
Patrizio Angelini
(John Cabot)

The Price of Upwardness

Therese Biedl
(Waterloo)

GD 2024, Vienna, September 18–20

Markus Chimani
(Osnabrück)

Sabine Cornelsen
(Konstanz)

Giordano Da Lozzo
(Roma III)

Seok-Hee Hong
(Sydney)

Giuseppe Liotta
(Perugia)

Maurizio Patrignani
(Roma III)

Sergey Pupyrev
(Meta)

Ignaz Rutter
(Passau)

Alexander Wolff
(Würzburg)

Beyond Planarity

K5 is
not planar

Beyond Planarity

K5 is
not planar

– K5 has skewness 1 (removing 1 edge yields a planar graph)

Beyond Planarity

K5 is
not planar

– K5 has skewness 1 (removing 1 edge yields a planar graph)

– The crossing number of K5 is 1 (there is one crossing in total)

Beyond Planarity

K5 is
not planar

– K5 has skewness 1 (removing 1 edge yields a planar graph)

– The crossing number of K5 is 1 (there is one crossing in total)

– K5 is 1-planar (each edge is crossed at most once)

Beyond Planarity

K5 is
not planar

– K5 has skewness 1 (removing 1 edge yields a planar graph)

– The crossing number of K5 is 1 (there is one crossing in total)

– K5 is 1-planar (each edge is crossed at most once)

⇝ the local crossing number of K5 is 1

Beyond Planarity

K5 is
not planar

– K5 has skewness 1 (removing 1 edge yields a planar graph)

– The crossing number of K5 is 1 (there is one crossing in total)

– K5 is RAC (right angle crossing)

– K5 is 1-planar (each edge is crossed at most once)

– fan planar

– quasi planar, . . .

⇝ the local crossing number of K5 is 1

no

Beyond Planarity

K5 is
not planar

– K5 has skewness 1 (removing 1 edge yields a planar graph)

– The crossing number of K5 is 1 (there is one crossing in total)

– K5 is RAC (right angle crossing)

– K5 is 1-planar (each edge is crossed at most once)

– fan planar What about beyond planarity
for directed acyclic graphs?

– quasi planar, . . .

⇝ the local crossing number of K5 is 1

no

Beyond Planarity

K5 is
not planar

– K5 has skewness 1 (removing 1 edge yields a planar graph)

– The crossing number of K5 is 1 (there is one crossing in total)

– K5 is RAC (right angle crossing)

– K5 is 1-planar (each edge is crossed at most once)

– fan planar What about beyond planarity
for directed acyclic graphs?

– quasi planar, . . .

⇝ the local crossing number of K5 is 1

no

Problem Definition

upward k-planar drawing of a DAG:

drawing in which each edge is

– upward (montonone in y-direction)
– crossed at most k times

upward 18-planar drawing

Problem Definition

upward k-planar drawing of a DAG:

drawing in which each edge is

– upward (montonone in y-direction)
– crossed at most k times

upward 5-planar drawing

Problem Definition

upward k-planar drawing of a DAG:

drawing in which each edge is

– upward (montonone in y-direction)
– crossed at most k times

upward local crossing number of a DAG G:

minimum k such that G is upward k-planar

upward 5-planar drawing

Problem Definition

upward k-planar drawing of a DAG:

drawing in which each edge is

– upward (montonone in y-direction)
– crossed at most k times

upward local crossing number of a DAG G:

minimum k such that G is upward k-planar

Can we do better than five?

Problem Definition

upward k-planar drawing of a DAG:

drawing in which each edge is

– upward (montonone in y-direction)
– crossed at most k times

upward local crossing number of a DAG G:

minimum k such that G is upward k-planar

upward local crossing number is at most four

Previous Results

Previous Results

– monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)

Previous Results

– monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)

– In any upward drawing of a graph that is not upward-planar there is a pair of
independent edges that crosses an odd number of times. (Fulek et al. 2013)

Previous Results

– monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)

– In any upward drawing of a graph that is not upward-planar there is a pair of
independent edges that crosses an odd number of times. (Fulek et al. 2013)

– Upward book embeddings, minimize number of pages
Frati, Fulek, Ruiz-Vargas GD’11
Binucci et al. SoCG’19
Bhore, Da Lozzo, Montecchiani, and Nöllenburg GD’21
Bekos et al. GD’22

– Stack and Queue Number
Heath, Pemmaraju, and Trenk 1999
Jungblut, Merker, Ueckerdt FOCS’23
Nöllenburg and Pupyrev GD’23

– Linear layouts of directed graphs: draw vertices on a line in topological order

Our Results: Upper and Lower Bounds

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– fans (path + apex) is > 0.

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– bipartite outerplanar DAGs is in Ω(log n) ∩ Ω(∆).

– fans (path + apex) is > 0.

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– bipartite outerplanar DAGs is in Ω(log n) ∩ Ω(∆).

– fans (path + apex) is > 0.

– bipartite DAGs of constant pathwidth is in Ω(n).

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– bipartite outerplanar DAGs is in Ω(log n) ∩ Ω(∆).

– fans (path + apex) is > 0.

– bipartite DAGs of constant pathwidth is in Ω(n).

– cubic DAGs is in Ω(n).

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– bipartite outerplanar DAGs is in Ω(log n) ∩ Ω(∆).

– fans (path + apex) is > 0.

– bipartite DAGs of constant pathwidth is in Ω(n).

– cubic DAGs is in Ω(n).

Upper Bounds:

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– bipartite outerplanar DAGs is in Ω(log n) ∩ Ω(∆).

– fans (path + apex) is > 0.

– bipartite DAGs of constant pathwidth is in Ω(n).

– cubic DAGs is in Ω(n).

Upper Bounds: The upward local crossing number

– of outer-paths is at most two.

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– bipartite outerplanar DAGs is in Ω(log n) ∩ Ω(∆).

– fans (path + apex) is > 0.

– bipartite DAGs of constant pathwidth is in Ω(n).

– cubic DAGs is in Ω(n).

Upper Bounds: The upward local crossing number

– is in O(∆ · bandwidth)

– of outer-paths is at most two.

i j1 n

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– bipartite outerplanar DAGs is in Ω(log n) ∩ Ω(∆).

– fans (path + apex) is > 0.

– bipartite DAGs of constant pathwidth is in Ω(n).

– cubic DAGs is in Ω(n).

Upper Bounds: The upward local crossing number

⇝ O(n∆
log∆ n) for planar graphs, O(

√
n) for square grids

– is in O(∆ · bandwidth)

– of outer-paths is at most two.

i j1 n

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– bipartite outerplanar DAGs is in Ω(log n) ∩ Ω(∆).

– fans (path + apex) is > 0.

– bipartite DAGs of constant pathwidth is in Ω(n).

– cubic DAGs is in Ω(n).

Upper Bounds: The upward local crossing number

⇝ O(n∆
log∆ n) for planar graphs, O(

√
n) for square grids

– is in O(∆ · bandwidth)

– of outer-paths is at most two.

i j1 n

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– bipartite outerplanar DAGs is in Ω(log n) ∩ Ω(∆).

– fans (path + apex) is > 0.

– bipartite DAGs of constant pathwidth is in Ω(n).

– cubic DAGs is in Ω(n).

Upper Bounds: The upward local crossing number

⇝ O(n∆
log∆ n) for planar graphs, O(

√
n) for square grids

– is in O(∆ · bandwidth)

– of outer-paths is at most two.

i j1 n

expected crossing number of a
random cubic graph ∈ Ω(n2)
(Dujmović et al. SoCG’08)

Our Results: Upper and Lower Bounds

Lower Bounds: In the worst case the upward local crossing number of

– bipartite outerplanar DAGs is in Ω(log n) ∩ Ω(∆).

– fans (path + apex) is > 0.

– bipartite DAGs of constant pathwidth is in Ω(n).

– cubic DAGs is in Ω(n).

Upper Bounds: The upward local crossing number

⇝ O(n∆
log∆ n) for planar graphs, O(

√
n) for square grids

– is in O(∆ · bandwidth)

– of outer-paths is at most two.

i j1 n

expected crossing number of a
random cubic graph ∈ Ω(n2)
(Dujmović et al. SoCG’08)

Lower Bounds

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

G0

875

1

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– add to each outer edge a path
of length 3 (iterate ℓ times)

G0

875

1

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– add to each outer edge a path
of length 3 (iterate ℓ times)

G0

875

1

G2

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– add to each outer edge a path
of length 3 (iterate ℓ times)

etc.

nℓ = 8 +
∑ℓ

i=1 8 · 3i−1 · 2 = 8 · 3ℓ

∆ℓ = 2ℓ+ 3

G0

Gℓ

875

1

G2

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– add to each outer edge a path
of length 3 (iterate ℓ times)

etc.

– G0 not upward planar
⇝ there are two edges e, e′ of
G0 crossing odd number of times

nℓ = 8 +
∑ℓ

i=1 8 · 3i−1 · 2 = 8 · 3ℓ

∆ℓ = 2ℓ+ 3

G0

Gℓ

e e′

875

1

G2

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– not only (2, 6) and (7, 3) cross
an odd number of times
⇝ e on the outer face of G0

– add to each outer edge a path
of length 3 (iterate ℓ times)

etc.

– G0 not upward planar
⇝ there are two edges e, e′ of
G0 crossing odd number of times

nℓ = 8 +
∑ℓ

i=1 8 · 3i−1 · 2 = 8 · 3ℓ

∆ℓ = 2ℓ+ 3

G0

Gℓ

875

1

G2

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– not only (2, 6) and (7, 3) cross
an odd number of times
⇝ e on the outer face of G0

– add to each outer edge a path
of length 3 (iterate ℓ times)

etc.

– G0 not upward planar
⇝ there are two edges e, e′ of
G0 crossing odd number of times

nℓ = 8 +
∑ℓ

i=1 8 · 3i−1 · 2 = 8 · 3ℓ

∆ℓ = 2ℓ+ 3

G0

Gℓ

e e′

– There is a cycle C, length ≤ 6,
crossed an odd number of times
by e

875

1

G2

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– not only (2, 6) and (7, 3) cross
an odd number of times
⇝ e on the outer face of G0

– add to each outer edge a path
of length 3 (iterate ℓ times)

etc.

– G0 not upward planar
⇝ there are two edges e, e′ of
G0 crossing odd number of times

nℓ = 8 +
∑ℓ

i=1 8 · 3i−1 · 2 = 8 · 3ℓ

∆ℓ = 2ℓ+ 3

G0

Gℓ

e e′

– There is a cycle C, length ≤ 6,
crossed an odd number of times
by e

87

C

5

1

G2

If there are no two outer edges of G0 that
cross an odd number of times . . . then e
crosses all edges of C bit e′ an even number
of times. Thus, it crosses C an odd number
of times.

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– not only (2, 6) and (7, 3) cross
an odd number of times
⇝ e on the outer face of G0

– add to each outer edge a path
of length 3 (iterate ℓ times)

etc.

– G0 not upward planar
⇝ there are two edges e, e′ of
G0 crossing odd number of times

nℓ = 8 +
∑ℓ

i=1 8 · 3i−1 · 2 = 8 · 3ℓ

∆ℓ = 2ℓ+ 3

G0

Gℓ

– There is a cycle C, length ≤ 6,
crossed an odd number of times
by e

e

e′
875

1

G2

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– not only (2, 6) and (7, 3) cross
an odd number of times
⇝ e on the outer face of G0

– add to each outer edge a path
of length 3 (iterate ℓ times)

etc.

– G0 not upward planar
⇝ there are two edges e, e′ of
G0 crossing odd number of times

nℓ = 8 +
∑ℓ

i=1 8 · 3i−1 · 2 = 8 · 3ℓ

∆ℓ = 2ℓ+ 3

G0

Gℓ

– There is a cycle C, length ≤ 6,
crossed an odd number of times
by e

e

e′
87

C

5

1

G2

If e crosses some edge of C other than e′ an
odd number of times, continues with that edge

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– not only (2, 6) and (7, 3) cross
an odd number of times
⇝ e on the outer face of G0

– add to each outer edge a path
of length 3 (iterate ℓ times)

etc.

– G0 not upward planar
⇝ there are two edges e, e′ of
G0 crossing odd number of times

nℓ = 8 +
∑ℓ

i=1 8 · 3i−1 · 2 = 8 · 3ℓ

∆ℓ = 2ℓ+ 3

G0

Gℓ

– There is a cycle C, length ≤ 6,
crossed an odd number of times
by e

e

e′
87

C

5

1

G2

Since e crosses at most k ≤ ℓ edges, this
procedure will eventually end.

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– not only (2, 6) and (7, 3) cross
an odd number of times
⇝ e on the outer face of G0

– add to each outer edge a path
of length 3 (iterate ℓ times)

etc.

– G0 not upward planar
⇝ there are two edges e, e′ of
G0 crossing odd number of times

nℓ = 8 +
∑ℓ

i=1 8 · 3i−1 · 2 = 8 · 3ℓ

∆ℓ = 2ℓ+ 3

G0

Gℓ

– There is a cycle C, length ≤ 6,
crossed an odd number of times
by e

e

e′
87

C

– C crossed by ℓ+ 1 paths

5

1

ℓ+ 1
paths

G2

LB: Bipartite Outerplanar DAGs

6

2 3 4

– not upward-planar
(Papakostas GD’94)

– not only (2, 6) and (7, 3) cross
an odd number of times
⇝ e on the outer face of G0

– add to each outer edge a path
of length 3 (iterate ℓ times)

etc.

– G0 not upward planar
⇝ there are two edges e, e′ of
G0 crossing odd number of times

nℓ = 8 +
∑ℓ

i=1 8 · 3i−1 · 2 = 8 · 3ℓ

∆ℓ = 2ℓ+ 3

G0

Gℓ

– There is a cycle C, length ≤ 6,
crossed an odd number of times
by e

e

e′
87

C

– C crossed by ℓ+ 1 paths

5

1

ℓ+ 1
paths

upward local crossing number > ℓ/6 ∈ Ω(log nℓ)∩Ω(∆ℓ)

G2

Upper Bounds

UP: Outer Paths

UP: Outer Paths
c2

c3

c4

c1

– Split G into fans.

c5

UP: Outer Paths

c1

c2

c3

c4

c1

– Split G into fans.

Split the (green) path into subpaths of vertices
being all below or all above the apex.
Draw the green paths up and down as required
by the green edges, and with increasing
x-coordinates

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c1

c2

c3

c4

c1

– Split G into fans.

change the side (above or below the apex) and
continue
last vertex goes above or below apex

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c1 c2

c2

c3

c4

c1

– Split G into fans.

If the subpath is – say – below the apex, and the last
part of the subpath goes up (i.e. it goes towards the
apex in y-direction), draw it inside
⇝ crossing in green path when changing to subpaths
above the apex

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c3c1 c2

c2

c3

c4

c1

– Split G into fans.

a second crossing might happen when going
back from the next subpath
But no more crossings can occur on that edge.
(attention: here the subpath starts from above
the apex)

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c3c1 c2
c4

c2

c3

c4

c1

– Split G into fans.

The path towards the apex (in y-direction) can of course also
happen at the beginning

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c3c1 c2
c4

c2

c3

c4

c1

– Split G into fans.

c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c3c1
c4

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c3c1
c4

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c3c1
c4

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c3c1

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2 c4

c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c3c1

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
– nest fans

c4

c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c3c1

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
– nest fans

c4

c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c3c1

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
– nest fans

c4

c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c1

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
– nest fans

c4

c3

c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

UP: Outer Paths

c1

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
– nest fans

c4

c3

c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossings

special case: the apex c5 in the last fan is above c4, the first
vertex in the last fan is above cv and the complete first subpath
goes up. So the edge connecting the first and the second
subpath cannot be drawn around all fans. But that doesn’t
mattet, since it does not create new crossings.

c5

UP: Outer Paths

c1

c2

c3

c4

c1

– Split G into fans.

– Adjust height such that
inter-fan edges are upward

c2
– nest fans

c4

c3
– Internal inter-fan edges

are not crossed
– At most two crossings

on external inter-fan edges

– External intra-fan edges do not get
more than two crossings in total

c5

– Draw fans respecting edge direction
– apex rightmost within fan
– no crossings on internal edges
– external edges: ≤ 2 crossingsc5

Complexity Results

Our Results: Complexity of Recognition

P

P

P

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Acyclic
orientation

Underlying
planar graph

Fixed
embedding

Variable
embedding

Fixed rot.
system

Variable rot.
system

Series-
parallel

General

Multi-source
Multi-sink
Single-source
Single-sink
Multi-source
Multi-sink
Single-source
Single-sink

P

P

P

NPC

P

Upward Planarity Upward 1-Planarity

Our Results: Complexity of Recognition

P

P

P

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Acyclic
orientation

Underlying
planar graph

Fixed
embedding

Variable
embedding

Fixed rot.
system

Variable rot.
system

Series-
parallel

General

Multi-source
Multi-sink
Single-source
Single-sink
Multi-source
Multi-sink
Single-source
Single-sink

P

P

P

NPC

P

NPC

NPC

NPC

NPC

Upward Planarity Upward 1-Planarity

Our Results: Complexity of Recognition

NPCP

P

P

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Acyclic
orientation

Underlying
planar graph

Fixed
embedding

Variable
embedding

Fixed rot.
system

Variable rot.
system

Series-
parallel

General

Multi-source
Multi-sink
Single-source
Single-sink
Multi-source
Multi-sink
Single-source
Single-sink

P

P

P

NPC

P

NPC NPC

NPC

NPC

NPC

NPC

P

Upward Planarity Upward 1-Planarity

Our Results: Complexity of Recognition

NPCP

P

P

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Acyclic
orientation

Underlying
planar graph

Fixed
embedding

Variable
embedding

Fixed rot.
system

Variable rot.
system

Series-
parallel

General

Multi-source
Multi-sink
Single-source
Single-sink
Multi-source
Multi-sink
Single-source
Single-sink

P

P

P

NPC

P

NPC NPC

NPC

NPC

NPC

NPC

P

Upward Planarity Upward 1-Planarity

1 source,
2 sinks

One K4

minor

Our Results: Complexity of Recognition

NPCP

P

P

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Acyclic
orientation

Underlying
planar graph

Fixed
embedding

Variable
embedding

Fixed rot.
system

Variable rot.
system

Series-
parallel

General

Multi-source
Multi-sink
Single-source
Single-sink
Multi-source
Multi-sink
Single-source
Single-sink

P

P

P

NPC

P

NPC NPC

NPC

NPC

NPC

NPC

P

Upward Planarity Upward 1-Planarity

1 source,
2 sinks

Always upward planar

One K4

minor

NP-hardness

sA

tA

sB

tB

tA

sB

tB

s
sA

t

Based on the different settings, we identify two subgraphs that must cross each other

– Both subgraphs have a single source and a single sink, and their underlying graph
is series-parallel

– Every source-sink path in a subgraph crosses every source-sink path in the other

tA

sB

tB

t1 t2

sA

NP-hardness

sB

tB

sA

tA
tA

sA

3-Partition instance:

A = {2, 3, 5, 1, . . . }
2

3

5

1

NP-hardness
tA

sBsA

tB

sB

tB

sA

tA
tA

sA

A Positive Result

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can
be tested in linear time for single-source DAGs

A Positive Result

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can
be tested in linear time for single-source DAGs

Note: This outer setting has been studied for several classes of beyond-planar graphs

A Positive Result

Problem: Given a digraph G, test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can
be tested in linear time for single-source DAGs

Note: This outer setting has been studied for several classes of beyond-planar graphs

In particular, in this outer setting, upward 1-planarity can be tested in linear time

– C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, K. Hanauer, D. Neuwirth,
and J. Reislhuber. Outer 1-planar graphs. Algorithmica, 2016.

– S.-H. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. A
linear-time algorithm for testing outer-1-planarity. Algorithmica, 2015.

Linear-time algorithm for upward outer 1-planarity: Main ingredients

Follows the approach of Auer et al.

Linear-time algorithm for upward outer 1-planarity: Main ingredients

Follows the approach of Auer et al.

Construct the SPQR-tree

Linear-time algorithm for upward outer 1-planarity: Main ingredients

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K4 and P-nodes have at most five
neighbors

Linear-time algorithm for upward outer 1-planarity: Main ingredients

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K4 and P-nodes have at most five
neighbors

It is enough to satisfy certain local conditions on the skeletons of the nodes, plus a
single global conditions concerning adjacent nodes

v

v′

u

u′

u
v

u′
v′

Linear-time algorithm for upward outer 1-planarity: Main ingredients

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K4 and P-nodes have at most five
neighbors

It is enough to satisfy certain local conditions on the skeletons of the nodes, plus a
single global conditions concerning adjacent nodes

v

v′

u

u′

u
v

u′
v′

Each skeleton has a constant number of embeddings, with acyclic planarizations,
satisfying the local properties ⇝ enumerate and check the global property!

Summary

– We defined upward k-planarity and upward local crossing number of DAGs

– We gave upper and lower bounds for various graph classes

– Upper 1-planarity testing is NP-complete
even for cases where upward-planarity testing is easy

– Upper outer-1-planarity testing can be done in linear time for single-source DAGs

Summary

– We defined upward k-planarity and upward local crossing number of DAGs

– We gave upper and lower bounds for various graph classes

– Upper 1-planarity testing is NP-complete
even for cases where upward-planarity testing is easy

– Upper outer-1-planarity testing can be done in linear time for single-source DAGs

Open Problems

– Testing upward outer-1-planarity for multi-source/multi-sink DAGs

– Parameterized complexity of upward 1-planarity

– Is there a directed outerpath that does not admit an upward 1-planar drawing?

– Are outerplanar graphs upward f(∆)-planar for some function f?

Summary

Thank you!

– We defined upward k-planarity and upward local crossing number of DAGs

– We gave upper and lower bounds for various graph classes

– Upper 1-planarity testing is NP-complete
even for cases where upward-planarity testing is easy

– Upper outer-1-planarity testing can be done in linear time for single-source DAGs

Open Problems

– Testing upward outer-1-planarity for multi-source/multi-sink DAGs

– Parameterized complexity of upward 1-planarity

– Is there a directed outerpath that does not admit an upward 1-planar drawing?

– Are outerplanar graphs upward f(∆)-planar for some function f?

	Title Page
	summary

