Introducing Fairness in Graph Visualization

Seok-Hee Hong, Giuseppe Liotta, Fabrizio Montecchiani, Martin Nöllenburg, and Tommaso Piselli

Motivation

- The presence of **bias** in decision support systems may worsen social inequalities and harm individuals.
- Identifying sources of bias and striving for fairness are crucial topics for the ethical use and development of AI.
- ✤ In a recent work, Peltonen et al. [1] state that "Fairness should also extend to visualization, s.t. analysts are not driven to draw unfair conclusions while exploring data."
- ✤ Idea: complement classical network visualization tools with new fair visualizations to reduce bias and avoid discrimination.
- We propose a novel research direction aimed at studying the topic of fair network visualizations.

Experiments

- ✤ Inspired by [3], we implemented a Gradient-Descent based algorithm to optimize multiple drawing criteria.
- First, it computes stress-minimum drawings (Γ_0), then it minimizes the unfairness by increasing the stress no more than 5% (Γ_1), and 20% (Γ_2).
- Benchmark dataset: constructed by selecting 30 graphs from the wellknown Sparse Matrix Collection.
- ♦ Ranges: $|V| \in [100, 6000], |E| \in [500, 14000]$
- ✤ Number of drawings

Random initialization of positions

Minimum Stress Layout - Γ_α

- ✤ For the experiments, we randomly colored a percentage p of vertices (red).
- \clubsuit The last coloring, \diamondsuit , refers to the scenario in which the red vertices are 10% of those with largest stress in Γ_0 .
- The results are averaged over all drawings in the same group.

p	Γ_0		Γ_1		Γ_2	
	AVG STRESS	AVG UNFAIRNESS	AVG STRESS. VAR.	AVG UNFAIRNESS VAR.	AVG STRESS VAR.	AVG UNFAIRNESS VAR.
0.1	$6.31\cdot 10^{-2}$	$1.46\cdot 10^{-9}$	+0.57%	-96.2%	+0.77%	-97.9%
0.2	$6.31\cdot10^{-2}$	$6.08\cdot10^{-10}$	+0.43%	-94.1%	+0.46%	-94.5%
0.3	$6.31\cdot10^{-2}$	$4.77 \cdot 10^{-10}$	+0.34%	-92.9%	+0.38%	-93.9%
0.4	$6.31\cdot10^{-2}$	$4.51\cdot10^{-10}$	+0.34%	-92.5%	+0.38%	-93.4%
0.5	$6.31\cdot10^{-2}$	$3.40\cdot10^{-10}$	+0.28%	-92.2%	+0.29%	-92.2%
٥	$6.31\cdot10^{-2}$	$5.82\cdot10^{-8}$	+2.47%	-57.9%	+8.11%	-80.4%

drawing of a graph starting from a minimum stress layout?

Q2 (Unfairness of Globally Optimal Drawings) How unfair are minimum stress straight-line drawings?

Model

- We formalize the notion of fair straight-line graph drawings, based on the **stress** metric, to introduce the concept of fairness in network visualizations.
- A drawing Γ of *G* maps each vertex $v \in V$ to a point of the Euclidean plane and each edge $e \in E$ to a straight-line segment connecting its endpoints.
- Stress minimization is an optimization strategy in **Multi**-**Dimensional Scaling (MDS)** and a widely adopted quality function in Graph Drawing [2].

$$stress(\Gamma) = \sum_{u,v \in V} \omega(u,v) (\|\Gamma(u) - \Gamma(v)\|_2 - \delta(u,v))^2$$

• Our vertex set is the union of two distinct sets, i.e. $V_R \cup V_B = V$

 V_R are the red vertices - V_B are the blue vertices Then, we can define the stress of each set as:

$$stress_{R}(\Gamma) = \sum_{u \in V_{R}, v \in V} \omega(u, v) (\|\Gamma(u) - \Gamma(v)\|_{2} - \delta(u, v))^{2}$$

$$stress_{B}(\Gamma) = \sum_{u \in V_{B}, v \in V} \omega(u, v) (\|\Gamma(u) - \Gamma(v)\|_{2} - \delta(u, v))^{2}$$

✤ To achieve a fair visualization, the difference between **stress**_R(Γ) and **stress**_B(Γ), normalized by their own cardinalities, should be as close as possible to zero.

Conclusions and future works

- Our experiments suggest that stress-minimum drawings may be suboptimal in terms of fairness, but incorporating fairness in the optimization process can effectively lead to notable improvements (Q2). Also, if one is willing to pay a small fraction of additional stress in the drawing, unfairness can be further minimized and brought down to almost zero (Q1).
- The concept of fairness can be studied for other graph drawing paradigms, such as orthogonal drawings, where one can consider the number of bends along the edges as a natural optimization criterion. In this regard, also challenging theoretical questions concerning the computational complexity of optimizing both fairness and bends can be addressed.

References:

[1] Peltonen, Jaakko and Xu, Wen and Nummenmaa, Timo and Nummenmaa, Jyrki - Fair neighbor embedding - International Conference on Machine Learning (2023) [2] Gansner, Emden R and Koren, Yehuda and North, Stephen - Graph drawing by stress majorization - Graph Drawing: 12th International Symposium (2004). [3] Ahmed, Reyan and De Luca, Felice and Devkota, Sabin and Kobourov, Stephen and Li, Mingwei- Multicriteria Scalable Graph Drawing via Stochastic Gradient **Descent -** IEEE Transactions on Visualization and Computer Graphics (2022).