
Strict upward planar
of binary trees with minimal area

x1x2 x3 x4x5 x6

(x1, x2, x3)

(x1, x2, x4)

(x1, x3, x5)

(x1, x4, x5)

(x2, x3, x4)

(x2, x4, x5)

x1x2 x3 x4x5 x6x1 x2 x3 x4 x5 x6

x1 x2 x3 x4 x5 x6

(x1, x2, x3)

(x1, x2, x4)

(x1, x3, x5)

(x1, x4, x5)

(x2, x3, x4)

(x2, x4, x5)

h = 7

w = 6

straight-line edges

vertices on grid points

cyclic order not specified

only vertices with 2,

designated root

than their parents

no crossings

Maarten Löffler ◦ Utrecht University

Clause Gadget

Variable Gadget

Result & Approach

Full Example

Problem

x1x2x3x4x5x6

Variables are represented by paths in T of
length h. In a strict upward drawing, these
paths must have one vertex on every row.

The vertices in the n+1st row, and thus the
paths hanging from them, have 2n possible
permutations. Specifically, these
permutations have all true variables on the
left with increasing indices, and all false
variables on the right with decreasing
indices.

The top n+ 1 rows contain a permutation
gadget. In the ith row, we can choose to
place the path representing xi either on the
left or on the right, which encodes the true
and false states.

We introduce a “dummy variable” xn+1,
which has no truth assignment but
separates the true and false variables.

Each clause is represented by four rows.

A clause (xa, xb, xc) with a < b < c is
encoded using the paths for xa, xb, xc, and
the dummy variable xn+1.

Each of these has 3 additional vertices in
one or two subtrees, so 12 additional
vertices in total.

The total width of the construction is n+ 4,
so there are three “empty columns”, giving
12 empty spots in these four rows.

xa and xn+1

pattern A pattern B pattern C

xb xc

valid permutations invalid permutations

? ??

? ? ?

We use 3 different patterns for attaching the
additional vertices.

Lemma. There is a valid embedding if and
only if the two outermost patterns are not
both A.

We now present the full construction for a
monotone NAE-SAT formula with 5 variables
and 6 clauses.

The constructed tree must be embedded on
a w = n+ 4 = 9 by h = n+ 4m+ 1 = 30 grid.

Problem statement. Given a rooted binary
tree T and a tuple (w, h), test whether there
exists a strict upward drawing of T on a
w × h grid.

History. Upward drawings of binary trees
with fixed combinatorial embeddings
[Akatiya et al 2018] and upward drawings of
trees with free combinatorial embeddings
[Biedl et al 2017] are both known to be hard.

1,
or 0 children

children must be lower

good bad

Theorem. Testing whether a tree T can be
embedded on a w × h grid is NP-complete.

Reduction. We reduce from
monotone not-all-equal-3SAT.

Corollary. This implies that minimizing w
(width), h (height), w + h (perimeter), or wh
(area) is also hard.

(x1, x2, x3) (x1, x2, x4) (x1, x3, x4) (x1, x2, x3) (x1, x2, x4) (x1, x3, x4)

variable assignments

Active sections of variable chains
in a clause are drawn in black;
inactive sections are drawn in grey.

Observation. An edge between
two free spots on consecutive
rows can always be drawn.

In this case, there is a satisfying
truth assignment, and therefore,
T can be drawn in a 9× 30 grid.

Future Work
Our result strengthens [Biedl et al.,
2017] and complements [Akatiya
et al., 2018] and settles the
complexity of finding
minimum-area strict upward
drawings of trees.

Our construction relies critically
on the strictness of the drawings.
What is the complexity of finding
non-strict upward planar
embeddings of trees on a given
grid?

It also means attaching
consecutive clause gadgets is no
problem independent of where
the black path ends.

Given a n variables and m “clauses” (triples
of variables) …

…find an assignment such that all variables in
each clause are neither all true nor all false.

This means that inactive chains
can always be drawn inbetween
active sections, independent of
how they are embedded.


