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Vertex Cover: Result

The reduced graph has O(k · s) vertices.

Theorem.
s-Span Weakly Leveled Planarity for graphs with a vertex cover of size k admits a
kernel of size O(k · s).

Theorem.
s-Span Weakly Leveled Planarity for graphs with a vertex cover of size k admits a
kernel of size O(k2). Hence, it is FPT with respect to the size of a vertex cover.

Lemma.
Every graph with a vertex cover of size k admits a 6k-span (weakly) leveled planar
drawing.
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b-modulator

A b-modulator of a graph G is a set V′ of vertices such that
every connected component of G − V′ has size at most b.
A vertex cover is a 1-modulator.

Theorem.
s-Span Weakly Leveled Planarity for graphs with a b-modulator of size k admits a
kernel of size O( f (b) · k · s).

Lemma.
Every graph with a b-modulator of size k admits a O(b2 · k)-span (weakly) leveled
planar drawing.

Theorem.
s-Span Weakly Leveled Planarity for graphs with a b-modulator of size k admits a
kernel of size O( f (b) · k2). Hence, it is FPT with respect to k + b.
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Treedepth

A treedepth decomposition of a graph G is a tree T on V s.t. for every edge uv there
is an ancestor-descendant relationship between u and v in T.
The treedepth of G is the minimum depth of a
treedepth decomposition.

G T t-modulator

Trim until every vertex has outdegree ≤ 5t.

Theorem.
s-Span Weakly Leveled Planarity for graphs with treewidth t admits a kernel of
size O(g(t)). Hence, it is FPT with respect to t.

Lemma.
Every graph with treedepth t admits a O∗

(ttt
)-span (weakly) leveled planar drawing.
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Combinatoric Bounds

Theorem. [Felsner, Liotta & Wismath ’01]
Every outerplanar graph admits a 1-span weakly leveled planar drawing.

Theorem.
Some 2-outerplanar graphs require span Ω(n) in any weakly leveled planar drawing.

Theorem. [Di Giacomo et al. ’24]
Every Halin graph admits a 1-span weakly leveled planar drawing.
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There is always an SPQ-decomposition where
no two nodes of the same type are neighbors.
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The previously best-known bound was O(n0.695).
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