Evolutionary Algorithms for One-sided Bipartite Crossing Minimisation

Fakultät für Informatik und Mathematik

Jakob Baumann • Ignaz Rutter • Dirk Sudholt

Goals

- Understand EAs in the context of graph drawing by exploring a simple GD problem
- Complement theoretical findings in [1]
- Design specialised EA-based algorithm and compare it to the state-of-the-art

ONE-SIDED BIPARTITE CROSSING MINIMIZATION (OBCM)

Bipartite Graph G = (X, Y, E)Input: Permutation π_X of X

Problem: Find a permutation π_Y minimising the number of edge crossings

State-of-the-art algorithms

- Median/Barycenter $\Theta(n \log n + m)$: Place vertices at the average of their neighbors [2]
- Nagamochi's algorithm $\Theta(n \log n)$: Place vertices by some specific scheme; best theoretical bound [3]
- Sifting $\Theta(n^2 + nm)$: Sequentially place vertices at locally optimal positions [4]

Common permutation-based mutation operators

Swap: Pick vertex (u.a.r.) and swap with right neighbor

Evolutionary algorithms

• The X-EA is a typical (1+1)-EA with X being one of the mutation

Exchange: Pick two vertices (u.a.r.) and exchange their positions

Pick a vertex (u.a.r.) and jump it to a new position (u.a.r.) Jump: * in expectation operators swap, exchange, and jump

Algorithm 1: (1+1)-EA for permutation-based optimisation.

- Choose permutation π u.a.r.;
- 2 while stopping criterion not met do
- Choose k by Poisson distribution with $\lambda = 1$; 3
- $\pi' \leftarrow apply mutation X (k+1)$ -fold to π ; 4
- if $c(\pi') \leq c(\pi)$ then $\pi \leftarrow \pi'$;
- **X-RLS** is a randomised local search variant, where k = 1 is constant

Experimental Comparison

- Instances of size 100 + 100, random edges (with density 0.02 to 0.08)
- Stopping criterion: no improvement for $n^{1.5}$ generations

- Preprocessing usually takes a significant amount of time
- Jump- and Exchange-EAs need most time but get best results
- Tested on different classes, results

- Fitness over time plot reveals jump is by far the best! Taking roughly $n^{2.5}$ generations
- Performance differences are validated by Wilcoxon rank-sum test

Faster Convergence through Improved Algorithm Designs

- No overhead: instead of random jumps, scan for a fitness-improving jump
- Tested three variants: Select vertex u.a.r. then
 - **JFI-RLS**: Choose the first improving jump
 - JRI-RLS: Scan all jumps and choose

Conclusion and Future Work

- Even simple "(1+1)"-type EA can beat best approx. algorithms (in reasonable time)
- Solutions become astonishingly close to the optimum
- Improvement with problem-specific knowledge yields very practical algorithm

- an improving one u.a.r.
- JS-RLS: scan all jumps and take the best (*sift*)
- Much better convergence rate for JRIand JS-RLS, factor 100 (= n?)
- JFI-RLS statistically significantly worse, JS- and JRI-RLS roughly equal • Very close approximation to optimum. JRI-RLS can better explore the plateau
- Can we prove an approximation ratio for jumps in poly time?
- Can the algorithm be improved using populations and crossover?
- Extend analysis to multiple layers, and see how EAs can actually be used to draw aesthetically pleasing graphs
- 1. J. Baumann, I. Rutter, D. Sudholt: Evolutionary computation meets drawing: Runtime analysis for crossing minimisation on layered graph drawings. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO '24). ACM Press, 2024.481 (2024).
- 2. P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs. *Algorithmica*, 11(4):379-403 (1994).
- 3. H. Nagamochi. An improved bound on the one-sided minimum crossing number in two-layered drawings. Discrete and Computational Geometry, 33:569-591 (2005).
- 4. C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer straightline crossing minimization. In Graph Drawing: 7th International Symposium, Proceedings 7: 217-224 (1999)