossed subdrawing with at least k edges?

OuterThickness
Question: Does G have outer-thickness θo(G) ≤ k?

UncrossedNumber
Question: Does G have uncrossed number unc(G) ≤ k?

Input for all problems: A graph G and a positive integer k.

Maximum Outerplanar Subgraph [Yannakakis, 1978]
Question: Is there an outerplanar subgraph of G with at least k edges?
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Computational Complexity Results

Theorem 4. The EdgeCrossingNumber problem is NP-complete.

Corollary. The MaximumUncrossedSubdrawing problem is NP-complete.

Proof. Reduction from MaximumUncrossedSubdrawing

1

2

3

4

5

6

7

8

c
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Computational Complexity Results

Theorem 4. If the OuterThickness problem is NP-complete, then
also the UncrossedNumber problem is NP-complete.

3

6

1
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6

4

5

3

7

8

c
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Conclusion

Results.

• derived exact values of unc(Kn) and unc(Km,n)

• improved lower bound on unc(G) for general graphs G

• showed that NP-completeness of UncrossedNumber
is implied by NP-completeness of OuterThickness

• proved NP-completeness of EdgeCrossingNumber and
Maximum UncrossedSubdrawing

Open Problems.

• reslove the computational complexity of OuterThickness

• determine the uncrossed number for relevant graph classes

• Prove that for every k, there is a graph G with θo(G)− unc(G) ≥ k
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