

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

186.815 Algorithmen und Datenstrukturen 2 VU 3.0 Übungstest SS 2012 28. Juni 2012

Machen Sie die folgenden Angaber	n bitte in	deutlicher I	Blockschrif	ft:	
Nachname:		Vornam	ne:		
Matrikelnummer:		Studien	kennzahl:		
Anzahl abgegebener Zusatzblätter	:	Unterso	ehrift:		
Legen Sie während der Prüfung Ihselie können die Lösungen entweder schreiben, die Sie von der Aufsicht eigenes Papier zu verwenden. Benubleistifte)! Die Verwendung von Taschenrecht Büchern, Mitschriften, Ausarbeitung	direkt a erhalten. utzen Sie ner, Mob	uf die Anga Es ist nicht bitte dokun iltelefonen, I	beblätter o zulässig, e nentenecht PDAs, Dig	oder auf Z ventuell m e Schreibg italkamer	Zusatzblätte nitgebrachte geräte (keind as, Skripten
Erreichbare Punkte:	A1:	A2: 20	A3:	Summe: 50	
Erreichte Punkte:					

Viel Erfolg!

a) (6 Punkte)

Fügen Sie in eine anfangs leere randomisierte Skipliste S die folgenden Elemente gemäß ihrer zugehörigen Höhe in der vorgegebenen Reihenfolge ein:

Schlüssel	10	37	25	52	6	48	17	2	12
Höhe	0	1	0	0	0	1	2	3	1

Zeichnen Sie die Skipliste S (nur das Endresultat).

b) (4 Punkte)

Suchen Sie nach der Zahl 28. Wie viele Schlüsselvergleiche waren hierfür notwendig? (Vergleiche mit ∞ zählen mit.)

c) (4 Punkte)

Suchen Sie nach der Zahl 48. Wie viele Schlüsselvergleiche waren hierfür notwendig? (Vergleiche mit ∞ zählen mit.)

d) (4 Punkte)

Es wird ein neues Element in eine randomisierte Skipliste eingefügt, wobei die Münzwurf-Methode aus der Vorlesung bzw. aus dem Skriptum verwendet wird. Wie groß ist die Wahrscheinlichkeit, dass der Container des neuen Elements die Höhe 4 annehmen wird?

Bei der **Best-Fit-Heuristik** für das *Bin-Packing-Problem* wird jeder Gegenstand nicht in die ehestmögliche Kiste gelegt sondern in die Kiste, die der Gegenstand am besten ausfüllt, d.h., dort wo am wenigsten Platz überbleibt.

Der folgende Algorithmus **Best-Fit**(**Gegenstände** 1, ..., N) soll genau diese Idee verwirklichen, wobei K die Größe jeder Kiste, f_j den noch freien Platz in Kiste j und w_i die Größe von Gegenstand i angibt. Sie können davon ausgehen, dass $w_i \le K$, $\forall i = 1, ..., N$, und N > 0 gilt.

```
Best-Fit(Gegenstände 1, \dots, N)
Eingabe: Gegenstände 1, \ldots, N
Ausgabe: m Kisten, die die Gegenstände 1, \ldots, N beinhalten
 1: m = 1; f_m = K;
 2: für i = 1, ..., N {
       bestbin = 0; bestplatz = \infty; qefunden = false;
 3:
 4:
      für j = 1, ..., m {
         restplatz = f_j - w_i;
 5:
         falls restplatz \geq 0 \land restplatz < bestplatz \ dann \ 
 6:
           bestplatz = restplatz;
 7:
 8:
           bestbin = j;
           qefunden = true;
 9:
10:
         }
      }
11:
      falls qefunden dann {
12:
         packe Gegenstand i in Kiste bestbin;
13:
14:
         f_{bestbin} = f_{bestbin} - w_i;
      } sonst {
15:
         m = m + 1;
16:
         packe Gegenstand i in Kiste m;
17:
18:
         f_m = K - w_i;
19:
20: }
```

a) (8 Punkte) Führen Sie den Algorithmus **Best-Fit** für K=8 auf die folgende Eingabereihenfolge aus und geben Sie an, welche Kiste welchen Gegenstand am Ende enthält:

Gegenstand i	1	2	3	4	5	6	7
Größe w_i	4	5	6	2	4	1	2

- b) (4 Punkte) Welche (asymptotisch relative) Approximationsgüte ϵ gilt für **Best-Fit** jedenfalls? Begründen Sie Ihre Antwort.
- c) (8 Punkte) Zeigen Sie mit einem Beispiel (mit mindestens 6 Gegenständen), dass dieses Verfahren nicht immer eine optimale Lösung liefert. Was können Sie aus *Ihrem Beispiel* über die Approximationsgüte schließen?

a) Gegeben sei ein dynamisches Array A, in dem Elemente eingefügt werden können. Wenn A noch nicht voll ist, wird ein neues Element an eine beliebige freie Position eingefügt. Wenn A voll ist, wird seine Größe verdoppelt, um das neue Element aufzunehmen. Dabei kann es zu Umplatzierungen im Speicher kommen, was einen entsprechenden Aufwand verursacht.

• (2 Punkte)

Geben Sie die **Worst-Case Laufzeit** für eine Einfüge-Operation in O-Notation an.

• (4 Punkte)

Nehmen Sie an, Sie würden die Potenzialmethode für eine amortisierte Analyse auf dieses Problem anwenden. Welche Kenngröße kann für die Potenzialberechnug herangezogen werden?

• (3 Punkte)

Geben Sie die **amortisierte Laufzeit** für eine Sequenz von n aufeinanderfolgenden Einfüge-Operationen in O-Notation an.

b) (3 Punkte)

Geben Sie in O-Notation an, wie groß die Höhe eines Fibonacci-Heaps maximal werden kann, der n Elemente enthält.

Technische Universität Wien Institut für Computergraphik und Algorithmen Arbeitsbereich für Algorithmen und Datenstrukturen

186.815 Algorithmen und Datenstrukturen 2 VU 3.0 Übungstest SS 2012 28. Juni 2012

Machen Sie die folgenden Angaber	n bitte in	deutlicher I	Blockschri	ft:	
Nachname:		Vornam	ne:		
Matrikelnummer:		Studien	ıkennzahl:		
Anzahl abgegebener Zusatzblätter	:	Unterse	hrift:		
Legen Sie während der Prüfung Ihselie können die Lösungen entweder schreiben, die Sie von der Aufsicht eigenes Papier zu verwenden. Benubleistifte)! Die Verwendung von Taschenrecht Büchern, Mitschriften, Ausarbeitung	direkt a erhalten. utzen Sie ner, Mob	uf die Anga Es ist nicht bitte dokun iltelefonen, I	beblätter e zulässig, e nentenecht PDAs, Dig	oder auf Z ventuell n e Schreib italkamer	Zusatzblätte nitgebrachte geräte (keind as, Skripten
	B1:	B2:	B3:	Summe:	
Erreichbare Punkte:	20	18	12	50	
Erreichte Punkte:					

Viel Glück!

Bei der **Best-Fit-Heuristik** für das *Bin-Packing-Problem* wird jeder Gegenstand nicht in die ehestmögliche Kiste gelegt sondern in die Kiste, die der Gegenstand am besten ausfüllt, d.h., dort wo am wenigsten Platz überbleibt.

Der folgende Algorithmus **Best-Fit**(**Gegenstände** 1, ..., N) soll genau diese Idee verwirklichen, wobei K die Größe jeder Kiste, f_j den noch freien Platz in Kiste j und w_i die Größe von Gegenstand i angibt. Sie können davon ausgehen, dass $w_i \le K$, $\forall i = 1, ..., N$, und N > 0 gilt.

```
Best-Fit(Gegenstände 1, \dots, N)
Eingabe: Gegenstände 1, \ldots, N
Ausgabe: m Kisten, die die Gegenstände 1, \ldots, N beinhalten
 1: m = 1; f_m = K;
 2: für i = 1, ..., N {
       bestbin = 0; bestplatz = \infty; qefunden = false;
 3:
 4:
      für j = 1, ..., m {
         restplatz = f_j - w_i;
 5:
         falls restplatz \geq 0 \land restplatz < bestplatz \ dann \ 
 6:
           bestplatz = restplatz;
 7:
 8:
           bestbin = j;
           qefunden = true;
 9:
10:
         }
      }
11:
      falls qefunden dann {
12:
         packe Gegenstand i in Kiste bestbin;
13:
14:
         f_{bestbin} = f_{bestbin} - w_i;
      } sonst {
15:
         m = m + 1;
16:
         packe Gegenstand i in Kiste m;
17:
18:
         f_m = K - w_i;
19:
20: }
```

a) (8 Punkte) Führen Sie den Algorithmus **Best-Fit** für K=10 auf die folgende Eingabereihenfolge aus und geben Sie an, welche Kiste welchen Gegenstand am Ende enthält:

Gegenstand i	1	2	3	4	5	6	7
Größe w_i	6	7	8	2	4	2	1

- b) (4 Punkte) Welche (asymptotisch relative) Approximationsgüte ϵ gilt für **Best-Fit** jedenfalls? Begründen Sie Ihre Antwort.
- c) (8 Punkte) Zeigen Sie mit einem Beispiel (mit mindestens 6 Gegenständen), dass dieses Verfahren nicht immer eine optimale Lösung liefert. Was können Sie aus *Ihrem Beispiel* über die Approximationsgüte schließen?

a) (6 Punkte)

Fügen Sie in eine anfangs leere randomisierte Skipliste S die folgenden Elemente gemäß ihrer zugehörigen Höhe in der vorgegebenen Reihenfolge ein:

Schlüssel	33	25	41	49	9	8	18	4	14
Höhe	1	0	1	0	0	3	1	0	2

Zeichnen Sie die resultierende Skipliste (nur das Endresultat).

b) (4 Punkte)

Suchen Sie nach der Zahl 27. Wieviele Schlüsselvergleiche waren hierfür notwendig? (Vergleiche mit ∞ zählen mit.)

c) (4 Punkte)

Suchen Sie nach der Zahl 41. Wieviele Schlüsselvergleiche waren hierfür notwendig? (Vergleiche mit ∞ zählen mit.)

d) (4 Punkte)

Es wird ein neues Element in eine randomisierte Skipliste eingefügt, wobei die Münzwurf-Methode aus der Vorlesung bzw. aus dem Skriptum verwendet wird. Wie groß ist die Wahrscheinlichkeit, dass der Container des neuen Elements die Höhe 5 annehmen wird?

a) Gegeben sei ein dynamisches Array A, in dem Elemente eingefügt werden können. Wenn A noch nicht voll ist, wird ein neues Element an eine beliebige freie Position eingefügt. Wenn A voll ist, wird seine Größe verdoppelt, um das neue Element aufzunehmen. Dabei kann es zu Umplatzierungen im Speicher kommen, was einen entsprechenden Aufwand verursacht.

• (2 Punkte)

Geben Sie die Worst-Case Laufzeit für eine Einfüge-Operation in O-Notation an.

• (4 Punkte)

Nehmen Sie an, Sie würden die Potenzialmethode für eine amortisierte Analyse auf dieses Problem anwenden. Welche Kenngröße kann für die Potenzialberechnug herangezogen werden?

• (3 Punkte)

Geben Sie die **amortisierte Laufzeit** für eine Sequenz von n aufeinanderfolgenden Einfüge-Operationen in O-Notation an.

b) (3 Punkte)

Geben Sie in O-Notation an, wie groß die Höhe eines Fibonacci-Heaps maximal werden kann, der n Elemente enthält.