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Previous Results

— monotone/upward crossing number (Valtr 2005, Fulek et al. 2013, Schaefer 2024)

— In any upward drawing of a graph that is not upward-planar there is a pair of
independent edges that crosses an odd number of times. (Fulek et al. 2013)

— Linear layouts of directed graphs: draw vertices on a line in topological order

— Upward book embeddings, minimize number of pages
Frati, Fulek, Ruiz-Vargas GD'11
Binucci et al. SoCG'19
Bhore, Da Lozzo, Montecchiani, and Nollenburg GD'21
Bekos et al. GD'22

— Stack and Queue Number
Heath, Pemmaraju, and Trenk 1999
Jungblut, Merker, Ueckerdt FOCS'23
Nollenburg and Pupyrev GD'23
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— Adjust height such that
inter-fan edges are upward

— nest fans

— Internal inter-fan edges ----------
are not crossed

— At most two crossings
on external inter-fan edges

— External intra-fan edges do not get
more than two crossings in total

— Split GG into fans.

— Draw fans respecting edge direction
— apex rightmost within fan

— no crossings on internal edges

external edges:
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NP-hardness

Based on the different settings, we identify two subgraphs that must cross each other

— Every source-sink path in a subgraph crosses every source-sink path in the other

— Both subgraphs have a single source and a single sink, and their underlying graph
Is series-parallel

v v

t 1 2

v
A tp ta

tB
SB
S A SB SB

S A 5



NP-hardness

3-Partition instance:

-}
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A Positive Result

Problem: Given a digraph GG, test whether it admits an upward 1-planar drawing

Theorem: If all vertices are required to lie on the outer face, Upward 1-planarity can
be tested in linear time for single-source DAGs

Note: This outer setting has been studied for several classes of beyond-planar graphs

In particular, in this outer setting, upward 1-planarity can be tested in linear time

— S.-H. Hong, P. Eades, N. Katoh, G. Liotta, P. Schweitzer, and Y. Suzuki. A
linear-time algorithm for testing outer-1-planarity. Algorithmica, 2015.

— C. Auer, C. Bachmaier, F. J. Brandenburg, A. GleiBner, K. Hanauer, D. Neuwirth,
and J. Reislhuber. QOuter 1-planar graphs. Algorithmica, 2016.
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Linear-time algorithm for upward outer 1-planarity: Main ingredients

Follows the approach of Auer et al.

Construct the SPQR-tree

The graph has a simple structure: R-nodes are K4 and P-nodes have at most five
neighbors

It is enough to satisfy certain local conditions on the skeletons of the nodes, plus a
single global conditions concerning adjacent nodes

Each skeleton has a constant number of embeddings, with acyclic planarizations,
satisfying the local properties ~~ enumerate and check the global property!
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Open Problems

— |s there a directed outerpath that does not admit an upward 1-planar drawing?

— Are outerplanar graphs upward f(A)-planar for some function f7

— Testing upward outer-1-planarity for multi-source/multi-sink DAGs

— Parameterized complexity of upward 1-planarity Thank yOUI
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