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Input:

Problem:

Bipartite Graph G = (X,Y,E)
Permutation πX of X

Find a permutation πY minimising the number
of edge crossings
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Common permutation-based mutation operators
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Swap:
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Pick vertex (u.a.r.) and swap with right neighbor

• Understand EAs in the context
of graph drawing by exploring a
simple GD problem

• Complement theoretical findings
in [1]

• Design specialised EA-based
algorithm and compare it to the
state-of-the-art

Goals
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Jump: Pick a vertex (u.a.r.) and jump it to a new position (u.a.r.)

Exchange: Pick two vertices (u.a.r.) and exchange their positions
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State-of-the-art algorithms

Evolutionary algorithms

• Median/Barycenter Θ(n log n+m):
Place vertices at the average of
their neighbors [2]

• Nagamochi’s algorithm Θ(n log n):
Place vertices by some specific
scheme; best theoretical bound [3]

• Sifting Θ(n2 + nm):
Sequentially place vertices at locally
optimal positions [4]

Algorithm 1: (1+1)-EA for permutation-based optimisation.

1 Choose permutation π u.a.r.;
2 while stopping criterion not met do
3 Choose k by Poisson distribution with λ = 1;
4 π′ ← apply mutation X (k + 1)-fold to π;
5 if c(π′) ≤ c(π) then π ← π′ ;

• The X-EA is a typical (1+1)-EA with X being one of the mutation
operators swap, exchange, and jump

• X-RLS is a randomised local search variant, where k = 1 is
constant

• Instances of size 100 + 100, random
edges (with density 0.02 to 0.08)

• Stopping criterion: no improvement
for n1.5 generations

• Preprocessing usually takes a
significant amount of time

• Jump- and Exchange-EAs need most
time but get best results

• Tested on different classes, results
look alike

Preprocessing step Θ(nm)

Θ(1)

Θ(n)∗

Θ(n)∗

∗ in expectation

Conclusion and Future Work

• Even simple “(1+1)”-type EA can beat best
approx. algorithms (in reasonable time)

• Solutions become astonishingly close to the
optimum

• Improvement with problem-specific
knowledge yields very practical algorithm

• Can we prove an approximation ratio for
jumps in poly time?

• Can the algorithm be improved using
populations and crossover?

• Extend analysis to multiple layers, and see
how EAs can actually be used to draw
aesthetically pleasing graphs

• No overhead: instead of random jumps,
scan for a fitness-improving jump

• Tested three variants: Select vertex
u.a.r. then
– JFI-RLS: Choose the first improving

jump
– JRI-RLS: Scan all jumps and choose

an improving one u.a.r.
– JS-RLS: scan all jumps and take the

best (sift)
• Much better convergence rate for JRI-

and JS-RLS, factor 100 (= n?)

• JFI-RLS statistically significantly worse, JS- and JRI-RLS roughly equal
• Very close approximation to optimum. JRI-RLS can better explore the plateau

• Fitness over time plot reveals jump is by far
the best! Taking roughly n2.5 generations

• Performance differences are validated by
Wilcoxon rank-sum test

Experimental Comparison

Evolutionary Algorithms for One-sided
Bipartite Crossing Minimisation

size lower layer


