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Rule 2:  If any two vertices ¢,d € C have more than 4s 4+ 5 common degree-2
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The reduced graph has O(k - s) vertices.

Theorem.

s-SPAN WEAKLY LEVELED PLANARITY for graphs with a vertex cover of size k admits a
kernel of size O(k - s).

Lemma.
Every graph with a vertex cover of size k admits a 6k-span (weakly) leveled planar
drawing.

Theorem.
s-SPAN WEAKLY LEVELED PLANARITY for graphs with a vertex cover of size k admits a
kernel of size O(k?). Hence, it is FPT with respect to the size of a vertex cover.
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b-modulator

A b-modulator of a graph G is a set V' of vertices such that
every connected component of G — V' has size at most b.

A vertex cover is a 1-modulator. @\

Theorem.
s-SPAN WEAKLY LEVELED PLANARITY for graphs with a b-modulator of size k admits a

kernel of size O(f(b) -k -s).

Lemma.
Every graph with a b-modulator of size k admits a O (b? - k)-span (weakly) leveled
planar drawing.

Theorem.
s-SPAN WEAKLY LEVELED PLANARITY for graphs with a b-modulator of size k admits a
kernel of size O(f(b) - k*). Hence, it is FPT with respect to k + b.
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Treedepth

A treedepth decomposition of a graph G is a tree T on V s.t. for every edge uv there

is an ancestor-descendant relationship between u and v in T. o
The treedepth of G is the minimum depth of a G T || +-modulator
treedepth decomposition. / /" i
Trim until every vertex has outdegree < 5t¢.
e /
Lemma.

Every graph with treedepth t admits a O"(#' )-span (weakly) leveled planar drawing.
y stap P P y P &

Theorem.
s-SPAN WEAKLY LEVELED PLANARITY for graphs with treewidth ¢ admits a kernel of
size O(g(t)). Hence, it is FPT with respect to t.
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Overview

FPT algorithms

FPT in size of b-modulator (+b)

FPT in treedepth {%

i)

Linear kernel in size of vertex cover

NP-hardness

Reduction from leveled planar

Eedys=—==N

Combinatorial results

Graph class LB UB
2-outerplanar Q(n) n
3-connected cycle-tree | 4 4
cycle-tree Q(logn) | O(logn)
treewidth 2 2/ log ) O(y/n)
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Other bounds and edge ratio

Theorem.
Every treewidth-2 graph admits an O(4/n)-span weakly leveled planar drawing.

Theorem.

There planar treewidth-2 graphs that require span 2*(V98") in any weakly leveled
planar drawing.

Lemma.
Any graph that admits an s-span weakly leveled planar drawing has edge-length
ratio at most 2s + 1.

Theorem.
Treewidth-2 graphs have planar edge-length ratio O(/n).

The previously best-known bound was O (n%%).




Overview

FPT algorithms A@\
Linear kernel in size of vertex cover

FPT in size of b-modulator (+b)
FPT in treedepth {%

NP-hardness

Reduction from leveled planar

Eedys=—==N

Combinatorial results

Graph class LB UB
2-outerplanar Q(n) n
3-connected cycle-tree | 4 4
cycle-tree Q(logn) | O(logn)
treewidth 2 2/ log ) O(y/n)




Overview

FPT algorithms A@\ NP-hardness

Linear kernel in size of vertex cover Reduction from leveled planar

FPT in size of b-modulator (+b) @
FPT in treedepth {%

Combinatorial results

Graph class LB UB

2-outerplanar Q(n) n

3-connected cycle-tree | 4 4

cycle-tree Qlogn) | O(logn) | | Treewidth-2 graphs have

treewidth 2 2/ log ) O(y/n) edge-length ratio O(v/n)




Overview

:

;

/
i

FPT algorithms
Linear kernel in size of vertex cover
FPT in size of b-modulator (+b)

FPT in treedepth {}}

i)

NP-hardness

Reduction from leveled planar

==

Combinatorial results

Graph class LB UB
2-outerplanar Q(n) n
3-connected cycle-tree | 4 4
cycle-tree Q(logn) | O(logn)
treewidth 2 2/ log ) O(y/n)

3-connected cycle-trees have
edge-length ratio < 9

Treewidth-2 graphs have
edge-length ratio O(/n)




Overview

:

;

/
i

FPT algorithms
Linear kernel in size of vertex cover
FPT in size of b-modulator (+b)

FPT in treedepth {}}

i)

NP-hardness

Reduction from leveled planar

==

Combinatorial results

Graph class LB UB
2-outerplanar Q(n) n
3-connected cycle-tree | 4 4
cycle-tree Q(logn) | O(logn)
treewidth 2 2/ log ) O(y/n)

3-connected cycle-trees have
edge-length ratio < 9
queue number < 5

Treewidth-2 graphs have
edge-length ratio O(/n)




Overview

:

;

/
i

FPT algorithms
Linear kernel in size of vertex cover
FPT in size of b-modulator (+b)

FPT in treedepth {% Poly. kernel?

i)

NP-hardness

Reduction from leveled planar

==

Combinatorial results

Graph class LB UB
2-outerplanar Q(n) n
3-connected cycle-tree | 4 4
cycle-tree Q(logn) | O(logn)
treewidth 2 2/ log ) O(y/n)

3-connected cycle-trees have
edge-length ratio < 9
queue number < 5

Treewidth-2 graphs have
edge-length ratio O(/n)




Overview

:

;

/
i

FPT algorithms A@\

Linear kernel in size of vertex cover
FPT in size of b-modulator (+b)

FPT in treedepth {% Poly. kernel? Treewidth?

NP-hardness

Reduction from leveled planar

==

Combinatorial results

Graph class LB UB
2-outerplanar Q(n) n
3-connected cycle-tree | 4 4
cycle-tree Q(logn) | O(logn)
treewidth 2 2/ log ) O(y/n)

3-connected cycle-trees have
edge-length ratio < 9
queue number < 5

Treewidth-2 graphs have
edge-length ratio O(/n)




Overview

:

;

/
i

FPT algorithms A@\

Linear kernel in size of vertex cover
FPT in size of b-modulator (+b)

FPT in treedepth {% Poly. kernel? Treewidth?

NP-hardness

Reduction from leveled planar

==

Combinatorial results

Graph class LB UB

2-outerplanar Q(n) n

3-connected cycle-tree | 4 4

cycle-tree Q(logn) | O(logn)
' O(y/logn)

treewidth 2 2‘\0?53”/ O(vn)

3-connected cycle-trees have
edge-length ratio < 9
queue number < 5

Treewidth-2 graphs have
edge-length ratio O(/n)




Overview

:

;

/
i

FPT algorithms A@\

Linear kernel in size of vertex cover
FPT in size of b-modulator (+b)

FPT in treedepth {% Poly. kernel? Treewidth?

NP-hardness

Reduction from leveled planar

==

Combinatorial results

Graph class LB UB

2-outerplanar Q(n) n

3-connected cycle-tree | 4 4

cycle-tree Q(logn) | O(logn)
' O(y/logn)

treewidth 2 2‘\0?53”/ O(vn)

3-connected cycle-trees have
edge-length ratio < 9
queue number < 5

Treewidth-2 graphs have
edge-length ratio O(/n)
O (logn)




Overview

FPT algorithms A@\ NP-hardness

Linear kernel in size of vertex cover Reduction from leveled planar

FPT in size of b-modulator (+b) @
FPT in treedepth {% Poly. kernel? Treewidth?

Combinatorial results

Graph class LB Ub 3-connected cycle-trees have
2-outerplanar Q(n) n edge-length ratio < 9
queue number < 5
3-connected cycle-tree | 4 4
cycle-tree Qlogn) | O(logn) | Treewidth-2 graphs have
treewidth 2 20(Vlogn) | O (\/n edge-length ratio O(y/n)
N ? M V) O (log n)> i




