
An Enhanced Iterated Greedy Metaheuristic
for the Particle Therapy Patient Scheduling

Problem: Instance Format and
Preprocessing

Johannes Maschler, Thomas Hackl, Martin Riedler, and Günther
R. Raidl

Institute of Computer Graphics and Algorithms, TU Wien
Favoritenstraße 9-11, 1040 Vienna, Austria
{maschler|riedler|raidl}@ac.tuwien.ac.at

t9.hackl@gmail.com

This document describes the format in which the benchmark instances used in [1] are
given. Moreover, the applied preprocessing is specified in Section 2.

1 Input Format

The instances are encoded in JSON. Note that the instance format described below
allows to state instances for a more general problem, hence it contains elements that
are not relevant for the PTPSP. Moreover, in the instance format DTs are specified via
activities (as in [2]) that can be trivially transformed into our notation. An instance is
represented by the following JSON-object:

• GENERAL: object, contains globally relevant problem information

– beam-resource-id: integer, ID of the Beam resource

– proton-resource-id: not relevant for PTPSP

– carbon-resource-id: not relevant for PTPSP

– IR-rooms: array of integers, IDs of the irradiation room resources, not rele-
vant for PTPSP

1

– anesthetist-id: not relevant for PTPSP

– working-days: array of arrays of objects, working days partitioned into weeks
sorted in increasing order of the day index

∗ d: unique positive integer, index of day d ∈ D′

∗ start: integer, opening time W̃ start
d minutes

∗ end: integer, closing time W̃ end
d minutes

∗ unavailable: array of objects (optional), global unavailability periods,
i.e., unavailability periods for all resources r ∈ R

· start: start time in minutes (is interpreted as W
start
r,d,w for all r ∈ R)

· end: end time in minutes (is interpreted as W
end
r,d,w for all r ∈ R)

• RESOURCES: array of objects, all resources and their availabilities

– id: unique positive integer, resource ID

– name: string (optional, for debugging purposes), name for resource

– scatter: float (optional), not relevant for PTPSP

– W: array of objects

∗ d: unique integer, day d

∗ start: integer (optional, default: W̃ start
d), start time W start

r,d in minutes

∗ end: integer (optional, default: W̃ end
d), end time W end

r,d in minutes

∗ unavailable: array of objects (optional), unavailability periods

· start: start time W
start
r,d,w in minutes

· end: end time W
end
r,d,w in minutes

• THERAPIES: array of objects, all therapies with their data

– id: unique positive integer, therapy ID

– name: string (optional, for debugging purposes), name of the therapy

– n-twmin: integer (optional, default: 4), minimum number of treatments per
week ntwmin

t

– n-twmax: integer (optional, default: 5), maximum number of treatments per
week ntwmax

t

– delta-min: integer (optional, default: 1), min. number of days between two
consecutive DTs δmin

t

2

– delta-max: integer (optional, default: 5), max. number of days between two
consecutive DTs δmax

t

– daily-treatments: array of objects, all DTs are given in the required order

∗ id: unique positive integer, DT ID

∗ name: string (optional, for debugging purposes), name of DT

∗ d-min: integer (optional, default: 0), earliest possible day dmin
t,u

∗ d-max: integer (optional), latest possible day dmax
t,u ; if not specified or -1

no bound is assumed (an implicit limit is given through the number of
considered days)

∗ activities: array of objects, all activities that must be scheduled in
this order at a single day

· id: unique positive integer, activity ID

· name: string (optional, for debugging purposes), name of activity

· p: positive integer, processing time in minutes

· resources: array of integers, ID’s of required resources

2 Preprocessing

In this section preprocessing techniques are described that are applied on the instance
before the Iterated Greedy (IG) metaheuristics are executed. The first technique aims
at tighten the earliest and the latest starting day of DTs. Although not all possibilities
are exploited (such as resource availabilities) it should provide tight bounds in practice.
The following method is concerned with pruning of resource availabilities within working
days.

2.1 Day Bound Preprocessing

It can be assumed, that in general instances provide for dmin
t,u and dmax

t,u for u > 0 only
default values, i.e., no bounds are provided. In those cases tighter bounds can be inferred
from the earliest and the latest starting day from previous DTs in combination by con-
sidering the minimal and the maximal number of allowed days between two consecutive
DTs and the minimal and the maximal number of DTs allowed per week. We consider
here the pruning of the earliest and the latest starting day of DTs separately.

Algorithm 1 starts by setting dmin
t,0 to the next working day if dmin

t,0 /∈ D′. We set dmin
t,0 to

the first day in the next week if starting at day dmin
t,0 would violate the minimal number

of DTs per week. For each subsequent DT dmin
t,u is set to the maximum of the following

3

1 for t ∈ T do
2 dmin

t,0 := min{d ∈ D′ | d ≥ dmin
t,0 };

3 let v ∈ V be the week index s.t. dmin
t,0 ∈ D′v;

4 if |{d ∈ Dv | d ≥ dmin
t,0 }| ≤ min(ntwmin

t , |Dv|) then

5 dmin
t,0 := min{Dv+1};

6 end
7 for u ∈ {1, . . . , τt − 1} do
8 dmin

t,u := max(dmin
t,u , d

min
t,u−1 + δmin

t);

9 dmin
t,u := min{d ∈ D′ | d ≥ dmin

t,u };
10 let v ∈ V be the week index s.t. dmin

t,u−1 ∈ D′v;

11 if |{dmin
t,u′ ∈ Dv | u′ < u}| ≥ min(ntwmax

t , |Dv|) then

12 dmin
t,u := max(dmin

t,u ,min{Dv+1});
13 end

14 end

15 end
Algorithm 1: Day bound preprocessing for the earliest starting day

values, the given dmin
t,u from the instance, dmin

t,u−1 +δmin
t , and the first day in the next week

if already min(ntwmax
t , |Dv|) predecessors of the DT have the earliest starting day in the

current week.

Algorithm 2 sets dmax
t,0 to the closest working day smaller than or equal to the dmax

t,0 given

from the input instance that allows at least ntwmin
t consecutive DTs in the current week.

For each subsequent DT we set first dmax
t,u to the minimum of dmax

t,u and dmax
t,u−1 + δmax

t .
Next we check if we can prune dmax

t,u further by considering the minimal number of DTs
per week. Moreover, dmax

t,u is pruned if the latest starting days come close to the time
horizon. Finally, we set dmax

t,u to the closest working day smaller than or equal to dmax
t,u .

Note that this preprocessing could be strengthened further by considering resource avail-
abilities. However, the impact of such an extension should be limited.

2.2 Preprocessing of Resource Availabilities

This preprocessing technique utilizes the observation that, due to the structure of the
DTs, some resources cannot be used close to global resource availability changes. Hence,
some resource availabilities can be pruned.

For example, if the preparation steps that need to be performed before the irradiation
take for every DT at least 20 minutes, then the beam resource cannot be used during
the first 20 minutes of the considered day and after each global unavailability period.

We start by removing the availability of resources on days on which no DTs can be
scheduled that require the considered resource, i.e., we set Wr,d = [Ŵ start

r,d , Ŵ start
r,d) and

4

1 for t ∈ T do
2 let v ∈ V be the week index s.t. dmax

t,0 ∈ D′v;

3 dmax
t,0 := min(dmax

t,0 ,max(max{Dv} − ntwmin
t ,min{Dv}));

4 dmax
t,0 := max{d ∈ D′ | d ≤ dmax

t,0 };
5 for u ∈ {1, . . . , τt − 1} do
6 dmax

t,u := min(dmax
t,u , dmax

t,u−1 + δmax
t);

7 let v ∈ V be the week index s.t. dmax
t,u−1 ∈ D′v;

8 if |{dmax
t,u′ ∈ Dv | u′ < u}| ≥ ntwmin

t then

9 dmax
t,u := min(dmax

t,u ,max{Dv+1} − ntwmin
t);

10 else
11 dmax

t,u := min(dmax
t,u ,min{Dv}+ |{dmax

t,u′ ∈ Dv | u′ < u}|);
12 end
13 dmax

t,u := min(dmax
t,u , nD − τt + u);

14 dmax
t,u := max{d ∈ D′ | d ≤ dmax

t,u };
15 end

16 end
Algorithm 2: Day bound preprocessing for the latest starting day

Ŵr,d = [Ŵ start
r,d , Ŵ start

r,d) for all resources r ∈ R and d ∈ D′ where {(t, u) | t ∈ T, u ∈
Ut, r ∈ Qt,u, d

min
t,u ≤ d ≤ dmax

t,u } = ∅.

Let prampup
r,d be a lower bound on the earliest time a resource r ∈ R might be used on

day d ∈ D′ iff all resources become available at the same time.

prampup
r,d = min

t∈T, u∈Ut |r∈Qt,u, dmin
t,u ≤d≤dmax

t,u

P start
t,u,r ∀r ∈ R, ∀d ∈ Dres

r

Analogously, let pwinddown
r,d be the minimum offset between the latest use of resource r

and the end of the DT considering all DTs that might be scheduled on day d.

pwinddown
r,d = min

t∈T, u∈Ut |r∈Qt,u, dmin
t,u ≤d≤dmax

t,u

(pt,u − P end
t,u,r) ∀r ∈ R, ∀d ∈ Dres

r

The resource availabilities can be pruned by setting

Ŵr,d :=
[max(Ŵ start

r,d , W̃ start
d + prampup

r,d),

min(Ŵ end
r,d , W̃

end
d − pwinddown

r,d))
∀r ∈ R,∀d ∈ Dres

r

Wr,d :=[max(W start
r,d , Ŵ start

r,d),min(W end
r,d , Ŵ

end
r,d)) ∀r ∈ R,∀d ∈ Dres

r .

Moreover, let Wd =
⋃

w=0,...,ωd−1Wd,w be the set of global unavailability periods with

Wd,w = [Wstart
d,w ,Wend

d,w) ⊂ W̃d, w = 0, . . . , ωd − 1, where Wstart
d,w and Wend

d,w denote the

5

start and end times of the w-th global unavailability period. We derive the following
(regular) unavailability periods:

[Wstart
d,w − pwinddown

r,d ,Wend
d,w + prampup

r,d) ∀r ∈ R,∀d ∈ Dres
r , w = 0, . . . , ωd − 1

References

[1] J. Maschler, T. Hackl, M. Riedler, and G. R. Raidl. An enhanced iterated greedy
metaheuristic for the particle therapy patient scheduling problem. In Proceedings of
the 12th Metaheuristics International Conference, 2017. to appear.

[2] J. Maschler, M. Riedler, M. Stock, and G. R. Raidl. Particle therapy patient schedul-
ing: First heuristic approaches. In Proceedings of the 11th International Conference
on the Practice and Theory of Automated Timetabling, pages 223–244, Udine, Italy,
2016.

6

	Input Format
	Preprocessing
	Day Bound Preprocessing
	Preprocessing of Resource Availabilities

