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Level Planarity Algorithms
Input: 0 subdivide long edges Jiinger et al. (98, ’02): involved O(n) algorithm
' to make inst. proper
Graph G = (V, F) : 0
Leveling £: V' — N — — subsequent slower but simpler algorithms
Problem: 7 B G Q
Does G admit a planar drawing where Randerath et al. | Healy & Kuusik = Harrigan & Healy
 each vertex v has y-coordinate /(v) 2001 [6] 2004 [3] 2007 [2]
* edges are y-monotone O(|V|2) O(|V|3) O(|V|?)
Counterexample
_ Harrigan & Healy [2]:
Randerath. et al [6]: proper level graph G (analogously for Healy & Kuusik [3])

d e start with arbitrary drawing L:
d a C b €

Equivalent 3-SAT Formulation:

» one variable (a < b) for every ordered pair a, b
of vertices on the same level

J
* constraints: j
for independent edges vu, zw: (u <v) & (v < u)
(v<z)e (u<w) u < v
v o< T r < v ° °
o o Antisymmetry
f + Construct Vertex-Exchange Graph V¢
bl (a<b)A(b<c)=(a<c) » one vertex for every ordered pair of vertices on the same level
U < w U < w « < 2 < ¢ » for independent edges vu, zw: connect vertices v, x and u, w;
Planarity Transitivity if they cross in £ label edge +, else label it —
(d,c) d,e)(a,c
Theorem A [1, 6]
2-SAT formula w/o Transitivity satisfiable < graph is level planar —
Proof [6]: greedily pick and assign arbitrary equivalence hog) (i, f
classes, but perform transitive closure when necessary
Claim: resulting embedding is level planar Theorem B [3] N\ /=
V€& has no odd-labeled cycles o~

< graph is level planar

[} root of connected component

Algorithm 1 [2] / l \« \v

1 for each connected component in VE do &Y o (de et (do)(ac)(ab
2 fix order of arbitrary root pair; + + + — -
3 check fo_r odc!-labeled cycles via DFS; A O GA G5 G DD GD CD CF
4 swap pairs with odd-labeled root-path,;
— () marks vertex N\ LA
pairs as swapped
: : Y
Algorithm 2 [2]
1 for each pair, ordered first by level and then by
s " asc. distance of vertices in L do 5 N
k% [ k% [ 2 | if first-encountered pair for con. comp. then = B ®
| fix according to £; 5
* a < d < btransitively forces a < b a4 | else if neither edges to later pairs nor =
é . i — j < g transitively forces i - ¢ match with rgma/nder of comp. then
| | 5 | exchange in £;
* planarity forcesa <b< f<hs k<l gt s | else if edge to later pair with label * then
contradiction! — false-negative answer 7| L exchangein £ Q
Summary: We have counterexamples to » the correctness proof of Theorem B [3]
* the embedder by Randerath [6] (assumes th.at eq. classeg can always be | Disclaimer: Theorem A and B can still be used
» the correctness proof of Theorem A [6] combined without contradiction) for simple and correct quadratic tests for Level
(relies on the embedder) To the best of our knowledge, this leaves Planarity, as [1] shows their equivalence to the
» the embedder by Harrigan & Healy [2] » no correct simple embedding algorithm Hanani-Tutte Level Planarity characterization.
/ Healy & Kuusik [3] » no correct embedder implementation
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