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standardMode is the default mode that minimizes global aesthetic criteria, in this case resulting in 26 crossings overall. This optimization creates an
unfair distribution with 2.21 crossings on average per blue character, while red characters face a far higher value of 7 crossings each on average.
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fairnessMode distributes the amount of crossings equitably between the two groups of characters, resulting in an average of 4 crossings for both
blue and red characters. This fairness is achieved with an increase of the total number of crossings from 26 to 34.
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focusMode prioritizes the readability of one group (red characters) while maintaining good readability for the other group. Here, we have an average of 5
crossings per red character and 3.21 crossings per blue character. As a result, even though the total number of crossings went from 26 to 30, no two

red characters cross each other, like they do in both previous solutions.

Fig. 1: Storyline layouts of the same instance (Final Fantasy VII) using three different optimization modes of F2Stories. There are
3 main characters in the red group and 14 secondary characters in the blue group. The three layouts share the same general
optimization goal (minimize crossings), but with different emphasis on how crossings are distributed among both character groups.

Abstract—Storyline visualizations represent character interactions over time. When these characters belong to different groups, a new
research question emerges: how can we balance optimization of readability across the groups while preserving the overall narrative
structure of the story? Traditional algorithms that optimize global readability metrics (like minimizing crossings) can introduce quality
biases between the different groups based on their cardinality and other aspects of the data. Visual consequences of these biases
are: making characters of minority groups disproportionately harder to follow, and visually deprioritizing important characters when
their curves become entangled with numerous secondary characters. We present F2Stories, a modular framework that addresses
these challenges in storylines by offering three complementary optimization modes: (1) fairnessMode ensures that no group bears a
disproportionate burden of visualization complexity regardless of their representation in the story; (2) focusMode allows prioritizing a
group of characters while maintaining good readability for secondary characters; and (3) standardMode globally optimizes classical
aesthetic metrics. Our approach is based on Mixed Integer Linear Programming (MILP), offering optimality guarantees, precise
balancing of competing metrics through weighted objectives, and the flexibility to incorporate complex fairness concepts as additional
constraints without the need to redesign the entire algorithm. We conducted an extensive experimental analysis to demonstrate
how F2Stories enables more fair or focus group-prioritized storyline visualizations while maintaining adherence to established layout
constraints. Our evaluation includes comprehensive results from a detailed case study that shows the effectiveness of our approach in
real-world narrative contexts. An open access copy of this paper and all supplemental materials are available at osf.io/e2qvy.

Index Terms—Storyline layouts, optimization, fairness

1 INTRODUCTION

The widespread adoption of automated decision-making systems has
significantly changed the way in which everyday situations and prob-
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lems are addressed and resolved. While these systems offer efficiency
and scalability, they also pose a substantial risk in the potential to reflect
and amplify existing biases in the society. These biases may arise from
imbalanced training data that mirrors historical inequalities [42] or
from the design of the algorithms themselves, unintentionally leading
to unfair outcomes [1, 34]. As a result, ensuring fairness for affected
individuals or groups has become a central focus in computer science
research, where fairness is a multifaceted concept that can be expressed
in several distinct forms. Efforts to address biases, both in data analysis
and algorithm design, have driven the development of advanced compu-
tational methods aimed at mitigating disparities and promoting fairness
in automated systems [28]. In particular, the focus on algorithmic fair-
ness extends beyond decision-making systems and has been explored in
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various areas of computer science, including bias mitigation in machine
learning models [5, 42], clustering algorithms [4, 16], dimensionality
reduction [40], and computational social choice [23, 25]. However,
the role of fairness in visualization has received comparatively less
attention so far. Network visualization, in particular, presents unique
challenges in ensuring fair representation of different entities within
a dataset. When dealing with network data, elements such as nodes
and edges may belong to different categories (e.g., species in a phylo-
genetic tree or reaction types in a metabolic network). If one category
is significantly smaller than the others, applying a layout optimization
algorithm to the entire network may disproportionately disadvantage
the minority category. Consider visualizing character interactions in
a movie where main characters (protagonists) interact frequently with
both each other and supporting characters. Traditional optimization
might create layouts where important character trajectories become ob-
scured by the numerous interactions with secondary characters, making
it difficult to follow the main narrative arc. However, particularly in
settings where decision making is critical [2], it is important to provide
a fair visual representation for all involved groups to facilitate a fair
assessment and understanding of the network’s properties across all
categories and protected features.

Building on seminal research on fairness in data visualization [38],
Eades et al. [13] have recently introduced the concept of fairness in net-
work visualization, a research direction aimed at understanding how to
integrate and evaluate these fairness concerns in different graph drawing
paradigms. While Eades et al. investigated classical paradigms, namely
straight-line and orthogonal graph drawings, our work addresses sto-
ryline visualizations, a popular visualization paradigm [44] to illustrate
dynamic relationships among characters over time and to more easily
visualize key interactions of characters or important events in the story
(e.g., see Fig. 1 for the storyline visualization of the plot of a famous
video-game, Final Fantasy VII). Traditional storyline layout algorithms
optimize global metrics. For example, they minimize the total number
of crossings or the total number of wiggles (vertical movements) across
all characters. This behavior can inadvertently introduce biases against
different groups of characters, based on their respective cardinality.
Such biases manifest themselves in two key ways: first, characters from
different groups may experience disproportionately more crossings and
wiggles, making their trajectories harder to follow. Second, important
characters in the story might be visually deprioritized when their curves
get entangled with numerous secondary characters. While our method-
ology can be readily extended to handle multiple groups, in this work
we focus on balancing fairness between two distinct groups of charac-
ters, which allows us to explore fundamental fairness trade-offs while
keeping the mathematical formulation relatively simple to describe.

Our Contributions. We introduce F2Stories, a modular frame-
work with three complementary optimization modes:
fairnessMode implements our notion of fairness by ensuring no

group experiences a disproportionate share of visual complexity, mea-
sured by relevant metrics, regardless of their proportional representation
in the story. This mode is essential in analytical contexts where analysis
requires equal attention to all character groups; bias in visual represen-
tation could lead to misinterpretation; or the goal is to reveal structural
patterns across groups impartially.
focusMode addresses scenarios where certain characters (e.g., pro-

tagonists or characters of particular interest) warrant visual prominence.
Rather than privileging a single always-present character as in prior
work [19], our focusMode allows prioritizing an entire group of charac-
ters while maintaining acceptable readability for secondary characters.
This is valuable when the analysis centers on a specific subset of charac-
ters; the narrative structure emphasizes certain character relationships;
or users wish to highlight particular patterns within a complex storyline.
standardMode represents the conventional approach to storyline

layout, where we optimize globally for aesthetic metrics without
considering any character groups. This serves as our baseline for
comparison and is suitable for cases where character grouping is either
not present or not relevant to the analysis task.
F2Stories is implemented as a modular framework, that enables

users to switch between three optimization modes while maintaining

compatibility with established storyline layout constraints. It offers
quantifiable, adjustable trade-offs between global and group-specific
metrics and provides the flexibility to enable, disable, or adjust the
weight of different optimization components without redesigning the
algorithm. This allows users to prioritize aspects of the visualization
according to their specific needs.

To achieve precise control over these competing and generally
NP-hard optimization objectives [24], we formulate our approach
using Mixed Integer Linear Programming (MILP), a versatile exact
approach in discrete optimization. While MILP is computationally
more intensive compared to heuristic methods, it offers several critical
advantages for our work. First, it provides optimality guarantees,
ensuring provably optimal solutions given our constraints and objective
function, which is crucial for obtaining the highest-quality layouts.
Second, its multi-objective flexibility allows precise balancing of
competing metrics through weighted objectives, enabling tunable
trade-offs between fairness and traditional readability metrics. Finally,
MILP’s constraint expressiveness makes it possible to incorporate
complex fairness concepts as additional constraints without requiring
a complete redesign of the algorithm. Moreover, our work is in line
with the best and most recent exact algorithms in the literature on
storyline visualizations [11, 14, 17], since they are all based on integer
programming. In summary, we propose:

• A new multi-objective MILP model for minimizing crossings,
wiggles and skewness in storyline visualization that offers dif-
ferent optimization approaches: balancing fairness within two
separate groups of characters, while also providing a flexible
mechanism to emphasize narratively significant characters with-
out sacrificing overall readability of the storyline.

• An open source implementation of the model, distributed on OSF
and GitHub. Additionally, we provide an interactive tool for
visualizing storylines, accessible at this link.

• Results of computational experiments on ten different storylines,
one of which is reported as a case study in the main body of the
paper, while the others can be found in the supplemental material.

2 RELATED WORK

Storyline Visualization. Storyline visualizations depict narratives
as temporal networks, representing characters as lines over time (x-
axis). These visualizations, first popularized by an XKCD comic [29],
place interacting characters close together to reflect shared moments.
Following its debut, many works sought to automate XKCD’s hand-
drawn layouts, leading to a range of layout algorithms with various
optimizations and specialized features. These draw on graph readability
criteria [39], aiming to minimize crossings, line wiggles, and white
space [44]. Because time maps to vertical layers, storyline layouts nat-
urally align with layered graph drawing techniques. Many algorithms
adapt the Sugiyama framework [41], often using barycentric heuris-
tics [15, 41] while ensuring adjacency during interactions [17]. Greedy
algorithms support applications beyond narratives, such as software
evolution [33] and patient monitoring [2, 9]. Tanahashi et al. [43] intro-
duced a streaming-compatible greedy method, while Van Dijk et al. [47]
proposed minimizing block crossings. Other methods include HTN
planning [36,37] and SAT-based formulations [10,48], or even a balance
approach between hand-drawn storylines and automatic layouts [45].

We focus on approaches that formulate the problem as an Integer
or Mixed-Integer Linear Program (ILP/MILP), where the goal is to
optimize a linear objective under linear constraints, with some or
all variables restricted to integers. The main challenge lies not only
in solving the ILP itself, but in expressing layout rules—like spatial
relationships, minimizing crossings, and preserving readability—as
linear constraints. When well-formulated, (M)ILP yields globally
optimal, clean visualizations, which is especially useful for small to
medium datasets where precision matters, such as metro maps [31, 32].
The first ILP-based solution for storyline layouts was proposed by
Gronemann et al. [17], and later extended by Dobler et al. [12], who
introduced time intervals. Hegemann et al. [19] added the concept of
a protagonist—an always straight, crossing-free line—shifting focus
to a single character’s clarity at the cost of fairness to others. Recent
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work also explores ILP models with improved efficiency [11, 50].

Fairness in Visualization. The rise of AI in sensitive domains has
increased the demand for visualization tools that enhance transparency
and fairness [3]. At the same time, these principles must apply to the
visualizations themselves to avoid misleading human analysts. Recent
work has introduced fairness constraints in low-dimensional projec-
tions [22, 26, 38, 46] and network layouts [13, 20]. Eades et al. [13]
formalize fairness for orthogonal and straight-line graph drawings, us-
ing bend and stress distributions across groups. Their results show that
fairness can be improved with minimal loss in readability by using
multi-objective optimization.

3 DESIGN OF FAIR STORYLINE VISUALIZATIONS

Based on previous work on storyline optimization [10–12,19,43,44] and
on fairness in visualization [13, 38], we identified the following design
requirements for F2Stories. We use them as guidelines to create
our modular multi-objective optimization function and its constraints.
Storyline Constraints:

• [DR1]: Characters are drawn as x-monotone curves and belong
to one of two easily distinguishable groups.

• [DR2]: Multiple characters that interact in a given timestep must
be drawn as a contiguous group.

Fairness Constraints:
• [DR3]: The visualization should maintain narrative coherence by

keeping character lines visually stable and clear from crossings.
• [DR4]: The visual complexity, as measured by metrics such as

crossings, should be fairly distributed across different groups.
• [DR5]: When narratively appropriate, the visualization should

support emphasizing a specific group of characters to have visual
predominance and reduced visual complexity.

Optimization Goals and Metrics. Design requirements [DR1]
and [DR2] are general storyline constraints we guarantee by design. To
satisfy the other DRs, we focus on three main optimization goals for
storyline visualizations: minimizing crossings, wiggles, and skewness.

Crossings occur when character curves intersect between timesteps,
causing clutter and reducing readability. Minimizing them is key to
clarity, as noted in graph drawing literature [39], and helps preserve flow.
For this reason, nearly all prior works include crossing minimization in
their objectives [10–12, 17, 19], directly supporting [DR3].

Wiggles are vertical shifts in character lines between timesteps. Too
many create clutter and make trajectories harder to follow. While some
are necessary, our model minimizes them to keep paths flat. Wiggles
were mainly studied in early works [43, 44] and less so in MILP set-
tings [14]. Reducing them improves visual stability and supports [DR3].

Skewness is the minimum number of characters to remove to make
a layout crossing-free [21, 30]. Though studied in layered graphs [30],
it hasn’t been used in storyline layouts. Minimizing skewness reveals
which characters add visual complexity and further supports [DR3].

These three optimization goals form the foundation of the
standardMode , which focuses on global aesthetic metrics without con-
sidering character groups. This mode aims to produce visually coherent
storylines with minimal visual complexity across the entire visualiza-
tion. In our fairnessMode , we extend these metrics to incorporate fair
distribution considerations, addressing design requirement [DR4]. As
an introductory example, following an approach similar to [13], we
define crossing unfairness for two groups: the majority (blue charac-
ters) and the minority (red characters). It is measured as the difference
in crossings involving each group, weighted by their respective cardi-
nalities (see Fig. 2 for an explanation). The goal is to minimize this
unfairness, ensuring a more balanced distribution of crossings between
the groups. We apply this same principle to define wiggle unfairness
and skewness unfairness, extending each base metric to account for the
group-based distribution. In the pursuit of fairness, however, a trade-off
emerges: global readability may be compromised to achieve balanced
group readability. This behavior is commonly referred to as the price of
fairness [13,40]. We are also interested in studying scenarios where we
optimize specific metrics for one group while maintaining acceptable
global readability. This is the goal of the focusMode , which addresses

unfairness =

∣∣∣∣
crossings among reds

number of reds
− crossings among blues

number of blues

∣∣∣∣

Unfairness is computed based on the number of crossings, within each character
group. A crossing between same-colored elements adds 2 to that group’s total,

while a crossing between different-colored elements adds 1 to each [35].

A single crossing among blue elements creates unfairness for the
blue set, as it is the only one that has a crossing. In this case,
unfairness is computed as: |0/2−2/4|= 1/2.

Although this case shows an equal number of red and blue cross-
ings, it’s still unfair: with more elements in the blue group, each
crossing weighs less than in the red group. Here, unfairness is
|2/2−2/4|= 1/2.

With 4 blue crossings and 2 red, unfairness is |4/4−2/2|= 0. This
is the fairest configuration shown.

In cases where there is a crossing between a blue line and a red line,
the crossing will be calculated as 1 for each group. Thus, unfairness
in this case is |1/4−1/2|= 1/4.

Fig. 2: An illustration of unfairness computed on different examples.

design requirement [DR5] by deliberately targeting the optimization of
aesthetic criteria for a specific focus group of characters without exces-
sively degrading the same metrics outside the focus group. This mode
is particularly useful when certain characters hold greater narrative
significance and demand for an enhanced visual clarity.

4 NOTATION

We follow the notation to Dobler et al. [11] and refer to Fig. 3 for
an illustration. A storyline instance is defined as a 4-tuple (T , C,
I , A) where: T = {1,2, . . . , ℓ} is a set of ordered time steps (also
called layers); C = {c1,c2, . . . ,cn} is the set of characters of the story,
with n = |C|; I = {I1, I2, . . . , Im} is the set of interactions between
characters, with m = |I |; A is the activity function that defines when
characters appear in the story. The characters in our storyline are
divided into two distinct groups, according to [DR1], which we identify
by colors red and blue. Formally, we define CR ⊆C as the set of red
characters and CB ⊆C as the set of blue characters, where C =CR∪CB
and CR ∩CB = /0. In the following, when fairnessMode is active, CR
is used as the minority group; meanwhile, when focusMode is active,
CR serves as the focus group. We also define nR = |CR| and nB = |CB|.

The activity function A maps each character c ∈C to a set A(c) =
{i, i+1, . . . , j} of consecutive time steps (1≤ i≤ j ≤ ℓ) during which
the character appears in the story. We say that c enters the story at
time step i and exits after time step j and that c is active at the time
steps in A(c). From this, we define the set of active characters at
a specific time step t as AC(t) = {c ∈ C | t ∈ A(c)}. We denote as
ACR(t) = {c ∈CR | t ∈ A(c)} and ACB(t) = {c ∈CB | t ∈ A(c)} the set
of red active characters and blue active characters, respectively. We also
define the set of characters that remain active throughout an entire time
interval [i, j], with 1≤ i≤ j ≤ ℓ, as the intersection AC(i, j) = AC(i)∩
AC(i+1)∩ ·· ·∩AC( j). We define ACR(i, j) (and similarly ACB(i, j))
as the set of red (blue) characters that are continuously present in the
story from time i to time j. An interaction I ∈ I occurs at a spe-
cific time step time(I) ∈ T and involves a set of characters, denoted as
char(I)⊆C. For each interaction I, it holds that char(I)⊆AC(time(I)),
meaning that only active characters can participate in interactions. For
any time step t ∈ T , we define the set of all interactions occurring at t as
I (t) = {I ∈I | time(I) = t} and the set of characters that are part of
those interactions as charSet(t) = ∪I∈I (t)char(I). We also define two
sets that partition possible character crossings based on group member-
ship: ΓR = {(t, i, j) | t ∈ 1, . . . , ℓ, i ∈ ACR(t, t +1), j ∈ AC(t, t +1)} and
ΓB = {(t, i, j) | t ∈ 1, . . . , ℓ, i ∈ ACB(t, t + 1), j ∈ AC(t, t + 1)}. These
sets capture all potential crossings involving red and blue characters,
respectively, across consecutive time steps.
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Fig. 3: A storyline of 9 charac-
ters, with 6 interactions over 5
time steps.

Given a set X = {x1, . . . ,xn}, a permutation π is a linear order of
the element of the set. It can also be seen as a bijective function from
{1,2, . . . , |X |} to X . Given two elements x,y ∈ X , if x comes before y
in the permutation π we write x≺π y.

Given a storyline instance (T,C,I ,A), we call solution or layout of
the instance a sequence S = (π1, . . . ,πℓ) where each πt is a permutation
of AC(t) satisfying [DR2]: for every interaction I ∈I (t), the characters
in char(I) must appear consecutively in πt . Formally, for any ca,cb ∈
char(I) and any c ∈ AC(t)\ char(I), if ca ≺πi cb, then we either have
c ≺πi ca or cb ≺πi c. That is, characters participating in the same
interaction at a given time step must form an uninterrupted sequence
within the permutation for that time step.

5 THE F2Stories MILP OPTIMIZATION MODEL

Modules. Our optimization model is structured around distinct
modules, each consisting of a weighted term in the objective function
and an associated set of constraints. Users can enable, disable, or
adjust the weight of each module by modifying its coefficient. In
Sec. 3 we introduced three optimization metrics: crossings, wiggles,
and skewness, each with an associated (un)fairness metric. Each has
two coefficients: one for the standard version and one for its fairness
variant. These are denoted as λc and λ f

c for crossings; λw and λ f
w for

wiggles; and λs and λ f
s for skewness. We refer to the former as standard

coefficients, the latter as fairness coefficients. To enhance readability,
we use a consistent color-coding scheme that visually distinguishes
modules and their fairness variants, with each pair sharing the same
base hue and a different shade.

Modes. This paragraph presents three complementary modes for
storyline visualization; each emphasizes different aspects of the lay-
out and strives for distinct optimization goals. By adjusting module
coefficients, users can create configurations that prioritize different
objectives, ranging from single-metric optimizations to complex multi-
objective scenarios balancing competing goals. The configurations used
in our experiments are listed in Tab. 2 and discussed further in Sec. 6.
standardMode represents the conventional approach to storyline lay-
out, focusing on global aesthetic metrics without considering character
groups, and serves as our baseline. It is activated by setting non-zero
values for standard coefficients while keeping fairness coefficients at
zero. This mode implements optimization approaches comparable to
state-of-the-art methods [17], extended to support our modular frame-
work. It is implemented through three primary optimization terms:

• The cr term represents crossings between character
curves. Its related coefficient is λc.

• The wg term represents vertical movements in character
curves, called wiggles. Its related coefficient is λw.

• The sk term represents the skewness of the storyline. Its
related coefficient is λs.

fairnessMode addresses inherent biases in traditional storyline opti-
mization algorithms by balancing visual complexity across character
groups. This mode is activated when fairness coefficients are set to high
values, while maintaining standard coefficients at lower values. These
are the fair-variant optimization terms of the previously presented ones:

• The cr f term represents crossing unfairness through
balancing crossing distributions between groups using a weighted
approach where red-red crossings, blue-blue crossings, and
mixed crossings are considered proportionally to group sizes.
Its related coefficient is λ f

c .

• The wg f term represents the wiggles unfairness, i.e.,
the number of wiggles of the red characters compared to the
number of wiggles of the blue characters, weighted by their group
cardinality. Its related coefficient is λ f

w .
• The sk f term represents skewness unfairness, i.e., the

number of characters to be removed to achieve planarity is bal-
anced between the character groups, based on their respective
cardinality. Its related coefficient is λ f

s .
focusMode provides a targeted approach when specific character
groups, such as protagonists or key figures in data analysis, require
visual emphasis. This mode prioritizes the visual clarity of a des-
ignated focus group while preserving overall readability. Unlike
fairnessMode , which aims for a balanced representation across all
groups, focusMode creates a visual hierarchy that draws attention to
significant characters. This emphasis is pursued through three mecha-
nisms. Crossings: prioritizes clarity of focus character trajectories, with
highest emphasis on crossings within the group. Wiggles: creates flatter
curves for focus characters by emphasizing minimized vertical move-
ment. Skewness: gives higher optimization priority to focus characters
when resolving planarity via skewness.

5.1 Objective Function
We now formalize the multi-objective optimization model of
F2Stories. We extend classical storyline techniques [11, 17] with
group-aware components and modular flexibility. The model includes a
term for each of the three core metrics, plus a fairness counterpart. Each
term is weighted by a coefficient, allowing users to prioritize or disable
components. We now define the optimization terms, starting from:

cr =
ℓ−1

∑
t=1

∑
i, j∈AC(t,t+1),

i< j

αi, j · yt,i, j

Explanation: cr counts the total number of crossings across all
time steps, where yt,i, j is 1 if characters i and j cross between
consecutive time steps t and t +1, and 0 otherwise. The coefficient
αi, j is a weight to prioritize the minimization of crossings between
characters i and j, based on their group memberships.

wg =
ℓ−1

∑
t=1

∑
i∈AC(t,t+1)

αi ·wt,i

Explanation: wg counts the sum of combinatorial vertical move-
ments (wiggles) across all time steps, where wt,i represents the
number of positions character i shifts vertically between time t and
t +1. The coefficient αi is a weight to prioritize the optimization of
the objective towards character i, based on its group membership.

sk = ∑
i∈C

αi ·Si

Explanation: sk counts the total number of characters to be removed
in order to obtain a crossing-free storyline. Variable Si equals 1 if
character i has to be removed, 0 otherwise.

The α parameters in the above equations provide a flexible mecha-
nism for weighting characters based on their group membership during
the optimization process. In standardMode and fairnessMode , all
α parameters are set to 1. In focusMode , instead, these parameters
take different values based on the specific optimization metric and the
character group membership. In particular:

• The pairwise parameter αi, j = 1 if i, j are non-focus characters,
αi, j = γ for some γ > 1 if exactly one of i, j is a focus characters,
and αi, j = γ2 if both i, j are in the focus group.

• The individual parameter αi = 1 if i is a non-focus character and
αi = γ > 1 if i belongs to the focus group.

The three fairness terms, cr f ,wg f , and sk f , measure the differences
in visual complexity between the two character groups, normalized by
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Table 1: Summary of definitions for the F2Stories MILP model

Variable defintions
Name Type Description
xt,i, j Bin 1 if character i is above character j at time t, 0 otherwise.
yt,i, j Bin 1 if characters i and j cross between time t and t+1, 0 otherwise.
cr f Float Fairness variable for crossings in the MILP.
wt,i Int Wiggle for character i between time t and t +1.
wg f Float Fairness variable for wiggles in the MILP.
Si Bin 1 to select character i for the skewness set, 0 otherwise.

sk f Float Fairness variable for skewness in the MILP.
bt Int Reference position at time t used for wiggle computation.

βt,i, j Bin Auxiliary variable to avoid overcounting of crossings.
δt,i Bin Auxiliary variable to avoid overcounting of wiggles.

Set defintions
Name Description

C =CR ∪CB C: all characters, CR: red characters, CB: blue characters.
AC(t) Active characters at time t.

AC(t, t +1) Active characters between time steps t and t +1.
ΓR(t, i, j) Potential crossings involving red characters between time t and t +1.
ΓB(t, i, j) Potential crossings involving blue characters between time t and t+1.

their respective group sizes. Minimizing these values in the objective
function achieves a fair distribution of metrics across character groups.

cr f =

∣∣∣∣∣
1

nR
∑

(t,i, j)∈ΓR

yt,i, j−
1

nB
∑

(t,i, j)∈ΓB

yt,i, j

∣∣∣∣∣

Explanation: cr f is the difference between the average number
of crossings involving red characters and the average number of
crossings involving blue characters. By normalizing by group sizes
(nR and nB), we ensure fair comparison between groups of different
cardinalities. When minimized in the objective function (weighted
by λ f

c ), the optimization distributes crossings fairly between groups.

wg f =

∣∣∣∣∣
1

nR

ℓ−1

∑
t=1

∑
i∈ACR(t,t+1)

wt,i−
1

nB

ℓ−1

∑
t=1

∑
i∈ACB(t,t+1)

wt,i

∣∣∣∣∣

Explanation: wg f represents the difference between the average
wiggle score for the red characters and that for the blue characters.
By normalizing by group sizes, this metric ensures a fair comparison
regardless of group imbalance. When minimized in the objective
function (weighted by λ f

w ), it creates layouts where both groups
experience similar wiggle trends in their trajectories.

sk f =

∣∣∣∣∣
1

nR
∑

i∈CR

Si−
1

nB
∑

i∈CB

Si

∣∣∣∣∣

Explanation: sk f measures the difference between the proportion
of red characters and the proportion of blue characters that must
be removed to achieve planarity. This fairness metric ensures that
the complexity of resolving crossings is distributed fairly between
groups relative to their size. When minimized in the objective
function (weighted by λ f

s ), it prevents disproportionate removal of
characters from any single group.

When we put together the optimization coefficients with the previous
definitions of each term, we obtain the following objective function:

min (λc · cr+λ f
c · cr f +λw ·wg+λ f

w ·wg f +λs · sk+λ f
s · sk f ) (1)

5.2 Constraints
In our multi-objective optimization model, we define constraints that
enforce structural properties of storyline visualizations. These address
our optimization metrics while supporting design requirements. Table 1
provides a summary of the used terms and variables. Constraints (2)–(5)
follow the ILP model by Dobler et al. [11].

General Storyline Constraints

The core of the MILP formulation for the visualization of storylines is
based on the binary variables xt,i, j that encode the relative ordering of
characters in the permutation of each time step. Formally, for characters
i, j ∈ AC(t), we define xt,i, j = 1 if i ≺πt j (character i appears above
character j in the permutation πt ) and xt,i, j = 0 otherwise (hence j ≺πt

i). To maintain consistency in our permutation representation, a first
constraint is to enforce that exactly one of these ordering relationships
must hold between any pair of characters at each time step:

xt,i, j + xt, j,i = 1 ∀t ∈ T,∀i, j ∈ AC(t), i ̸= j (2)

Explanation: for any pair of active characters i, j at the same time
step t, either i is above j or j is above i, but never both.
Number of constraints generated: O(ℓ ·n2)

To ensure that character orderings form a valid permutation at each
time step, we must enforce transitivity in relative positions. At any time
t, if character i is above character j and character j is above character
k, then character i must be above character k.

0≤ xt,i, j + xt, j,k− xt,i,k ≤ 1 ∀t ∈ T, ∀i, j,k ∈ AC(t) (3)

Explanation: if character i is above j and j is above k, then i must
be above k. Also, if either xt,i, j = 0 or xt, j,k = 0 (but not both), no
constraint is added for xt,i,k.
Number of constraints generated: O(ℓ ·n3)

According to [DR2], characters that interact must be drawn as a contigu-
ous group at the time step where the interaction occurs. This ensures
that interacting characters appear consecutively in the permutation,
with no non-interacting characters between them.

xt,i,k− xt, j,k = 0 (4)

∀I ∈I and t = time(I), i, j ∈ char(I), i ̸= j,k ∈ AC(t)\ char(I)

Explanation: for any interaction I, all characters that participate
in I have the same relative position with respect to the same non-
interacting characters.
Number of constraints generated: O(m · n3), though typically
much lower in practice as most interactions involve few characters.

This was the last of the three fundamental constraints for storyline
visualizations. We will now describe the constraints related to each one
of the three optimization metrics and their related fairness definition.

Crossing Detection and Fair Crossing Constraints

Crossings. The classical way to detect crossings in a layered
network is to check when two characters swap their relative positions
between consecutive layers (see, e.g., [8, 17, 51]). Building on our
previously defined ordering variables xt,i, j, we introduce the binary
variable yt,i, j to capture whether characters i and j cross between time
steps t and t +1. By minimizing cr in the objective function, yt,i, j = 1
if a crossing occurs and yt,i, j = 0 otherwise.

yt,i, j ≥ xt,i, j− xt+1,i, j

yt,i, j ≥ xt+1,i, j− xt,i, j
∀t ∈ [1, ℓ−1],∀i, j ∈ AC(t, t +1), i < j (5)

Explanation: When characters i and j swap positions between time
steps t and t + 1, either xt,i, j − xt+1,i, j = 1 or xt+1,i, j − xt,i, j = 1,
forcing yt,i, j ≥ 1. If no swap occurs, xt,i, j = xt+1,i, j and yt,i, j ≥ 0.
Number of constraints generated: O(ℓ ·n2)

Fair Crossings. To address [DR4], we introduce constraints
that measure and minimize the unfairness in crossing distribution be-
tween character groups. These constraints define the fairness variable
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cr f used in our objective function:

cr f ≥ 1
nR

∑
(t,i, j)∈ΓR

yt,i, j−
1

nB
∑

(t,i, j)∈ΓB

yt,i, j

cr f ≥ 1
nB

∑
(t,i, j)∈ΓB

yt,i, j−
1

nR
∑

(t,i, j)∈ΓR

yt,i, j

(6)

Explanation: cr f is the absolute difference between the average
number of crossings involving red characters and the average number
of crossings involving blue characters.
Number of constraints generated: O(1)

We introduce an additional constraint to address a limitation of the
standard crossing detection in Eq. (5). When fairnessMode is active,
it only sets upper bounds on yt,i, j, which may not be tight—allowing
the solver to set yt,i, j = 1 even without an actual crossing, to boost
fairness. The new constraint ensures yt,i, j = 1 if and only if a true
crossing occurs. We introduce an auxiliary binary variable βt,i, j to
ensure accurate crossing detection.

yt,i, j + xt,i, j + xt+1,i, j +2βt,i, j = 2 (7)

∀t ∈ [1, ℓ−1],∀i, j ∈ AC(t, t +1), i < j

Explanation: when characters maintain their relative positions and
do not cross, i.e., xt,i, j = xt+1,i, j and their sum is either 0 or 2, the
auxiliary binary variable βt,i, j must take the value 1 or 0, respectively,
to satisfy the constraint. In either case, yt,i, j is forced to be 0.
Number of constraints generated: O(ℓ ·n2)

Skewness and Fair Skewness Constraints
Skewness. We use binary variables Si to indicate whether

character i must be removed (Si = 1) or not (Si = 0) to achieve planarity.

Si +S j ≥ yt,i, j ∀t ∈ [1, ℓ−1],∀i, j ∈ AC(t, t +1), i < j (8)

Explanation: This constraint enforces that if characters i and j
cross (i.e., yt,i, j = 1), then at least one of these characters must be
removed to achieve planarity (either Si = 1 or S j = 1 or both). When
minimizing the sum of Si, the optimization process identifies the
smallest subset of characters whose removal eliminates all crossings.
Number of constraints generated: O(ℓ ·n2)

Fair Skewness. To fairly distribute skewness across character
groups, we impose the following fairness constraints that measure the
normalized absolute difference in character removal proportions.

sk f ≥ 1
nR

∑
i∈CR

Si−
1

nB
∑

i∈CB

Si

sk f ≥ 1
nB

∑
i∈CB

Si−
1

nR
∑

i∈CR

Si

(9)

Explanation: sk f is the difference between the average skewness
of the red character set and that of the blue character set.
Number of constraints generated: O(1)

∑
i∈C

Si ≤ tr ·optSK (10)

Explanation: This constraint establishes an upper bound on the
total number of characters that can be removed, preventing excessive
character removal when optimizing for fairness. The term optSK
represents the optimal skewness value obtained from a preprocessing
step that minimizes only the global skewness. It is computed using
Eq. (8). The threshold coefficient tr allows for a reasonable increase
in the total skewness to accommodate fairness goals, representing
the price of fairness we are willing to pay.
Number of constraints generated: O(1)

�� �� ��

Fig. 4: Visualization of wiggles and baseline.
Each character’s vertical position is determined
by its relative position to other characters plus
a baseline value for that time step. Unavoidable
wiggles occur when these positions change
between consecutive time steps.

Wiggles and Fair Wiggles Constraints
Wiggles. We define wt,i as the magnitude of vertical displace-

ment for character i between consecutive time steps t and t +1.

wt,i ≥ ∑
j∈AC(t)

xt,i, j +bt − ∑
j∈AC(t+1)

xt+1,i, j−bt+1

wt,i ≥ ∑
j∈AC(t+1)

xt+1,i, j +bt+1− ∑
j∈AC(t)

xt,i, j−bt
(11)

∀t ∈ [1, ℓ−1],∀i ∈ AC(t, t +1), j ̸= i

Explanation: These constraints measure the absolute difference in
a character’s vertical displacement between two consecutive time
steps. The term ∑ j ̸=i xt,i, j +bt represents the vertical position of
character i at time t, counting how many characters are below it
plus a baseline value bt . When this position changes, wt,i captures
the magnitude of that change. By minimizing wt,i in the objective
function, we create more flat character trajectories.
Number of constraints generated: O(ℓ ·n)

Baseline. Baseline variables bt define reference points for vertical
positioning at each time step, enabling global shifts without adding
wiggles and preserving relative positions and order.

0≤ bt ≤ |C| ∀t ∈ T (12)

Explanation: These constraints bound the baseline values between
0 and the total number of characters. The baseline can be interpreted
as the number of phantom characters positioned below all actual
characters at a given time step, allowing for vertical shifts of the
entire character arrangement without affecting relative positions.
Number of constraints generated: O(ℓ)

Fair Wiggles. To ensure wiggles are fairly distributed be-
tween character groups, we introduce fairness constraints that compare
the average wiggle magnitude experienced by characters in each group.

wg f ≥ 1
nR

ℓ−1

∑
t=1

∑
i∈ACR(t,t+1)

wt,i−
1

nB

ℓ−1

∑
t=1

∑
i∈ACB(t,t+1)

wt,i

wg f ≥ 1
nB

ℓ−1

∑
t=1

∑
i∈ACB(t,t+1)

wt,i−
1

nR

ℓ−1

∑
t=1

∑
i∈ACR(t,t+1)

wt,i

(13)

Explanation: wg f is the absolute difference between the average
magnitude of wiggles of the red character set and the average mag-
nitude of wiggles of the blue characters set.
Number of constraints generated: O(1)

Similar to the crossing constraints, the following upper bound con-
straints on wt,i (together with Constraints (11)) ensure that wt,i repre-
sents the exact vertical displacement rather than just an upper bound.
In particular, δt,i serve as auxiliary binary variables, and the constant M
(set to M = 2n) deactivates the constraint that does not apply, ensuring
wt,i equals the true magnitude of vertical movement.

wt,i ≤ ∑
j∈AC(t)

xt,i, j +bt − ∑
j∈AC(t+1)

xt+1,i, j−bt+1 +Mδt,i

wt,i ≤ ∑
j∈AC(t+1)

xt+1,i, j +bt+1− ∑
j∈AC(t)

xt,i, j−bt +M(1−δt,i)
(14)

∀t ∈ [1, ℓ−1],∀i ∈ AC(t, t +1), j ̸= i
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Explanation: In Eq. (11), one of the two lower bound constraints is
non-negative and the other non-positive, depending on whether char-
acter i moves up or down at time t. The auxiliary binary variables
δt,i ensure that exactly one constraint becomes both a lower and
upper bound, while the other—relaxed by a large constant M—is
trivially satisfied. This mechanism prevents the optimization from
introducing phantom wiggles—changes made solely to improve
fairness without altering the actual layout.
Number of constraints generated: O(ℓ ·n)

6 EXPERIMENTS

To test the capabilities of our solution, we perform a computational
evaluation, as is usual with many other (M)ILP-based methods [7, 11].

Dataset. Our dataset of 10 storylines combines data from prior
work [11], dblp API queries [6], and LLM-generated stories refined by
us. It is available in the supplemental material. The number of charac-
ters ranges from 13 to 46, and the number of time steps from 39 to 95.

Group Structure. Similar to [13], we assign the characters of each
storyline to the minority (red) and majority (blue) groups using three
different levels of group balance to demonstrate how fairnessMode and
focusMode behave depending on the relative size of the minority. In
coloring1 we pick a single protagonist1; in coloring2 we select a
minority group of significant characters, in the range of 15−25% of
the total cast; in coloring3 we identify a minority group of important
characters, accounting for 35−45% of the total cast. These colorings
reflect characters’ narrative importance; see, for example the three
colorings of Fig. 5 for the JurassicPark storyline.

Procedure. For each storyline instance, we test twelve dif-
ferent configurations: the cross-product of three different modes
(standardMode , fairnessMode and focusMode ) with four different
combinations of optimization objectives (cross, skew + cross, wiggles
+ cross and skew + wiggles + cross). Each configuration is also tested
on three different group assignments, resulting in 36 experiments per
storyline instance. As this is an extensive amount of experiments, we
report the bulk of our results in the supplemental material. In Tab. 2,
we present the parameter values used in our experimental setup for the
different modes and optimization objectives. High values for certain
λ -parameters are intentionally chosen to prioritize specific objectives.
For example, when simultaneously minimizing fair crossings and
crossings, we assign significantly higher weights to the fairness
coefficient, ensuring that, for the model, fairness is worth significantly
more than the introduction of additional crossings, yet, between
two solutions of the same fairness, the one with fewer crossings
will always be preferred. Specifically, the fairness coefficient value
(1,000) was chosen empirically as a good default value for all fairness
configurations. This approach, which ensures clear prioritization
among competing objectives, is a common practice in multi-objective
optimization problems [50]. To address Eq. (10), we set the threshold
coefficient tr = 1.5 and optSk to the skewness value when crossings
are minimized. In this sense, we are willing to pay an increase in
global skewness of at most 50% to minimize unfairness.

Setup. All experiments were conducted on systems equipped with
Intel Xeon E5-2640 v4 processors (10 cores, 2.40GHz) and 160GB
RAM running Ubuntu 18.04.6 LTS. Experiments were executed in
single-threaded mode. The code to generate the MILP file is im-
plemented in Python 3.8.16. To solve the MILPs we used Gurobi
11.0.1 [18]. We also set the following parameters: the memory limit is
64GB for all experiments and we set the time limit to 5 hours (18000s).
To account for performance variability, all experiments were conducted
using a fixed seed. The source code is available on OSF and GitHub
and a showcase interactive tool at the following link2.

1In contrast to [19], where the protagonist is an always active character
participating in all interactions, we simply mean the main character of the story.

2https://tinyurl.com/mwsm5shz

Table 2: Values of the F2Stories parameters for the experimental setup

Mode λ f
s λs λ f

c λc λ f
w λw γ

cross
standardMode 0 0 0 1 0 0 0
fairnessMode 0 0 1000 1 0 0 0
focusMode 0 0 0 1 0 0 10

skew + cross
standardMode 0 1 0 1 0 0 0
fairnessMode 1000 1 0 1 0 0 0
focusMode 0 1 0 1 0 0 10

wiggles + cross
standardMode 0 0 0 1 0 1 0
fairnessMode 0 0 0 1 1000 1 0
focusMode 0 0 0 1 0 1 10

skew + wiggles + cross
standardMode 0 1 0 1 0 1 0
fairnessMode 1000 1 1000 1 1000 1 0
focusMode 0 1 0 1 0 1 10

Results. Our evaluation of F2Stories focuses on assessing how
effectively the framework balances global readability with group-
specific fairness across different storyline datasets. We now report
the aggregated results for the whole dataset and, for brevity, detailed
results only for a case study in Tab. 3 that we discuss in Sec. 7.

Single-metric standardMode optimizations run fastest (avg. 0.71
s), while the most complex configuration (skew + wiggles + cross)
averages 817.32 s. fairnessMode incurs a substantial computational
weight, with some complex multi-objective optimizations hitting our
timeout threshold of 5 hours. This performance issue is primarily due to
the additional fairness constraints that significantly increase the MILP
problem size. focusMode falls between these extremes and, sometimes,
it is even faster than the standardMode approach: for example, for the
crossing minimization configuration, it is slower than its counterpart
(1.35 s on average) but it is significantly faster for the most complex
configuration (126.48 s on average). ). This suggests focusMode offers
a balanced compromise when character prioritization is needed but full
fairness optimization is computationally too costly.

Our computational experiments confirm that the three optimization
modes produce distinctly different visual results, each with their own ad-
vantages (see Fig. 1). The standardMode consistently achieves the low-
est absolute crossing counts across all datasets, as expected for a global
optimization approach. However, our fairnessMode successfully bal-
ances crossing distributions between character groups, with crossing
unfairness (cr f ) values approaching zero in most cases. This comes at a
price: the total number of crossings increases on average by 53% com-
pared to standardMode , while the fairness improves, on average, by
83%. Examining the multi-objective optimizations of fairnessMode ,
it reveals important trade-offs between metrics. When optimizing for
skewness fairness (sk f ), we observe that achieving perfectly fair skew-
ness is structurally more constrained than other metrics. We observe
an increase in skewness of 1.8% on average, while the related fairness
improves by 44%. Wiggle fairness (wg f ) exhibits the greatest vari-
ability across optimization metrics, suggesting that character trajectory
smoothness is most sensitive to fairness: even though the average global
number of wiggles increases by 28%, the fairness metric exhibits an
average improvement of 93.3% compared to standardMode . The same
conclusions can be drawn from the complete model in which: cross-
ings go up by 46% on average while cr f improves by 91.5%; wiggles
increase by 50% on average, but their fairness improves by 95%; skew-
ness remains more or less stationary, (8% increase) with an improve-
ment of the skewness fairness of 44%, on average. focusMode exhibits
particularly interesting behavior in relation to group size. When the
focus group is very small (as in coloring1 with a single red character),
we observe near-perfect optimization for focus characters, reducing
the number of crossings involving red characters to 0 and the number
of red wiggles to 0. As the focus group size increases (in coloring2
and coloring3), the advantage diminishes proportionally, as expected,
suggesting a practical limit to the approach.

7 CASE STUDY

Here we present and analyze results from our case study using the
movie Jurassic Park (1993) as our narrative storyline. Being one of the
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Fig. 5: Examples of the three coloring styles on the Jurassic Park dataset. Optimization metrics: skew, wiggles and cross in focusMode .

pioneering examples of handwritten storyline visualizations presented
in XKCD’s narrative charts [29], the plot of this movie serves as an ideal
example to demonstrate the concepts presented throughout this paper.
The specific data we analyzed are derived from more recent work [11].

The JurassicPark storyline comprises 20 characters across 41
time steps. We tested three different character groupings: coloring1
designates Dr. Alan Grant (DR) as the sole protagonist; coloring2
selects three co-protagonists (DS, RM, and DN); and coloring3 places
40% of the characters in the red group, representing the team of
scientists central to the movie. Some characters appear briefly, such as
a worker attacked by a velociraptor in the opening scene, and so they
are represented as individual dots in a single time step. The detailed
results are presented in Tab. 3, with rows corresponding to optimization
metrics and columns showing four optimization configurations,
each with results for the three optimization modes. Computation
time varies predictably with optimization complexity: single-metric
optimization (like crossing minimization in standardMode ) executes
faster, while multi-objective optimization (as, e.g., skew + wiggles +
cross in fairnessMode ) requires more processing time. This pattern
is consistent across all colorings.

For the JurassicPark storyline, our standard optimization
achieved minimum crossings cr = 18, minimum skewness sk = 3 when
optimizing for crossings, and minimum wiggles wg = 36 when simul-
taneously minimizing crossings. When optimizing all three metrics
together, crossings and wiggles remain unchanged (cr = 18,wg = 36),
while skewness slightly increases (sk = 4), since it is layout dependent.
These results in standardMode remain consistent across all colorings.
The fairnessMode columns show results when minimizing unfairness
for each metric. Both cr f and wg f reach 0 in their respective config-
urations. Meanwhile, sk f does not fall below 0.08 given its bound
(Eq. (10)). The focusMode columns present results from optimization
focused on specific characters. The key objective of focusMode is not
to achieve overall fairness, but to minimize the target metric for the
characters in the focus group. Results vary significantly by coloring:
in coloring1, the total crossings increase from 18 to 19 compared to
standardMode , but the crossings of the single red character drop from
2 to 0; in coloring2, the total crossings rise from 18 to 26, with only
1 instead of 2 red-red crossing and 12 instead of 16 blue-red crossings;
and in coloring3, results closely resemble standardMode results be-
cause the nearly equal distribution of characters (40% red, 60% blue)
effectively eliminates the focus group emphasis during optimization.
The impact of focusMode , accross all metrics, is most pronounced if
the focus group represents, as intended, a minority of the characters.

8 DISCUSSION

The primary contribution of this paper is the introduction of a novel
storyline model that integrates fairness into layout optimization, pro-
viding significant value by ensuring balanced distributions of crossings,
skewness, and wiggles between minority and majority groups in the
storyline. By minimizing the unfairness, fairnessMode produces a
storyline visualization in which both groups of characters have an equi-
table distribution of crossings, skewness and/or wiggles. For example,
in the second layout of Fig. 1, we can see that by a 30% increase
in the number of crossings with respect to the minimum, a perfectly
fair distribution of crossings can be obtained. focusMode enhances
visual clarity for key characters, ensuring less cluttered trajectories
while maintaining readability for the other characters. As shown in
Fig. 1, the third layout removes crossings for the focus group, unlike
standardMode (first layout). With emphasis on a single optimized pro-
tagonist (Fig. 5 top), this character appears as a perfectly horizontal and
uncrossed line, showcasing the effectiveness of targeted optimization.

One of the key aspects to consider is the price of fairness: the
trade-off between achieving optimal overall readability and producing
a fair visualization, where fairness may lead to a higher number of
crossings, wiggles, or skewness. In several cases, we observed that
when a crossing was unavoidable in the disadvantaged group, the solver
would deliberately introduce a crossing in the advantaged group to
improve fairness, even if the result may appear counterintuitive from a
global readability perspective. To investigate this phenomenon and ad-
dress the question, “What is a good balance between global optimality
and fair distribution of crossings?”, we conducted a series of experi-
ments (Fig. 6). In each experiment, we upper bounded the number of
allowed crossings, starting from the global minimum (obtained from
standardMode ) and increasing the upper bound by 1 in each successive
run. This behavior was achieved by introducing a new simple constraint
that ensures cr ≤CC, with CC being the number of allowed crossings.
Regarding the values for the λ -parameters, only λ f

c was enabled, with
its value set to 1. For example, in our case study, given an optimal cross-
ing count of 18, we ran multiple fairness-optimizing computations for
each of the three colorings, with CC = 18,19,20, . . . ,50. This allowed
us to study how fairness evolves as the crossing allowance increases.
From the results in Fig. 6, we observe that most unfairness plots exhibit
an inflection point—a noticeable shift in the rate of change. These
points represent meaningful trade-offs between fairness and overall
readability. We recommend using such inflection points as thresholds
for balancing the two competing objectives, although identifying them
does require running the experiment multiple times. As shown in Tab. 3,
some instances (marked in light gray) exceed time or memory limits.
The MILP solver Gurobi outputs the best-found solution even if it hits
the allocated computation time, though optimality is not guaranteed.
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Table 3: Result values for Jurassic Park, across 3 different ways to
assign characters to group (i.e. coloring). Each column represents
one of 12 experiments, split in 4 different optimization objectives and
3 different modes (Standard, Fair and Focus), with results reported for
13 metrics. Values in bold represent the best value for a metric across
all experiments, and colored cell backgrounds represent the best
results for unfairness, with the most vivid color representing especially
good results. In the timing column, "oot" and "oom" indicate respectively
"out of time" and "out of memory". We report those columns as grayed
out. Gurobi returns partial results for oot and oom solutions even if the
computation can not completely finish, and, although optimality cannot
be guaranteed on those, they still report valid solutions with the best
result obtained while the computation was working.
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Time (s): 0.4 5.5 0.3 0.8 0.8 0.4 23.1 138.4 16.7 30.4 oot 17.0
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s Blue-Blue 16 18 19 17 17 19 16 16 19 16 18 19
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 2 2 0 1 1 0 2 2 0 2 2 0

Total 18 20 19 18 18 19 18 18 19 18 20 19
Unfairness 0.21 0.00 2.00 0.84 0.84 2.00 0.21 0.21 2.00 0.21 0.00 2.00
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ew
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ss Blue - - - 3 3 3 - - - 4 3 3

Red - - - 0 0 0 - - - 0 0 0
Total - - - 3 3 3 - - - 4 3 3

Unfairness - - - 0.16 0.16 0.16 - - - 0.21 0.16 0.16
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Blue - - - - - - 36.0 38.0 45.0 36.0 57.0 45.0
Red - - - - - - 0.0 2.0 0.0 0.0 3.0 0.0

Total - - - - - - 36 40 45 36 60 45
Unfairness - - - - - - 1.89 0.00 2.37 1.89 0.00 2.37
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Time (s): 0.3 oom 0.3 0.7 5.9 0.3 23.3 oot 10.1 30.7 oot 13.8
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s Blue-Blue 0 40 13 0 0 13 1 6 13 1 40 14
Red-Red 2 5 1 3 3 1 2 3 1 2 5 1
Blue-Red 16 5 12 15 15 12 15 14 12 15 5 12

Total 18 50 26 18 18 26 18 23 26 18 50 27
Unfairness 5.73 0.00 2.43 6.12 6.12 2.43 5.33 5.14 2.43 5.33 0.00 2.31
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ew

ne
ss Blue - - - 0 2 6 - - - 1 2 6

Red - - - 3 2 1 - - - 3 2 1
Total - - - 3 4 7 - - - 4 4 7

Unfairness - - - 1.00 0.55 0.02 - - - 0.94 0.55 0.02
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es

Blue - - - - - - 10.0 68.0 36.0 10.0 85.0 35.0
Red - - - - - - 26.0 12.0 17.0 26.0 15.0 17.0

Total - - - - - - 36 80 53 36 100 52
Unfairness - - - - - - 8.08 0.00 3.55 8.08 0.00 3.61

coloring 3

optimize for:
cross
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optimize for:
cross + skew
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optimize for:
cross + wiggles
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Time (s): 0.4 oot 0.5 0.7 1.1 1.5 23.2 oot 12.2 30.6 6162 11.1

cr
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ng

s Blue-Blue 1 11 2 1 2 2 1 1 5 1 11 5
Red-Red 5 5 5 5 5 5 5 5 5 5 5 5
Blue-Red 12 14 11 12 11 11 12 15 12 12 14 12

Total 18 30 18 18 18 18 18 21 22 18 30 22
Unfairness 1.58 0.00 1.38 1.58 1.38 1.38 1.58 1.71 0.92 1.58 0.00 0.92

sk
ew

ne
ss Blue - - - 1 2 2 - - - 1 2 3

Red - - - 2 2 2 - - - 3 2 2
Total - - - 3 4 4 - - - 4 4 5

Unfairness - - - 0.17 0.08 0.08 - - - 0.29 0.08 0.00

w
ig

gl
es

Blue - - - - - - 10.0 30.0 36.0 10.0 33.0 36.0
Red - - - - - - 26.0 20.0 21.0 26.0 22.0 21.0

Total - - - - - - 36 50 57 36 55 57
Unfairness - - - - - - 2.42 0.00 0.38 2.42 0.00 0.38

Jurassic Park There is a fine balance that must be
considered when optimizing crossing
fairness: in order to make the
crossings fair between the two
groups, the resulting number of
crossings will be a little higher than
the total possible minimum crossings
in the visualization. This is the price
of fairness. The charts on the side
represent the changing value of
fairness when we allow for a certain
maximum number of total crossings
in the network, computed on the
case study. The maximum number of
crossings allowed corresponds to the
number of crossings computed when
cr f is minimized, for each coloring.
Each dot represents an individual
experiment, and we keep track, on
the y-axis, of the trend for the
unfairness.
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Fig. 6: The price of fairness, illustrated.

Limitations Our approach to fairness in storyline visualizations,
while effective in balancing readability across character groups, has
some limitations. The wiggle optimization in F2Stories, for instance,
cannot add spaces between lines—only at the top or bottom. Allowing
this could reduce wiggles further. The computational complexity of
fairnessMode is another key limitation. As seen in several “out of time”
and “out of memory” cases, achieving optimal fairness can be com-
putationally prohibitive for large instances or complex multi-objective
problems. While our approach still yields valid solutions when resource
limits are hit, they come without formal optimality guarantees.

Future Work. Several research directions could further advance
fairness in storyline visualizations. Extending our approach beyond
two character groups may enhance narrative analysis, requiring gener-
alized fairness metrics and efficient algorithms to handle greater group
complexity. Supporting ubiquitous characters [10] would improve ap-
plicability to stories with omnipresent entities, requiring specialized
handling to prevent unfair influence. Conducting comprehensive user
studies would help validate whether mathematically fair visualizations
translate to improved readability and comprehension, potentially re-
vealing disparities between mathematical definitions of fairness and
user perceptions. Exploring additional dimensions of fairness beyond
traditional readability metrics could yield valuable insights, such as the
perceptual influence of characters based on narrative importance or the
semantic significance of specific interactions. These directions would
strengthen both theoretical foundations and practical applications of
fair storyline visualizations, expanding the impact of approaches like
F2Stories in supporting balanced visual representations of complex
narratives. In particular, we find it promising to apply F2Stories to
gameplay analysis (e.g., [27, 49]) by focusing on a subset of players
and their interactions.

9 CONCLUSION

In this paper, we introduced F2Stories, a novel framework for cre-
ating storyline visualizations that balance readability across differ-
ent character groups. Through a modular Mixed Integer Linear Pro-
gramming approach, F2Stories provides three complementary op-
timization modes: standardMode for traditional global optimization,
fairnessMode for balanced distribution of the visual complexity across
character groups, and focusMode for prioritizing specific important
characters. Our experimental results across multiple storyline instances
demonstrate that fair layouts can be achieved with a manageable in-
crease in global metrics such as crossings, wiggles, and skewness,
quantifying what we call the price of fairness in storyline visualization.
Similarly, focusMode creates effective visual priorities that highlight
significant character curves without excessively compromising overall
readability, offering an important tool when storytelling clarity demands
emphasis on certain characters.
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SUPPLEMENTARY MATERIALS

We include as supplementary materials:
• The appendix to this paper, which includes additional results and

explanations.

• The code that we used to create and test the MILP formulations,
which also includes code used to generate the figures in the paper
and render the storyline visualizations.

• Results and statistics (including models, runtimes and solutions)
for 10 stories, using all possible combinations of fairnessMode ,
focusMode , standardMode , each in 3 different colorings and
using 4 different optimization objectives (cross, skew + cross,
wiggles + cross, skew + wiggles + cross), for a total of 36 experi-
ments per individual story.

• We created a GitHub repository available at the following link
https://github.com/tommaso-piselli/f2stories. A
webpage offering quick access to statistics and visualizations
of all of these results, available at https://tommaso-piselli.
github.io/f2stories/src/showcase.html.

The above is offered through OSF at osf.io/e2qvy, released under
CC-BY 4.0 license.
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10 RENDERING PROCEDURE

After the results of the MILP movels have been computed by Gurobi,
we render the result in the browser using d3.js to display the results
visually. In cases where the optimization objective does not include
wiggles, we run a brief postprocessing step to smoothen the lines,
described below:

Postprocessing for smoothness We implemented a simple,
heuristic-based postprocessing step to improve the appearance of the
final renders wherever wiggliness was not part of the optimization ob-
jectives. The effects of this are visible, for instance, in Figure 1, where
the optimization objective is exclusively crossing, and, in postprocess-
ing, the lines are spread out vertically to make them more straight, and
easier to read.

It is important to note that:

• We do not consider the postprocessing step as part of out contri-
butions.

• We do not intend to encourage comparison between heuristic
results and MILP results.

• The postprocessing step is only applied in instances where reduc-
ing wiggliness is not part of the optimization objectives.

• Any numerical result reported in the paper does not include results
obtained after the postprocessing step — everything is computed
before.

The following is a simple snippet of pseudocode explaining the
process, for transparency purposes:

Algorithm 1 Wiggle Minimization Sweep

1: for all timesteps t in total set of timesteps do
2: n← uppermost node at timestep t
3: while wiggliness improves do
4: Push n (and all nodes below it) downward
5: end while
6: end for
7: Repeat the sweep until no further improvement

The main idea behind this procedure is to iteratively reduce the
visual "wiggliness" of a storyline layout by adjusting node positions
in a structured way. At each timestep, the algorithm identifies the
topmost node and attempts to push it—and consequently, all nodes
below it—downward. This shift is applied only if it results in a smoother
vertical trajectory for the characters across time, thereby improving the
overall layout quality. The process is repeated in sweeping iterations
over all timesteps until no further improvements in wiggliness are
observed, allowing the layout to settle into a more visually stable
configuration.

After this step, we continue with the rendering procedure, described
below.

Reading results A simple graph structure is instantiated in
javascript. The results of the MILP are read timestep by timestep:
for every timestep t, starting from the earliest ones in the whole story,
we collect all characters present at timestep t. Then, we sort them using
the xi, j,t variables — which indicated relative positions of characters
i and j at timestep t, and draw each one of them following this given
order.

In case wiggliness was an optimization objective, the result will also
contain an additional variable, bt , which indicates a shift that needs to
be done from the bottom of the visualization in order for the lines to
appear smooth. In this case, a buffer, corresponding to the value of bt
at each timestep t, is added to the top of the visualization.

In case the bt values are not present, we use the preprocessing step
described above to determine the buffer.

Final rendering The steps before this allowed us to define coor-
dinates for every character at every timestep. Once this is obtained,
the last thing to do is to render the image in svg: a circle is added to
highlight the position of the character at every timestep, and then a line
is interpolated through all of these circles. Scenes are also drawn as yel-
low rectangles below the circles and lines: coordinates for each scene
are determined based on the characters they contain at the timestep
where they appear. It is sufficient for us to determine the topmost and
bottommost character in each scene to determine the coordinates of
such rectangles.

The final visualizations obtained through this method can be
seen for instance in Table 4 or Figure 1, or, in more detail,
on https://anonymous.4open.science/w/fairstories-F2A0/
src/showcase.html.
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Table 4: Jurassic Park coloring 3, all modes and experiments
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Table 5: Result values for dblp.

dblp
coloring 1

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.3 4.7 1.8 0.3 10.4 2.9 212 165 90.6 200 1237 113

cr
os
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ng

s Blue-Blue 10 24 19 7 16 19 9 9 20 7 24 21
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 6 3 3 9 7 3 7 7 3 9 3 3

Total 16 27 22 16 23 22 16 16 23 16 27 24
Unfairness 4.47 0.00 0.59 7.65 4.71 0.59 5.53 5.53 0.47 7.65 0.00 0.35

sk
ew

ne
ss Blue - - - 3 4 5 - - - 3 4 5

Red - - - 1 0 0 - - - 1 0 0
Total - - - 4 4 5 - - - 4 4 5

Unfairness - - - 0.82 0.24 0.29 - - - 0.82 0.24 0.29

w
ig

gl
es

Blue - - - - - - 41.0 51.0 72.0 37.0 68.0 71.0
Red - - - - - - 6.0 3.0 0.0 10.0 4.0 0.0

Total - - - - - - 47 54 72 47 72 71
Unfairness - - - - - - 3.59 0.00 4.24 7.82 0.00 4.18

coloring 2

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles
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Time (s): 0.3 oom 1.1 0.4 0.4 1.2 210 oot 11.6 200 oom 18.7

cr
os
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ng

s Blue-Blue 4 16 12 3 3 12 3 3 14 3 17 12
Red-Red 1 1 1 1 1 1 1 1 1 1 2 1
Blue-Red 11 10 8 12 12 8 12 12 9 12 8 8

Total 16 27 21 16 16 21 16 16 24 16 27 21
Unfairness 1.89 0.00 0.21 2.21 2.21 0.21 2.21 2.21 0.11 2.21 0.00 0.21

sk
ew

ne
ss Blue - - - 3 3 3 - - - 3 3 3

Red - - - 1 1 1 - - - 1 1 1
Total - - - 4 4 4 - - - 4 4 4

Unfairness - - - 0.04 0.04 0.04 - - - 0.04 0.04 0.04

w
ig

gl
es

Blue - - - - - - 33.0 42.0 59.0 33.0 49.0 52.0
Red - - - - - - 14.0 12.0 6.0 14.0 14.0 8.0

Total - - - - - - 47 54 65 47 63 60
Unfairness - - - - - - 1.14 0.00 2.71 1.14 0.00 1.71

coloring 3

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles
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Time (s): 0.4 21.8 1.7 0.5 11.9 1.6 303 oot 42.4 309 oom 18.2

cr
os

si
ng

s Blue-Blue 6 5 16 7 7 16 5 5 14 7 6 16
Red-Red 3 3 1 3 3 1 3 3 1 3 4 1
Blue-Red 7 10 11 6 6 11 8 8 12 6 8 11

Total 16 18 28 16 16 28 16 16 27 16 18 28
Unfairness 0.27 0.00 2.67 0.50 0.50 2.67 0.05 0.05 2.25 0.50 0.00 2.67

sk
ew

ne
ss Blue - - - 2 2 4 - - - 2 2 4

Red - - - 2 2 1 - - - 2 2 1
Total - - - 4 4 5 - - - 4 4 5

Unfairness - - - 0.05 0.05 0.28 - - - 0.05 0.05 0.28

w
ig

gl
es

Blue - - - - - - 30.0 30.0 57.0 34.0 30.0 66.0
Red - - - - - - 17.0 24.0 10.0 13.0 24.0 10.0

Total - - - - - - 47 54 67 47 54 76
Unfairness - - - - - - 0.88 0.00 4.45 1.77 0.00 5.35

Table 6: Result values for star wars.

Star Wars
coloring 1

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.7 4.4 0.4 51.2 3.6 1.7 165 233 22.0 229 oot 147

cr
os
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ng

s Blue-Blue 28 36 46 28 36 46 28 30 46 28 36 46
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 11 6 1 11 5 1 11 9 1 11 6 1

Total 39 42 47 39 41 47 39 39 47 39 42 47
Unfairness 5.85 0.00 6.15 5.85 0.92 6.15 5.85 3.69 6.15 5.85 0.00 6.15

sk
ew

ne
ss Blue - - - 5 5 5 - - - 5 5 6

Red - - - 1 0 0 - - - 1 0 0
Total - - - 6 5 5 - - - 6 5 6

Unfairness - - - 0.62 0.38 0.38 - - - 0.62 0.38 0.46
w

ig
gl

es
Blue - - - - - - 57.0 65.0 100.0 60.0 78.0 100.0
Red - - - - - - 11.0 5.0 0.0 8.0 6.0 0.0

Total - - - - - - 68 70 100 68 84 100
Unfairness - - - - - - 6.62 0.00 7.69 3.38 0.00 7.69

coloring 2

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles
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Time (s): 0.7 11.5 8.5 69.3 13.0 20.7 175 oot 42.2 234 oot 84.8

cr
os
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ng

s Blue-Blue 23 35 27 23 23 27 23 6 27 23 35 27
Red-Red 1 0 0 1 1 0 1 13 0 1 0 0
Blue-Red 15 14 14 15 15 14 15 23 15 15 13 15

Total 39 49 41 39 39 41 39 42 42 39 48 42
Unfairness 3.42 0.00 1.33 3.42 3.42 1.33 3.42 5.91 1.75 3.42 0.42 1.75

sk
ew

ne
ss Blue - - - 5 6 6 - - - 5 6 7

Red - - - 1 1 0 - - - 1 1 0
Total - - - 6 7 6 - - - 6 7 7

Unfairness - - - 0.08 0.00 0.50 - - - 0.08 0.00 0.58

w
ig

gl
es

Blue - - - - - - 53.0 54.0 74.0 55.0 72.0 74.0
Red - - - - - - 15.0 30.0 8.0 13.0 12.0 8.0

Total - - - - - - 68 84 82 68 84 82
Unfairness - - - - - - 3.08 0.00 2.17 1.92 0.00 2.17

coloring 3

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles
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Time (s): 0.7 19.6 8.9 53.6 40.3 37.1 164 oot 20.3 236 oot 54.0

cr
os
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ng

s Blue-Blue 5 29 9 5 7 9 5 6 10 5 29 10
Red-Red 15 11 11 15 11 11 15 13 11 15 11 11
Blue-Red 19 23 22 19 23 22 19 23 25 19 23 25

Total 39 63 42 39 41 42 39 42 46 39 63 46
Unfairness 6.58 0.00 4.36 6.58 4.89 4.36 6.58 5.91 4.40 6.58 0.00 4.40

sk
ew

ne
ss Blue - - - 2 4 3 - - - 2 4 3

Red - - - 4 2 2 - - - 4 2 3
Total - - - 6 6 5 - - - 6 6 6

Unfairness - - - 0.58 0.04 0.07 - - - 0.58 0.04 0.27

w
ig

gl
es

Blue - - - - - - 29.0 54.0 46.0 30.0 63.0 46.0
Red - - - - - - 39.0 30.0 28.0 38.0 35.0 28.0

Total - - - - - - 68 84 74 68 98 74
Unfairness - - - - - - 4.58 0.00 0.49 4.27 0.00 0.49
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Table 7: Result values for the lord of the rings.

Lord of the Rings
coloring 1

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles
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Time (s): 3.2 oom 2.9 139 43.7 8.9 4972 oot 468 2465 oot 934

cr
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ng

s Blue-Blue 14 20 22 14 21 22 15 14 24 14 24 23
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 6 5 0 6 2 0 6 6 0 6 6 0

Total 20 25 22 20 23 22 21 20 24 20 30 23
Unfairness 1.11 0.00 2.44 1.11 1.44 2.44 1.00 1.11 2.67 1.11 0.00 2.56

sk
ew

ne
ss Blue - - - 5 2 4 - - - 5 2 4

Red - - - 0 0 0 - - - 0 0 0
Total - - - 5 2 4 - - - 5 2 4

Unfairness - - - 0.28 0.11 0.22 - - - 0.28 0.11 0.22

w
ig

gl
es

Blue - - - - - - 43.0 54.0 75.0 44.0 81.0 76.0
Red - - - - - - 11.0 6.0 0.0 11.0 9.0 0.0

Total - - - - - - 54 60 75 55 90 76
Unfairness - - - - - - 3.11 0.00 4.17 3.06 0.00 4.22

coloring 2

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles
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Time (s): 2.5 oom 2.7 108 21.4 14.2 4345 6149 133 2169 10080 425

cr
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s Blue-Blue 6 19 19 6 6 19 7 14 22 6 17 20
Red-Red 2 4 1 2 2 1 2 2 1 2 2 1
Blue-Red 12 2 4 12 12 4 12 10 6 12 6 6

Total 20 25 24 20 20 24 21 26 29 20 25 27
Unfairness 2.50 0.00 1.12 2.50 2.50 1.12 2.38 1.12 1.12 2.50 0.00 0.88

sk
ew

ne
ss Blue - - - 4 4 3 - - - 4 4 3

Red - - - 1 1 1 - - - 1 1 1
Total - - - 5 5 4 - - - 5 5 4

Unfairness - - - 0.00 0.00 0.06 - - - 0.00 0.00 0.06

w
ig

gl
es

Blue - - - - - - 36.0 44.0 68.0 37.0 52.0 70.0
Red - - - - - - 18.0 11.0 5.0 18.0 13.0 5.0

Total - - - - - - 54 55 73 55 65 75
Unfairness - - - - - - 2.25 0.00 3.00 2.19 0.00 3.12

coloring 3

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles
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Time (s): 3.0 oot 2.7 135 70.4 5.4 5513 oot 137 3309 oot 104

cr
os

si
ng

s Blue-Blue 2 5 2 2 3 2 3 3 5 2 6 4
Red-Red 12 2 2 12 2 2 12 12 2 12 3 2
Blue-Red 6 23 18 6 18 18 6 6 20 6 21 20

Total 20 30 22 20 23 22 21 21 27 20 30 26
Unfairness 2.42 0.00 0.44 2.42 0.26 0.44 2.24 2.24 0.06 2.42 0.00 0.12

sk
ew

ne
ss Blue - - - 2 1 2 - - - 2 4 4

Red - - - 3 1 1 - - - 3 3 1
Total - - - 5 2 3 - - - 5 7 5

Unfairness - - - 0.15 0.02 0.07 - - - 0.15 0.03 0.25

w
ig

gl
es

Blue - - - - - - 14.0 44.0 37.0 15.0 38.0 38.0
Red - - - - - - 40.0 36.0 31.0 40.0 31.0 31.0

Total - - - - - - 54 80 68 55 69 69
Unfairness - - - - - - 3.17 0.00 0.08 3.08 0.01 0.01

Table 8: Result values for animal farm.

Animal Farm
coloring 1

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.1 oom 0.9 0.3 0.5 0.4 96.0 80.0 12.9 166 oot 23.1

cr
os

si
ng

s Blue-Blue 12 30 28 12 15 28 12 14 20 12 30 20
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 5 4 1 5 4 1 5 4 2 5 4 2

Total 17 34 29 17 19 29 17 18 22 17 34 22
Unfairness 3.19 0.00 2.56 3.19 1.88 2.56 3.19 2.00 0.62 3.19 0.00 0.62

sk
ew

ne
ss Blue - - - 3 3 4 - - - 4 3 4

Red - - - 1 0 0 - - - 0 0 0
Total - - - 4 3 4 - - - 4 3 4

Unfairness - - - 0.81 0.19 0.25 - - - 0.25 0.19 0.25

w
ig

gl
es

Blue - - - - - - 41.0 48.0 63.0 41.0 64.0 63.0
Red - - - - - - 8.0 3.0 0.0 8.0 4.0 0.0

Total - - - - - - 49 51 63 49 68 63
Unfairness - - - - - - 5.44 0.00 3.94 5.44 0.00 3.94

coloring 2

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles
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Time (s): 0.1 1.1 0.1 0.3 2.1 0.5 71.5 oot 3.8 150 129 3.1

cr
os
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ng

s Blue-Blue 3 26 22 3 3 22 3 7 17 3 26 17
Red-Red 5 4 0 5 5 0 5 6 0 5 4 0
Blue-Red 9 4 12 9 9 12 9 8 13 9 4 13

Total 17 34 34 17 17 34 17 21 30 17 34 30
Unfairness 5.26 0.00 0.00 5.26 5.26 0.00 5.26 5.10 0.98 5.26 0.00 0.98

sk
ew

ne
ss Blue - - - 2 5 4 - - - 3 5 4

Red - - - 2 1 0 - - - 1 1 0
Total - - - 4 6 4 - - - 4 6 4

Unfairness - - - 0.52 0.02 0.29 - - - 0.12 0.02 0.29

w
ig

gl
es

Blue - - - - - - 26.0 56.0 71.0 26.0 56.0 71.0
Red - - - - - - 23.0 12.0 6.0 23.0 12.0 6.0

Total - - - - - - 49 68 77 49 68 77
Unfairness - - - - - - 5.81 0.00 3.07 5.81 0.00 3.07

coloring 3

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.1 oot 0.2 0.2 0.5 0.5 73.7 oot 5.2 152 oot 8.0

cr
os

si
ng

s Blue-Blue 1 15 4 1 1 4 1 4 4 1 15 4
Red-Red 10 9 9 10 9 9 10 9 9 10 9 9
Blue-Red 6 10 5 6 7 5 6 5 5 6 10 5

Total 17 34 18 17 17 18 17 18 18 17 34 18
Unfairness 2.91 0.00 1.99 2.91 2.67 1.99 2.91 1.99 1.99 2.91 0.00 1.99

sk
ew

ne
ss Blue - - - 2 2 3 - - - 3 2 3

Red - - - 2 2 1 - - - 1 2 1
Total - - - 4 4 4 - - - 4 4 4

Unfairness - - - 0.09 0.09 0.16 - - - 0.16 0.09 0.16

w
ig

gl
es

Blue - - - - - - 17.0 40.0 24.0 17.0 40.0 24.0
Red - - - - - - 32.0 28.0 26.0 32.0 28.0 26.0

Total - - - - - - 49 68 50 49 68 50
Unfairness - - - - - - 2.87 0.00 1.31 2.87 0.00 1.31
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Table 9: Result values for anna3.

Anna 3
coloring 1

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.1 0.0 0.1 0.1 0.1 0.1 7.6 31.5 10.9 13.7 18.2 15.8

cr
os

si
ng

s Blue-Blue 0 0 0 0 0 0 1 0 0 1 0 0
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 0 0 0 0 0 0 1 0 0 1 0 0

Total 0 0 0 0 0 0 2 0 0 2 0 0
Unfairness 0.00 0.00 0.00 0.00 0.00 0.00 0.93 0.00 0.00 0.93 0.00 0.00

sk
ew

ne
ss Blue - - - 0 0 0 - - - 1 0 0

Red - - - 0 0 0 - - - 0 0 0
Total - - - 0 0 0 - - - 1 0 0

Unfairness - - - 0.00 0.00 0.00 - - - 0.02 0.00 0.00

w
ig

gl
es

Blue - - - - - - 22.0 45.0 48.0 22.0 45.0 48.0
Red - - - - - - 6.0 1.0 0.0 6.0 1.0 0.0

Total - - - - - - 28 46 48 28 46 48
Unfairness - - - - - - 5.51 0.00 1.07 5.51 0.00 1.07

coloring 2

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.1 0.0 0.1 0.1 0.1 0.1 10.1 oot 2.5 11.5 oom 3.0

cr
os

si
ng

s Blue-Blue 0 0 0 0 0 0 0 0 3 0 0 3
Red-Red 0 0 0 0 0 0 1 1 0 1 0 0
Blue-Red 0 0 0 0 0 0 1 2 1 1 0 1

Total 0 0 0 0 0 0 2 3 4 2 0 4
Unfairness 0.00 0.00 0.00 0.00 0.00 0.00 0.40 0.52 0.04 0.40 0.00 0.04

sk
ew

ne
ss Blue - - - 0 0 0 - - - 0 0 2

Red - - - 0 0 0 - - - 1 0 0
Total - - - 0 0 0 - - - 1 0 2

Unfairness - - - 0.00 0.00 0.00 - - - 0.14 0.00 0.05

w
ig

gl
es

Blue - - - - - - 12.0 39.0 37.0 11.0 128.0 37.0
Red - - - - - - 16.0 7.0 11.0 17.0 23.0 11.0

Total - - - - - - 28 46 48 28 151 48
Unfairness - - - - - - 1.98 0.00 0.62 2.15 0.00 0.62

coloring 3

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.1 0.1 0.1 0.1 0.0 0.1 10.0 oot 10.1 11.4 oom 13.9

cr
os

si
ng

s Blue-Blue 0 0 0 0 0 0 0 0 0 0 0 0
Red-Red 0 0 0 0 0 0 2 2 0 2 0 0
Blue-Red 0 0 0 0 0 0 0 0 0 0 0 0

Total 0 0 0 0 0 0 2 2 0 2 0 0
Unfairness 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.22 0.00 0.22 0.00 0.00

sk
ew

ne
ss Blue - - - 0 0 0 - - - 0 0 0

Red - - - 0 0 0 - - - 1 0 0
Total - - - 0 0 0 - - - 1 0 0

Unfairness - - - 0.00 0.00 0.00 - - - 0.06 0.00 0.00

w
ig

gl
es

Blue - - - - - - 17.0 17.0 26.0 17.0 31.0 26.0
Red - - - - - - 11.0 11.0 19.0 11.0 20.0 19.0

Total - - - - - - 28 28 45 28 51 45
Unfairness - - - - - - 0.00 0.00 0.13 0.00 0.00 0.13

Table 10: Result values for ffvii.

ffvii
coloring 1

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 1.2 oot 1.0 6.9 148 2.4 1938 2655 376 3364 oot 975

cr
os

si
ng

s Blue-Blue 21 30 27 25 23 27 25 25 28 25 30 28
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 5 4 0 1 3 0 4 4 0 4 4 0

Total 26 34 27 26 26 27 29 29 28 29 34 28
Unfairness 2.06 0.00 3.38 2.19 0.06 3.38 0.62 0.62 3.50 0.62 0.00 3.50

sk
ew

ne
ss Blue - - - 6 6 6 - - - 6 6 6

Red - - - 0 0 0 - - - 0 0 0
Total - - - 6 6 6 - - - 6 6 6

Unfairness - - - 0.38 0.38 0.38 - - - 0.38 0.38 0.38
w

ig
gl

es
Blue - - - - - - 64.0 64.0 80.0 64.0 80.0 80.0
Red - - - - - - 3.0 4.0 0.0 3.0 5.0 0.0

Total - - - - - - 67 68 80 67 85 80
Unfairness - - - - - - 1.00 0.00 5.00 1.00 0.00 5.00

coloring 2

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 1.4 12.4 1.6 8.8 24.5 1.8 2462 oot 99.6 3177 oot 164

cr
os

si
ng

s Blue-Blue 11 24 15 10 11 15 15 11 16 15 24 16
Red-Red 6 2 0 6 6 0 2 2 0 2 2 0
Blue-Red 9 8 15 10 9 15 12 13 17 12 8 17

Total 26 34 30 26 26 30 29 26 33 29 34 33
Unfairness 4.79 0.00 1.79 5.19 4.79 1.79 2.33 3.17 2.17 2.33 0.00 2.17

sk
ew

ne
ss Blue - - - 5 5 9 - - - 5 5 10

Red - - - 1 1 0 - - - 1 1 0
Total - - - 6 6 9 - - - 6 6 10

Unfairness - - - 0.02 0.02 0.64 - - - 0.02 0.02 0.71

w
ig

gl
es

Blue - - - - - - 42.0 70.0 69.0 42.0 70.0 69.0
Red - - - - - - 25.0 15.0 11.0 25.0 15.0 11.0

Total - - - - - - 67 85 80 67 85 80
Unfairness - - - - - - 5.33 0.00 1.26 5.33 0.00 1.26

coloring 3

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 1.5 oot 1.1 9.6 25.3 1.6 3082 oot 32.6 3324 oot 45.9

cr
os

si
ng

s Blue-Blue 7 12 7 5 4 7 6 6 7 6 12 7
Red-Red 9 6 5 7 10 5 6 6 5 6 6 5
Blue-Red 10 16 15 14 14 15 17 14 17 17 16 17

Total 26 34 27 26 28 27 29 26 29 29 34 29
Unfairness 1.60 0.00 0.67 1.60 2.66 0.67 1.24 1.11 0.76 1.24 0.00 0.76

sk
ew

ne
ss Blue - - - 4 3 4 - - - 4 4 4

Red - - - 2 2 2 - - - 2 3 2
Total - - - 6 5 6 - - - 6 7 6

Unfairness - - - 0.11 0.01 0.11 - - - 0.11 0.03 0.11

w
ig

gl
es

Blue - - - - - - 33.0 50.0 52.0 33.0 50.0 52.0
Red - - - - - - 34.0 35.0 27.0 34.0 35.0 27.0

Total - - - - - - 67 85 79 67 85 79
Unfairness - - - - - - 1.56 0.00 1.34 1.56 0.00 1.34
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Table 11: Result values for jean1.

jean1
coloring 1

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.4 0.3 0.3 0.8 2.2 0.6 185 oot 29.4 399 oom 26.4

cr
os

si
ng

s Blue-Blue 7 19 17 4 5 17 7 6 19 5 19 18
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 3 1 0 6 5 0 5 4 0 7 1 0

Total 10 20 17 10 10 17 12 10 19 12 20 18
Unfairness 2.56 0.00 0.87 5.64 4.62 0.87 4.51 3.59 0.97 6.56 0.00 0.92

sk
ew

ne
ss Blue - - - 2 4 4 - - - 2 4 4

Red - - - 1 0 0 - - - 1 0 0
Total - - - 3 4 4 - - - 3 4 4

Unfairness - - - 0.95 0.10 0.10 - - - 0.95 0.10 0.10

w
ig

gl
es

Blue - - - - - - 44.0 78.0 73.0 44.0 78.0 74.0
Red - - - - - - 11.0 2.0 0.0 12.0 2.0 0.0

Total - - - - - - 55 80 73 56 80 74
Unfairness - - - - - - 9.87 0.00 1.87 10.87 0.00 1.90

coloring 2

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.4 oot 0.3 0.9 4.2 0.6 199 oot 16.6 427 oot 35.0

cr
os

si
ng

s Blue-Blue 2 18 5 0 2 5 0 1 5 0 20 5
Red-Red 3 1 1 6 5 1 5 4 1 7 3 1
Blue-Red 5 7 7 4 3 7 7 5 8 5 3 8

Total 10 26 13 10 10 13 12 10 14 12 26 14
Unfairness 1.30 0.02 0.77 2.16 1.65 0.77 2.22 1.65 0.88 2.56 0.02 0.88

sk
ew

ne
ss Blue - - - 0 3 3 - - - 0 3 4

Red - - - 3 1 1 - - - 3 1 1
Total - - - 3 4 4 - - - 3 4 5

Unfairness - - - 0.43 0.05 0.05 - - - 0.43 0.05 0.02

w
ig

gl
es

Blue - - - - - - 25.0 66.0 64.0 27.0 80.0 64.0
Red - - - - - - 30.0 14.0 17.0 29.0 17.0 17.0

Total - - - - - - 55 80 81 56 97 81
Unfairness - - - - - - 3.53 0.00 0.49 3.32 0.00 0.49

coloring 3

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.4 oom 0.4 1.7 0.8 0.8 238 oot 15.7 496 oot 20.7

cr
os

si
ng

s Blue-Blue 0 8 1 0 1 1 0 0 2 0 8 2
Red-Red 6 5 4 9 6 4 10 9 4 11 6 4
Blue-Red 4 7 6 1 3 6 2 4 9 1 6 9

Total 10 20 11 10 10 11 12 13 15 12 20 15
Unfairness 0.77 0.00 0.48 1.07 0.66 0.48 1.21 1.12 0.43 1.31 0.10 0.43

sk
ew

ne
ss Blue - - - 0 2 1 - - - 0 2 3

Red - - - 3 2 3 - - - 3 2 3
Total - - - 3 4 4 - - - 3 4 6

Unfairness - - - 0.18 0.03 0.13 - - - 0.18 0.03 0.05

w
ig

gl
es

Blue - - - - - - 15.0 34.0 53.0 17.0 46.0 53.0
Red - - - - - - 40.0 25.0 34.0 39.0 34.0 34.0

Total - - - - - - 55 59 87 56 80 87
Unfairness - - - - - - 1.70 0.01 0.30 1.55 0.00 0.30

Table 12: Result values for jean2.

jean2
coloring 1

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.1 0.1 0.1 0.1 0.1 0.1 6.7 129 6.1 19.1 13.0 18.1

cr
os

si
ng

s Blue-Blue 6 6 6 6 6 6 6 6 6 6 6 6
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 0 0 0 0 0 0 0 0 0 0 0 0

Total 6 6 6 6 6 6 6 6 6 6 6 6
Unfairness 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92

sk
ew

ne
ss Blue - - - 1 1 1 - - - 1 1 1

Red - - - 0 0 0 - - - 0 0 0
Total - - - 1 1 1 - - - 1 1 1

Unfairness - - - 0.08 0.08 0.08 - - - 0.08 0.08 0.08
w

ig
gl

es
Blue - - - - - - 23.0 23.0 23.0 25.0 25.0 25.0
Red - - - - - - 0 0 0 0 0 0

Total - - - - - - 23 23 23 25 25 25
Unfairness - - - - - - 1.77 1.77 1.77 1.92 1.92 1.92

coloring 2

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.1 0.3 0.2 0.1 0.1 0.2 3.9 401 1.9 11.4 9.1 2.0

cr
os

si
ng

s Blue-Blue 2 4 15 4 4 15 3 2 6 4 4 6
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 4 3 0 2 2 0 3 4 1 2 3 1

Total 6 7 15 6 6 15 6 6 7 6 7 7
Unfairness 0.61 0.00 2.73 0.24 0.24 2.73 0.18 0.61 0.85 0.24 0.00 0.85

sk
ew

ne
ss Blue - - - 1 1 2 - - - 1 1 2

Red - - - 0 0 0 - - - 0 0 0
Total - - - 1 1 2 - - - 1 1 2

Unfairness - - - 0.09 0.09 0.18 - - - 0.09 0.09 0.18

w
ig

gl
es

Blue - - - - - - 21.0 22.0 27.0 23.0 22.0 27.0
Red - - - - - - 2.0 6.0 0.0 2.0 6.0 0.0

Total - - - - - - 23 28 27 25 28 27
Unfairness - - - - - - 1.24 0.00 2.45 1.42 0.00 2.45

coloring 3

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.1 0.1 0.2 0.1 0.1 0.1 4.0 21.5 1.0 11.0 8.3 1.9

cr
os

si
ng

s Blue-Blue 2 1 15 4 4 15 3 1 6 4 1 6
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 4 6 0 2 2 0 3 7 1 2 6 1

Total 6 7 15 6 6 15 6 8 7 6 7 7
Unfairness 0.33 0.00 3.75 0.92 0.92 3.75 0.62 0.04 1.46 0.92 0.00 1.46

sk
ew

ne
ss Blue - - - 1 1 2 - - - 1 1 2

Red - - - 0 0 0 - - - 0 0 0
Total - - - 1 1 2 - - - 1 1 2

Unfairness - - - 0.12 0.12 0.25 - - - 0.12 0.12 0.25

w
ig

gl
es

Blue - - - - - - 21.0 16.0 27.0 23.0 20.0 27.0
Red - - - - - - 2.0 12.0 0.0 2.0 15.0 0.0

Total - - - - - - 23 28 27 25 35 27
Unfairness - - - - - - 2.29 0.00 3.38 2.54 0.00 3.38
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Table 13: Result values for jean5.

jean5
coloring 1

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.8 oot 0.7 2.1 7.8 4.6 870 oot 304 1275 oom 222

cr
os

si
ng

s Blue-Blue 8 27 29 8 22 29 11 12 20 11 27 19
Red-Red 0 0 0 0 0 0 0 0 0 0 0 0
Blue-Red 9 3 0 9 4 0 8 5 2 7 3 2

Total 17 30 29 17 26 29 19 17 22 18 30 21
Unfairness 7.68 0.00 3.05 7.68 1.47 3.05 6.42 3.47 0.21 5.47 0.00 0.11

sk
ew

ne
ss Blue - - - 3 3 5 - - - 4 3 5

Red - - - 1 0 0 - - - 1 0 0
Total - - - 4 3 5 - - - 5 3 5

Unfairness - - - 0.84 0.16 0.26 - - - 0.79 0.16 0.26

w
ig

gl
es

Blue - - - - - - 34.0 57.0 61.0 33.0 76.0 62.0
Red - - - - - - 8.0 3.0 0.0 10.0 4.0 0.0

Total - - - - - - 42 60 61 43 80 62
Unfairness - - - - - - 6.21 0.00 3.21 8.26 0.00 3.26

coloring 2

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.6 38.0 0.4 1.6 2.1 1.2 884 298 59.2 972 2819 146

cr
os

si
ng

s Blue-Blue 6 20 11 6 9 11 6 9 9 6 25 9
Red-Red 6 2 1 5 5 1 6 4 1 5 4 1
Blue-Red 5 8 9 6 3 9 7 8 13 7 6 13

Total 17 30 21 17 17 21 19 21 23 18 35 23
Unfairness 3.19 0.00 0.81 2.88 1.94 0.81 3.56 2.38 1.81 3.06 0.00 1.81

sk
ew

ne
ss Blue - - - 2 4 3 - - - 3 4 4

Red - - - 2 1 1 - - - 2 1 1
Total - - - 4 5 4 - - - 5 5 5

Unfairness - - - 0.38 0.00 0.06 - - - 0.31 0.00 0.00

w
ig

gl
es

Blue - - - - - - 21.0 48.0 50.0 20.0 60.0 50.0
Red - - - - - - 21.0 12.0 18.0 23.0 15.0 18.0

Total - - - - - - 42 60 68 43 75 68
Unfairness - - - - - - 3.94 0.00 1.38 4.50 0.00 1.38

coloring 3

optimize for:
cross

a

optimize for:
cross + skew

a

optimize for:
cross + wiggles

a

optimize for:
cross + skew

+ wiggles

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

S
ta

nd
ar

d

Fa
ir

Fo
cu

s

Time (s): 0.7 858 0.8 1.7 6.5 1.4 668 655 80.2 1097 oot 129

cr
os

si
ng

s Blue-Blue 2 13 1 2 2 1 2 2 2 2 17 1
Red-Red 13 10 9 13 15 9 15 12 10 14 13 9
Blue-Red 2 7 10 2 2 10 2 9 5 2 10 10

Total 17 30 20 17 19 20 19 23 17 18 40 20
Unfairness 2.57 0.00 2.02 2.57 3.01 2.02 3.01 2.48 1.96 2.79 0.00 2.02

sk
ew

ne
ss Blue - - - 1 2 1 - - - 1 2 3

Red - - - 3 2 3 - - - 4 2 3
Total - - - 4 4 4 - - - 5 4 6

Unfairness - - - 0.24 0.04 0.24 - - - 0.35 0.04 0.06

w
ig

gl
es

Blue - - - - - - 8.0 33.0 18.0 8.0 55.0 17.0
Red - - - - - - 34.0 27.0 39.0 35.0 45.0 45.0

Total - - - - - - 42 60 57 43 100 62
Unfairness - - - - - - 3.05 0.00 2.70 3.16 0.00 3.45
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