
Faster Convergence through Improved Algorithm Designs

Jakob Baumann • Ignaz Rutter • Dirk Sudholt
ONE-SIDED BIPARTITE CROSSING MINIMIZATION (OBCM)

Input:

Problem:

Bipartite Graph G = (X,Y,E)
Permutation πX of X

Find a permutation πY minimising the number
of edge crossings

X

Y

1 2 3 4 5 6

1 2 3 4 5

1 2 3 4 5 6

12 345

1. J. Baumann, I. Rutter, D. Sudholt: Evolutionary computation meets drawing: Runtime analysis for crossing minimisation on layered graph drawings. In Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO ’24). ACM Press, 2024.481 (2024).

2. P. Eades and N. C. Wormald. Edge crossings in drawings of bipartite graphs. Algorithmica, 11(4):379-403 (1994).
3. H. Nagamochi. An improved bound on the one-sided minimum crossing number in two-layered drawings. Discrete and Computational Geometry, 33:569-591 (2005).
4. C. Matuszewski, R. Schönfeld, and P. Molitor. Using sifting for k-layer straightline crossing minimization. In Graph Drawing: 7th International Symposium, Proceedings 7:

217-224 (1999)

Common permutation-based mutation operators

135

Swap:

135

Pick vertex (u.a.r.) and swap with right neighbor

• Understand EAs in the context
of graph drawing by exploring a
simple GD problem

• Complement theoretical findings
in [1]

• Design specialised EA-based
algorithm and compare it to the
state-of-the-art

Goals

15 4 15 4

125 4 125 4

Jump: Pick a vertex (u.a.r.) and jump it to a new position (u.a.r.)

Exchange: Pick two vertices (u.a.r.) and exchange their positions

4 2 2 4

3 3

3 2 2 3

State-of-the-art algorithms

Evolutionary algorithms

• Median/Barycenter Θ(n log n+m):
Place vertices at the average of
their neighbors [2]

• Nagamochi’s algorithm Θ(n log n):
Place vertices by some specific
scheme; best theoretical bound [3]

• Sifting Θ(n2 + nm):
Sequentially place vertices at locally
optimal positions [4]

Algorithm 1: (1+1)-EA for permutation-based optimisation.

1 Choose permutation π u.a.r.;
2 while stopping criterion not met do
3 Choose k by Poisson distribution with λ = 1;
4 π′ ← apply mutation X (k + 1)-fold to π;
5 if c(π′) ≤ c(π) then π ← π′ ;

• The X-EA is a typical (1+1)-EA with X being one of the mutation
operators swap, exchange, and jump

• X-RLS is a randomised local search variant, where k = 1 is
constant

• Instances of size 100 + 100, random
edges (with density 0.02 to 0.08)

• Stopping criterion: no improvement
for n1.5 generations

• Preprocessing usually takes a
significant amount of time

• Jump- and Exchange-EAs need most
time but get best results

• Tested on different classes, results
look alike

Preprocessing step Θ(nm)

Θ(1)

Θ(n)∗

Θ(n)∗

∗ in expectation

Conclusion and Future Work

• Even simple “(1+1)”-type EA can beat best
approx. algorithms (in reasonable time)

• Solutions become astonishingly close to the
optimum

• Improvement with problem-specific
knowledge yields very practical algorithm

• Can we prove an approximation ratio for
jumps in poly time?

• Can the algorithm be improved using
populations and crossover?

• Extend analysis to multiple layers, and see
how EAs can actually be used to draw
aesthetically pleasing graphs

• No overhead: instead of random jumps,
scan for a fitness-improving jump

• Tested three variants: Select vertex
u.a.r. then
– JFI-RLS: Choose the first improving

jump
– JRI-RLS: Scan all jumps and choose

an improving one u.a.r.
– JS-RLS: scan all jumps and take the

best (sift)
• Much better convergence rate for JRI-

and JS-RLS, factor 100 (= n?)

• JFI-RLS statistically significantly worse, JS- and JRI-RLS roughly equal
• Very close approximation to optimum. JRI-RLS can better explore the plateau

• Fitness over time plot reveals jump is by far
the best! Taking roughly n2.5 generations

• Performance differences are validated by
Wilcoxon rank-sum test

Experimental Comparison

Evolutionary Algorithms for One-sided
Bipartite Crossing Minimisation

size lower layer


