

A networkX Extension for Graph Drawing Metrics

Martin Nöllenburg, Sebastian Röder, Markus Wallinger

ALGORITHMS AND COMPLEXITY GROUP

TU Wien Informatics Institute of Logic and Computation Algorithms and Complexity Group

networkX is a well established Python library for network analysis. With gdMetriX, we aim to extend the functionality of networkX and provide common metrics used in the field of graph drawing. In addition, the package provides an easy-to-use access to the 'Graph Layout Benchmark Datasets' project.

Working with gdMetriX

gdMetriX works with all types of graphs provided by networkX. The node positions are expected as tuples stored as node attributes with the name "pos". All drawings are assumed to be straight-line drawings.

Closest pair of elements	Closest pair of graph elements, i.e. points and edges	$(V \cup E)^2$	[8]
Con- centration	How evenly nodes are spread among the bounding box	[0,1]	[2]

Even neigh- borhood distribution	Estimates how evenly the neighborhood of each vertex is distributed around the barycenter of the neighborhood	O(n ²)	[12]
Visual symmetry	Draws a constant-size image of the graph and estimates symmetry in a pixel-based manner	O(n + m)	No- vel

import networkx as nx import gdMetriX

```
g = nx.Graph()
g.add_node('nodeA', pos=(0, 3.5))
g.add_node('nodeB', pos=(-3, 3))
```

In order to calculate a metric, simply call the respective function:

crossing_quality = gdMetriX.crossing_metric(g)

Loading Datasets

Support for automatic import of datasets (including embeddings) from the Graph Layout Benchmark Datasets project [1] with a single line of code:

for graph in gdMetriX.get_list_of_graphs('subways'): print(graph.nodes())

Implemented Metrics

Some symmetry metrics are infeasible to obtain for certain use cases (see Fig. 1). Therefore, we have implemented an additional symmetry estimate (named "visual symmetry"), which uses a constant size pixel drawing of the graph as a basis (see Fig. 2). The measure subtracts rotated/translated/mirrored versions of the image and sums the ink left.

Fig. 1: Runtime of symmetry metrics with edge densities of 10-90%

Indispensable for collecting a set of suitable metrics were the publications by Taylor and Rodgers [2], Purchase [3], Bennett et al. [4], as well as by Mooney et al. [5].

Crossings

Metric	Description	Range	
Crossing number	Implementation of the Bentley-Ottmann algorithm running in $O((n + k)\log n)$ time	[0, <i>E</i> ²]	[6]
Crossing density	<complex-block></complex-block>	[0,1]	[5]
Crossing angles	List of all angles between pairwise crossing edges	[0, π]	[7]
Crossing angular resolution	Average deviation from the optimal angle between two edges in any of the crossings	[0,1]	[7]

Area and Boundary

Metric	Description	Range	
Area	Size of an axis-aligned rectangular bounding box	R	[2
Tight area	Size of the convex hull of the graph	R	[2
Aspect ratio	Proportion between the smaller and the bigger side of the axis-aligned rectangular bounding box containing the graph	[0,1]	[2

Edge Directions

 \cap

Metric	Description	Range	
Angular resolution	Average deviation from the optimal angle between any two adjacent edges	[0,1]	[7]
Average flow	0 1 Average edge direction of a directed graph	ℝ ²	[4]
Upwards flow	Percentage of edges pointing 'upwards', i.e. the angle between the edge and the upward vector is <90°. For directed graphs	[0,1]	[3]
Coherence to average flow	Upwards flow with the average flow as the 'upwards' direction, for directed graphs	[0,1]	[3]

Extent to which the edges are [0,1]

Fig. 2: Visual symmetry metric – step by step

Fig. 3: Various subway maps ordered by visual symmetry from low to high.

Participation & Feedback

We hope to be able to actively maintain the project. Whether you are missing a feature, spotted a bug, or want to participate, do not hesitate to contact us.

Mail:

[3]

sebastian.roeder@student.tuwien.ac.at

Node Distribution

Metric	Description	Range	
Center of mass	Average position of all nodes, optionally weighted by a weight vector	ℝ ²	
Closest pair of points	Closest pair of nodes in the drawing	V ²	[8]

orthogonality vertically or horizontally aligned

Symmetry

Edge

Metric	Description	Runtime	
Node-based symmetry	Estimates reflective symmetry by checking for symmetry axes along each pair of nodes	O(n ⁷)	[3]
Edge-based symmetry	Based on edge positions, estimates reflective, rotational or translational symmetry	<i>O</i> (<i>m</i> ²)	[10]
Stress-based symmetry	Standard definition of stress, which correlates with symmetry	<i>O</i> (<i>n</i> ²)	[11]

GitHub: https://github.com/livus/gdMetriX

Documentation: https://livus.github.io/gdMetriX/

PyPI: https://pypi.org/project/gdMetriX/

1	S. Di Bartolomeo, E. Puerta, C. Wilson, T. Crnovrsanin, and C. Dunne, "A Collection of Benchmark Datasets for Evaluating Graph Layout Algorithms", Graph Drawing Posters, 2023. [Online]. Available: https://visdunneright.github.io/gd_benchmark_sets/
2	M. Taylor and P. Rodgers. "Applying graphical design techniques to graph visualisation". In Ninth International Conference on Information Visualisation (IV'05), 651–656. IEEE, 2005. doi:10.1109/IV.2005.19.
3	H. C. Purchase. "Metrics for Graph Drawing Aesthetics". In <i>Journal of Visual Languages & Computing</i> , 13(5):501–516, October 2002. doi:10.1006/jvlc.2002.0232.
4	C. Bennett, J. Ryall, L. Spalteholz, and A. Gooch. "The Aesthetics of Graph Visualization". In <i>Computational Aesthetics in Graphics</i> , 2007. doi:10.2312/COMPAESTH/COMPAESTH07/057-064.
5	G. J. Mooney, H. C. Purchase, M. Wybrow, and S. G. Kobourov. "The Multi-dimensional Landscape of Graph Drawing Metrics". In 17th IEEE Pacific Visualization Symposium. Pacific Visualization 2024, 2024.
6	H. C. Purchase, R. F. Cohen, and M. James. "Validating Graph Drawing Aesthetics". In <i>Graph Drawing</i> , 435–446. Berlin, Heidelberg, 1996. Springer Berlin Heidelberg. doi:10.1007/bfb0021827.
7	M. K. Coleman and D. S. Parker. "Aesthetics-based Graph Layout for Human Consumption". In Software: Practice and Experience, 26(12):1415–1438, December 1996. doi: 10.1002/(SICI)1097-024X(199612)26:12<1415::AID-SPE69>3.0.CO;2-P.
8	M. Burch. "The Aesthetics of Diagrams". In Proceedings of the 6th International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2015), pp. 262–267. INSTICC, SciTePress, 2015. doi:10.5220/0005357502620267.
9	R. Tamassia, G. Di Battista, and C. Batini. "Automatic Graph Drawing and Readability of Diagrams". In IEEE Transactions on Systems, Man, and Cybernetics, 18(1):61–79, 1988. doi:10.1109/21.87055.
10	R. Klapaukh, S. Marshall, and D. Pearce. "A Symmetry Metric for Graphs and Line Diagrams". In <i>Diagrammatic Representation and Inference</i> , volume 10871, pp. 739–742, 2018. doi:10.1007/978-3-319-91376-6 71.
11	E. Welch and S. Kobourov. "Measuring Symmetry in Drawings of Graphs". In <i>Computer Graphics Forum</i> , 36(3):341–351, June 2017. doi:10.1111/cgf.13192.
40	T. Yu. I. Verse and C. Cou. "A Fares Directed Algorithm for Drowing Directed Cranks Summatricelly." In Mathematical Droblems in

I. Xu, J. Yang, and G. Gou. "A Force-Directed Algorithm for Drawing Directed Graphs Symmetrically". In *Mathematical Problems in* Engineering, 2018:1–24, November 2018. doi:10.1155/2018/6208509