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Abstract. We consider a learning task that arises within an interactive
job scheduling setting, in which a scheduler plans the execution of jobs
that require the presence of human users. Availabilities of these users
shall be considered but are only known partially, and thus the sched-
uler presents queries to the users to receive more information about the
users’ availabilities. The replies of the users help creating a better sched-
ule. Having a precise understanding of typical user behavior is crucial for
the efficacy of the scheduler. As the scheduling problem must be solved
repeatedly over time, e.g., weekly, the knowledge gained from previous
instances can be used to learn a user model. In this work we employ
Bayesian Learning and investigate three different models to predict user
replies to queries and train them by means of the framework of Proba-
bilistic Programming. Two models learn time-independent, respectively
time-dependent, probabilities for a user to either become available, stay
available, become unavailable, or stay unavailable from one timestep to
the next. The third model learns time intervals in which the user is avail-
able with normally distributed endpoints. These models are experimen-
tally evaluated and compared on two datasets, one based on artificially
generated user availabilities, the other on real-world data. Results show
that especially the time-dependent model performs well and near-optimal
for the artificial dataset while the time interval model works best on the
other dataset.

Keywords: Job Scheduling · Bayesian Learning · Interactive Optimiza-
tion

1 Introduction

Coordinating access to central resources shared between human users is a chal-
lenging task. Besides operator interests such as minimizing costs for making the
resources available, restrictions of the users such as availability times have to be
taken into account when creating a schedule for the usage of the resources. While
⋆ J. Varga acknowledges the financial support from Honda Research Institute Europe.
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constraints on the side of the resources and operator as well as the cost structure
are usually known, detailed availability times of the users are frequently unknown
and too burdensome and impractical for every user to completely specify upfront.
We consider the case where it is important to have a good understanding of the
users’ availability times in order to find an effective and cost-efficient schedule.
For this purpose, we allow the scheduling framework to interact with the users
by making interactive queries to them to obtain more information about their
availabilities. The amount of this interaction, however, should be kept to a mini-
mum to avoid annoying the users, and queries should be chosen wisely to obtain
most relevant information towards realizing a cost-efficient feasible schedule.

More specifically, the scheduler uses a model of the users’ general patterns of
availability and interacts with the users to also account for deviations from the
general patterns. Aim of this work is to learn different behavioral models for the
users, based on the information on users collected over time through interaction.

We assume a discrete time horizon of multiple separate days, and we will
refer to these days altogether as week. There are multiple users and their access
to shared resources has to be coordinated. In general, users are not available
throughout the whole time horizon and their availabilities have to be respected.
To make the process of coordinating access to the resources as smooth as possible
from the user perspective, users initially just make single suggestions for time
intervals in which they want to use the resources. The scheduler tries to find a
first feasible schedule and then works towards further improving it by querying
the users for more information about their availabilities. The replies of the users
are thus used to update the scheduler’s knowledge about user availabilities. To
conform with the literature on scheduling problems, we will refer to the resources
as machines and to the usage requirements of the users as jobs.

Having a general understanding of the users’ availabilities is essential to com-
pile meaningful queries and avoid stumbling about in the dark. The common
patterns can be different depending on the application-context and using a pre-
determined and fixed user model to predict user availabilities is therefore not
reasonable. We therefore propose to learn an availability model based on the
information about the users obtained from their replies to queries in previous
weeks. More specifically, we will investigate different models to learn and pre-
dict user availabilities. As a baseline we use a simple Markov model with time-
independent transition probabilities. Additionally, we propose a Markov model
with time-dependent transition probabilities and a model that considers avail-
ability intervals with normally distributed endpoints. To address the peculiari-
ties of the learning task, we use Bayesian Learning and the flexible framework of
Probabilistic Programming and develop a quickly converging algorithm within
this framework to infer parameters for each model.

Our main contributions are (a) to formulate the new learning and prediction
task from the setting described above and to publish two associated datasets, (b)
to propose two new probabilistic models for representing user availabilities and
(c) to develop a quickly converging algorithm that trains the two new models and
the former simpler model from the literature. We compare the models on two
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datasets that are derived from prior work, one is based on randomly generated
user availabilities, the other on user availabilities derived from the Dutch time-
use-survey [19]. Results show that the time-dependent Markov model performs
best and near-optimal for the first dataset with generated user availabilities,
while the time interval model clearly outperforms the other models for the time-
use-survey based dataset.

The remainder of this paper is structured as follows. In the next section,
we summarize related work. Section 3 describes the scheduling problem and
interaction procedure, and Section 4 formalizes and discusses the prediction task.
Afterwards, the models are presented in Section 5 and the inference of the model
parameters is discussed in Section 6. Finally, Section 7 compares the models with
each other and Section 8 concludes the work.

2 Related Work

Varga et al. [20,21] already considered the described scheduling scenario and
proposed an approach to identify the most meaningful queries, which builds
upon a user model that predicts acceptance probabilities of potential queries in
a simple fashion without learning over time. Queries with an acceptance prob-
ability below some threshold are filtered out, and the scheduler selects those
from the remaining queries that improve the objective the most when accepted.
They compare a rather simple user model, a two-state Markov chain with time-
independent transition probabilities, with the true user model that was used to
generate the (artificial) benchmark instances and with using no user model at
all. Conclusions are that the schedule can be significantly improved within five
rounds of user interaction, and that the true user model leads to significantly
faster convergence. Therefore, the authors conjectured that a learned model will
likely lead to substantial improvements if the true model is not known.

Learning of user behavior in the temporal domain has been done in the
context of calendar scheduling. There, a program called the calendar scheduling
agent supports a user in arranging meetings with other humans and to better
do so, it learns the user’s preferences and habits. Machine learning models such
as decision trees [16], the weighted-majority algorithm or the Winnow algorithm
[2] have been applied to the learning task. These approaches make predictions
based on information that is not available in our setting, such as the attendees
of the meeting. Therefore they cannot be applied for our learning task.

Interruption management is another line of research where user presence is
predicted in the temporal domain. It is concerned with determining times to in-
teract with users that suits them well, considering their current tasks and avail-
ability. Most relevant for our work, Horvitz [10] presents a system that utilizes a
Bayesian network to predict and forecast a users attendance and interruptibility
given their calendar and other observations, such as desktop activity. Similarly,
Horvitz and Apacible [11] use a Bayesian network to predict the current atten-
tion and cost of interruption based on the users calendar, prior interaction with
different units and information gathered from the computers microphone and
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camera. Horvitz et al. [12] learn personalized models for the cost of interruption
based on similar information, and Kapoor and Horvitz [14] extend this work
to online learning, carefully selecting requests for user feedback based on the
predicted value and costs of interaction.

Ignoring the user interaction aspects for now, we consider a scheduling prob-
lem with related machines and time- and machine-dependent costs for using a
machine, see also the formal definition in the next section. Wang et al. [22] solve
a similar problem that further takes into account the makespan, but does not
consider users with availabilities, with a problem specific heuristic, a genetic
algorithm and a Mixed Integer Linear Programming (MILP) formulation. The
same problem has been approached by Anghinolfi et al. [1] with a greedy heuris-
tic, local search and a MILP model. For a generalization of our problem, when
neglecting the user aspect, Ding et al. [6] proposed a MILP formulation, which
has been improved by Cheng et al. [4] and Saberi et al. [17].

Bayesian Learning [18] has received a lot of attention in the last years. It is
based on Bayes rule to update the prior beliefs, given as probability distribu-
tion over a parameter space, to obtain the posterior beliefs on the parameters.
Applications appear in many disciplines, such as social behavioral sciences [3]
and ecology [13]. Prominent subfields include Bayesian networks, Bayesian deep
learning, and Bayesian optimization. Strengths of Bayesian Learning are its flex-
ibility, data-efficiency and inherent immunity to overfitting. In this work, we use
probabilistic programming [15] to describe the underlying model and a Markov
Chain Monte Carlo algorithm [5] to infer parameters. Markov Chain Monte Carlo
methods sample new parameter values based on previous parameter values and
generate a number of parameter sets that represent the posterior distribution.
Metropolis Hastings [9] is an algorithm that is often used in conjunction with
Markov Chain Monte Carlo methods, and it ensures that a proposal distribu-
tion for new parameter values fulfills the necessary conditions by computing an
acceptance probability and only accepting new values with this probability.

3 Scheduling Setting

We consider a basic scheduling problem with a discrete time horizon T =
{(tday, t) | tday = 1, . . . , tmax-day, t = 1, . . . , tmax} of tmax-day days, each with
tmax discrete timesteps. Denote the set of users with U , the set of jobs of user
u ∈ U with Ju and the set of all jobs with J :=

⋃
u∈U Ju. Each job j ∈ J has a

duration dj ∈ {1, . . . , tmax} and is not allowed to span multiple days. The set of
machines is given by M . Each job j ∈ Ju requires exclusive access to a machine
i ∈ M and the availability of its user u while it is performed, and it must not be
interrupted once started. Performing a job on machine i ∈ M at timestep t ∈ T
induces costs cit ≥ 0. It is not required to schedule all jobs and not scheduling
job j ∈ J comes with a penalty qj ≥ 0. The objective is to minimize the total
costs including the penalties for unscheduled jobs.

In general, users are not available throughout the whole time horizon and
jobs need to be scheduled in a way that respects the users’ availabilities. To
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Fig. 1. Interaction protocol between the scheduler and a single user, which is performed
in parallel for each user.

make the process of scheduling the jobs as smooth as possible from the user per-
spective, users are not required to fully specify their availabilities. Instead, the
following interaction protocol between the scheduler and each users is used, see
also Figure 1. First, each user submits the jobs they want to be scheduled along
with a proposed starting time for each of their jobs, to the scheduler. When
considering the job durations, these starting times result in time intervals for
which the user confirms to be available; we refer to these time intervals as the
proposed intervals. Next, the scheduler interacts with the users to obtain more
information about their availabilities that is most relevant to possibly improve an
initially determined schedule. This is done for B rounds, and in each round the
scheduler first computes a set of most meaningful queries, which are then relayed
to the users. On average, each user gets one query in each round, although one
user might get multiple queries in a round if other users do not get any queries
in the same round. A query is a time interval and the user either accepts it, if
they are available in the whole interval, or rejects it, if they are (partly) unavail-
able. These accepted and rejected intervals are used to update the schedulers
knowledge about the users’ availabilities and allows it to determine a possibly
improved schedule and to prepare the queries for the next round. Alongside the
set of proposed intervals, these accepted and rejected intervals give insight into
the users behavior, and we will use them to train our models.

4 Prediction Task

Proposed, accepted and rejected intervals of each user are collected over the
course of multiple weeks and used to train our models. The aim is to predict
user replies for the current week after the scheduler already interacted with the
users. Thus, a training sample strain = (Iprop, Iacc, Irej) consists of the sets of
initially proposed, accepted and rejected time intervals of a previous week. Each
training sample gives clues on the distribution of the user’s availabilities and they
are used to train a user model. Test samples stest = (Iprop, Iacc, Irej, Ipred, Îpred)
carry another set Ipred of intervals that are potential queries and associated
labels Îpred : Ipred → {false, true} representing the replies the users would give
to these queries. The task is to predict for each potential query, whether the
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user will accept it. To evaluate the model, its prediction is compared to the
label of the query. Note that also test samples include information from the user
interaction of previous rounds (Iprop, Iacc and Irej), and this information should
also be exploited to make a prediction. Further note that we determine the labels
in our simulations based on true user availabilities solely to evaluate the models;
they are never available to the scheduler.

Our prediction task is different from typical machine learning tasks in mul-
tiple aspects. For once, training samples carry uncertainty, since the true user
availabilities are not given. This also means that there are no dedicated labels
that could be used for training by the scheduler since the users never specify
their full availabilities to the scheduler. Furthermore, the information contained
in the samples has some structure. Accepted intervals imply that the user is
available in these whole intervals, while rejected intervals imply that the user
is not available in at least one timestep of each such interval. Initially provided
intervals resemble accepted intervals, and thus there is a bias towards accepted
intervals. In general, we assume that the duration of timesteps is chosen short
enough to avoid repeated changes of a user’s availability within a few timesteps,
otherwise the time horizon is chosen too coarse to sufficiently capture the details
of the user’s availabilities. Furthermore, the scheduler should be able to make
good predictions already after running for a few weeks when only few training
samples, in the range from tens to few hundreds, are available. This means that
as much information as possible has to be exploited from the samples and the
scenario to obtain reasonable results. For these reasons, it is not straightforward
to apply classical machine learning models, such as Support Vector Machines.
Instead, we rely on custom models and infer their parameters with Probabilistic
Programming to optimally exploit all available information contained in the few
training samples. These models are described in the subsequent section.

5 Models

In the following, we present three models for the user availability prediction
task. Since there are only a few training samples for each user, some correlation
between the different users’ availabilities has to be assumed to learn a reasonable
model. We assume the availabilities of different users on different days to be all
identically distributed for the simplicity of the presentation and since we do not
have data available to represent and test user- and day-specific behavior. Thus
we only learn a single model for all users and all days.

5.1 Time-(in)dependent Markov Model

The first – very simple – model only features two parameters and we will refer to
it as time-independent Markov model and use it as a baseline model to compare
our other models to. It has been used by Varga et al. [20,21] to predict user
replies, though with fixed, non-learned parameters. The model is based on a
Markov chain with the two states 0 and 1, representing the user being unavailable
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0start tstart1 tend1 tstart2 tendnρstart1 (t) ρend1 (t) ρstart2 (t)

1− ρstart1 (t)
1− ρend1 (t) 1− ρstart2 (t) 1− ρend2 (t) 1

Fig. 2. Markov chain for the interval model.

in the current timestep or available, respectively. Before the first timestep, the
user is assumed to be unavailable and, only depending on the state of the current
timestep, they become available with a probability ρ01, become unavailable with
a probability ρ10, and stay unavailable or available with the complementary
probabilities 1− ρ01 and 1− ρ10. Similar to assuming the user to be unavailable
before the start of the day, we also assume that the user is unavailable after the
end of the day by extending a day by one timestep and imposing the condition
that the user is unavailable in this timestep. The transition probabilities ρ01
and ρ10 are the learnable parameters of this model. Using beta distributions
as prior distributions for these parameters seems natural, since they represent
probabilities with values in [0, 1]. As we expect that there are no repeated changes
in the availability within a few timesteps, parameters ρ01 and ρ10 should be less
than 0.5, and therefore we choose the parameters α = 1 and β = 3 for the beta
distribution, leading to an the expected value 0.25, which is centered between 0
and 0.5.

The time-dependent Markov model is identical to the time-independent Mar-
kov model, except that the transition probabilities ρ01(t) and ρ10(t) depend on
the timestep t. This increases the number of parameters to two per timestep and
allows the model to learn at which timesteps the users are available more likely.
Different to before, the assumptions that the user is unavailable before the first
and after the last timestep do not make a difference and are not needed as the
corresponding probabilities can be learned individually.

5.2 Time Interval Model

In our third model, we again assume that the user’s availability does not change
frequently over few successive timesteps and therefore the user will only be avail-
able in few intervals throughout the day. We model this for up to n intervals
within the day, whose endpoints follow rounded normal distributions, where
the mean values µstart

i , µend
i and standard deviations σstart

i , σend
i , i = 1, . . . , n

are learnable parameters. Note that the number of intervals n is here a fixed
strategy parameter and is not learned. To break symmetries, we impose the con-
dition that these intervals have to be ordered, that each interval has a duration
of at least one, and that there is at least one timestep between two intervals.
I.e., we consider intervals [tstarti , tendi ] with tstarti ∼ Round(N(µstart

i , σstart
i )),

tendi ∼ Round(N(µend
i , σend

i )), i = 1, . . . , n, and where tstart1 < tend1 + 1 <
tstart2 < . . . < tendn +1; N(·,·) is the normal distribution, Round(·) rounds to the
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nearest integer in [1, tmax]. The expected values µstart
i and µend

i and standard
deviations σstart

i and σend
i are parameters to the model that are learned.

This model can be formulated with the Markov chain visualized in Figure
2 and this formulation will be important for learning the model parameters.
There is an initial state 0 in which the user is not available and for each interval,
there is a state tstarti in which the user is available, and a state tendi in which the
user is not available and all states have a predefined order in which they have
to be visited. We use the junction tree algorithm to compute the conditional
probabilities pstarti (t) = P(tstarti = t + 1 | tstart1 < tend1 + 1 < . . .) and pendi (t) =
P(tendi = t | tstart1 < tend1 + 1 < . . .) since the junction tree algorithm delivers
exact probabilities and is efficient in this case. The transition probabilities are
then further derived as

ρstarti (t) = P(tstarti = t+ 1 | tstarti ≥ t+ 1, tstart1 < tend1 + 1 < ...) =
pstarti (t)∑

t′≥t p
start
i (t′)

(1)

ρendi (t) =
pendi (t)∑

t′≥t p
end
i (t′)

. (2)

6 Bayesian Inference

To infer parameters for our models, given a set Strain of training samples, we use
Bayesian Learning [18]. Advantages are its broad applicability with the capability
to model and take into account all the specific aspects of our setting and that
it also provides a measure for the uncertainty of the result by not just giving a
single value for each parameter, but multiple sets of model parameters. When
using one of the models as part of the scheduler to actively learn user behavior
over the course of multiple weeks, the uncertainty measure will help to select
queries that improve the knowledge about the users. Foundation of Bayesian
Learning is Bayes rule, which states that the posterior distribution P(θ | D) of the
parameters θ is proportional to their prior distribution P(θ) and the likelihood,
which is the probability P(D | θ) of seeing the observed data D:

P(θ | D) ∝ P(D | θ)P(θ) (3)

Probabilistic Programs can be used to specify a model and are ordinary pro-
grams, extended by the statements smpl and obs, which sample parameters
from a specified prior distribution and observe that certain conditions are ful-
filled, e.g. that the program generated the seen data. Prior probability and like-
lihood can be computed from a probabilistic program and parameter values θ.

Algorithm 1 shows the skeleton of the probabilistic program that we use
in conjunction with two model-specific functions Prior(Model) and Model(θ),
which sample the model parameters from their prior distribution and sample a
set of availabilities based on these model parameters, respectively, and which are
discussed below for each of our models. The probabilistic program first samples
the model parameters and then, for each training sample strain, samples a set of
availabilities and observes that it is compatible with strain. To account for the
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Algorithm 1: Model-
independent skeleton of the
probabilistic program to condi-
tion on training samples Strain.
Input: Training samples Strain

1 smpl θ ∼ Prior(Model)
2 for (Iprop, Iacc, Irej) in Strain do
3 smpl T avail∗ ∼ Model(θ)
4 for [t1, t2] in Iprop do
5 I ← Ints(T avail∗, t2 − t1 + 1)
6 smpl [t′1, t

′
2] ∼ Uniform(I)

7 obs t′1 = t1 and t′2 = t2

8 obs [t1, t2] ⊆ T avail∗ ∀[t1, t2] ∈ Iacc

9 obs [t1, t2] ⊈ T avail∗ ∀[t1, t2] ∈ Irej

Algorithm 2: Model-independent
part of the sampling procedure.
Input: Training samples

{strain1 , . . . , strain|Strain|}, n ∈ N
Output: Parameter sets {θ1, . . . , θn}

1 θ ← InitParameters(Model)
2 T avail∗

k ← T ∀k ∈ {1, . . . , |Strain|}
3 for j in {1, . . . , n} do
4 for k in {1, . . . , |Strain|} do
5 G← Prob-graph(θ, straink )
6 T̃ avail ← RandomAvail(G)
7 if Rand([0, 1)) < Acc-Prob then
8 T avail∗

k ← T̃ avail

9 θ ← SampleParameters(θ, T avail∗)
10 θk ← θ

11 return {θ1, . . . , θn}

bias towards the user being available caused by proposed intervals, the process
of proposing an interval is modelled in lines 5 to 7 by assuming that the user
selects one of the possible intervals of the given length uniformly at random. The
function Ints(T , d) returns all intervals of duration d that are contained in the
discrete set T of timesteps. This program assigns each tuple of values of sampled
variables a probability by multiplying the probabilities or probability densities of
sampling exactly those values and multiplying with 0 if an observe statement is
not fulfilled. These products are then proportional to the posterior distribution
of the sampled variables and, when marginalized, to the posterior distribution
of the parameters θ, which we are interested in. Note that we perform these
computations with probabilities, as is usually done in probabilistic programming,
in the space of logarithmic values, where these products turn into sums and there
is no risk of an arithmetic underflow.

To sample from the posterior distribution, we alternate between sampling
new sets of availabilities (lines 4-8) and new parameters while fixing the other,
also referred to as Gibbs sampling [8], see Algorithm 2. Availabilities and pa-
rameters can be sampled individually with distributions that approximate their
posterior distribution well and therefore doing Gibbs sampling in this way in
conjunction with Metropolis Hastings to compensate the approximation error
leads to fast convergence to the overall posterior distribution. Sampling the pa-
rameters is model-specific and discussed below for each of the models. Sets of
availabilities are generated individually for each training sample using a datas-
tructure described by Varga et al. [21] and we will refer to this datastructure as
probability graph. A probability graph can be created based on the Markov chain
of the model; it represents the probability distribution of availabilities according
to the model after observations, such as accepted or rejected queries, have been
made. Note that in line 5, G represents the probability graphs of all days within
the considered week. Since the probability graph treats proposed exactly like
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Algorithm 3: Probabilistic
program for the Markov Mod-
els.
Input: p01, p10
Output: T avail∗

1 T avail∗ ← {}
2 for tday in {1, . . . , tmax-day} do
3 avail ← false
4 for t in {1, . . . , tmax + 1} do
5 p←

1− p10(t) if avail else p01(t)
6 avail ← smpl Bernoulli(p)
7 if avail then
8 T avail∗ ← T avail∗ ∪{(tday, t)}

9 obs ¬ avail

10 return T avail∗

Algorithm 4: Probabilistic program
for the interval model.
Input: n, µstart

i , σstart
i , µend

i , σend
i ,

i = 1, . . . , n
Output: T avail∗

1 T avail∗ ← {}
2 for tday in {1, . . . , tmax-day} do
3 for i in {1, . . . , n} do
4 tstarti ← Round(smpl N(µstart

i , σstart
i ))

5 tendi ← Round(smpl N(µend
i , σend

i ))

6 obs tstarti ≤ tendi ∀i ∈ {1, . . . , n}
7 obs tendi + 1 < tstarti+1 ∀i ∈ {1, . . . , n− 1}
8 T avail∗ ←

T avail∗ ∪
n⋃

i=1
[(tday, tstarti ), (tday, tendi )]

9 return T avail∗

accepted intervals, we have to take into account Line 6 of Algorithm 1 to get the
correct posterior distribution. We use Metropolis Hastings [9] for this correction,
i.e., the newly drawn sample is kept with probability

Acc-Prob = min

(
1,

P(T̃ avail)

P(T avail∗
k )

)
= min

1,
∏

[t1,t2]∈Iprop

|Ints(T avail∗
k , t2 − t1 + 1)|

|Ints(T̃ avail, t2 − t1 + 1)|

 , (4)

since the probability to draw any element from the uniform distribution on I is
1/|I| and in fact this favors shorter availability intervals and therefore compen-
sates the bias introduced by systematically having more intervals where the user
is available compared to rejected intervals.

6.1 Markov Models

Algorithm 3 shows the probabilistic program to sample from the Markov mod-
els. For the time-independent version, p01(t) = p01 and p10(t) = p10 are constant
functions. To sample new parameters p01 and p10 for the time-independent Mar-
kov model, observe that, since T avail∗ and thus the number of transitions is fixed,
their likelihood according to the probabilistic program are proportional to

f01(p01) ∝ pn01
01 (1− p01)

n00 and (5)

f10(p10) ∝ pn10
10 (1− p10)

n11 , (6)

where nij , i, j ∈ {0, 1} are the number of transitions from state i to state j
in T avail∗. Considering the prior distribution Beta(1,3), which adds a factor of
(1 − p01)

2 and (1 − p10)
2, respectively, we draw new parameter values for p01

from Beta(n01 + 1, n00 + 3) and for p10 from Beta(n10 + 1, n11 + 3). New
parameter values for the time-dependent Markov model are drawn from similar
beta distributions, but only counting the transitions between the two specific
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timesteps of the day that correspond to that parameter. As initial values for the
parameters we use 0.25 as this is the expected value of the prior distributions as
established in the previous section.

6.2 Interval Model

Algorithm 4 shows the probabilistic program to generate T avail∗ for the inter-
val model. Again, Round() rounds to the nearest integer in [1, tmax]. To sample
new parameter values, we use Metropolis-Hastings and derive the proposal dis-
tribution by approximating the rounded normal distribution with a continuous
normal distribution. For each interval i ∈ {1, . . . , n}, normally distributed sam-
ples tstarti,tday,k and tendi,tday,k, t

day ∈ {1, . . . , tmax-day}, k ∈ {1, . . . , |Strain|} are given
and we are interested in the unknown mean values and standard deviations
µstart
i , σstart

i and µend
i , σend

i , respectively. The variance (σstart
i )2 is distributed

according to a scaled inverse-χ2 distribution with tmax-day|Strain| − 1 degrees of
freedom and sample variance∑

tday,k

(
tstarti,tday,k − t̄starti

)2

tmax-day|Strain| − 1
(7)

as scaling parameter where t̄starti is the sample mean [7, Chapter 3]. We first draw
the variance (σstart

i )2 from this distribution and then draw the mean µstart
i from

the standard distribution N(t̄starti , σstart
i /

√
tmax-day|Strain|). The same proce-

dure is applied to obtain σend
i and µend

i . As prior distribution we use the uniform
distribution for µstart

i and µend
i and the inverse-χ2 distribution with 0.1 degrees

of freedom and scaling parameter 1 for (σstart
i )2 and (σend

i )2. Note that 0 de-
grees of freedom would be a more uninformed choice, but Scale-inv-χ2(0, 1) is
not a proper distribution. Initial values are set to µstart

i = µend
i = tmax/2 and

σstart
i = σend

i = tmax/8 since these values gave good results in preliminary tests.

7 Experimental Comparison

To evaluate our models, we create training and test datasets based on the in-
stances from Varga et al. [21] with five machines, 30 users and four jobs per user.
The time horizon consists of five days, each day starting at 6am and ending at
10pm, discretized into timesteps of 15min yielding a total of 64 timesteps per
day. Some of these instances are based on purely synthetical user availabilities,
where users are available in up to two intervals a day with rounded and capped
normal distributions for the start and duration of those intervals. The other in-
stances are based on user availabilities derived from the Dutch time-use-survey
[19], considering a user to be available if they are working on-site. We assume
4 weeks of training data to be available since the scheduler is supposed be able
to make good predictions already after a few weeks. To also evaluate the un-
certainty of our results, we create five training sets, each based on 4 randomly
selected instances of instances 1 to 20. Similarly, we generate five test datasets,
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Fig. 3. Precision-recall curve of the different models, for the dataset based on generated
availabilities on the left and for the dataset based on the time-use-survey on the right.
Higher values for precision and recall are better.

each based on 4 randomly selected instances of instances 21 to 30. Whenever
we do not report uncertainties, the results refer to a single training and a single
test set. These datasets of training and test samples are generated by running
the algorithm of Varga et al. [21] with the Markov approach and a probability
threshold of 0.5 and collecting proposed, accepted, and rejected time intervals
for each user after five rounds of interaction for the training set and after zero
to five rounds of interaction for the test set. Potential queries for test samples
are all possible intervals within the time horizon of job length. Training and
test set are available online3. We compare the time-dependent Markov model
and the interval model to the time-independent Markov model, which we use as
baseline. Note that we are the first to consider this learning task and thus we
cannot compare to approaches from the literature.

Our algorithms are implemented in Julia 1.10.5 using Gen.jl 0.4.6 as frame-
work for probabilistic programming. All experiments were executed on a single
core of an AMD Ryzen 9 5900X. For the training, we performed 1000 iterations
of the Markov models, skipping the first 500 to account for convergence to the
equilibrium state. All training times were below 70 seconds, prediction times for
a single model and all test samples altogether below 40 seconds.

7.1 Results

We trained a model for each dataset of training samples. Each model trained
on a time-use-survey based dataset is evaluated on all test datasets that are
based on the time-use-survey and similarly for the datasets based on synthetical
availabilities; in particular we did not investigate transfer learning capabilities
here. The inference method delivers multiple parameter sets for each model. To
make predictions, we use each parameter set to make a prediction and calculate
the mean. Figure 3 shows the precision-recall curves of the different models
for both datasets where the test samples are collected after five rounds of user
interaction. Note that, for the dataset with the artificial availabilities, we do
know the true model, which the user availabilities follow and the true model

3 https://www.ac.tuwien.ac.at/research/problem-instances/#ijsp

https://www.ac.tuwien.ac.at/research/problem-instances/#ijsp
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Fig. 4. Area-under-curve comparison of the precision recall plots for time-use-survey
based datasets. Higher area-under-curve values are better.

represents an upper bound. As can be seen, the time-dependent Markov model
is very close to the true model and was able to learn the typical user behavior very
well. While the interval model with n = 2 intervals gives a similar performance
as the time-independent Markov model, which is the baseline model, the interval
model with n = 3 intervals performs significantly worse. We explain this by the
fact that users are assumed to be available in up to two intervals and the third
interval that the model has to use disturbs the position of the other two intervals.

For the dataset that is based on the time-use-survey, the interval model
with n = 2 intervals clearly performs best and the interval model with n = 3
intervals performs similar to the time-dependent Markov model, both performing
better than the time-independent Markov model. We explain the difference to
the artificial dataset with the fact that in the artificial dataset each user has at
most two intervals each day and often only one and their starting and ending
times have less variance, which favors the time-dependent Markov model.

Figure 4 compares, for the time-use-survey based dataset, the area-under-
curve values of the precision-recall plots for the different models, when varying
the number of rounds after which test samples are collected and therefore the
amount of information that is given about the user’s availabilities in each test
sample. To validate our observations, we apply a sign test. The figure confirms
the observation from before that the interval model with n = 2 intervals clearly
performs best, having a by seven to eight percent higher area-under-curve than
the next best model (p-value ≤ 10−44) for any number of rounds. It is followed by
the time-dependent Markov model, which performs slightly but still statistically
significantly (p ≤ 10−4) better than the interval model with n = 3 intervals.
All three models exhibit clearly better results (p ≤ 10−44) than our baseline,
the time-independent Markov model. Apparently, the additional information of
more interaction rounds consistently helps the models to make a little bit better
predictions, but the gains are smaller than the differences between the models.
Note that the interval model with n = 2 intervals, given test samples without
any interaction rounds, even outperforms the time-dependent Markov model on
test samples with four interaction rounds (p = 4.3%) and the other models with
five interaction rounds (p ≤ 10−3%), which carry significantly more information.
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8 Conclusion

We concentrate on a scheduling setting in which the scheduler interacts with
human users to create a suitable schedule and use Bayesian Learning to learn user
behavior. In particular, we focus on the users’ availability throughout the day
and the resulting responses to the schedulers queries. Training data is sparse and
collected from user interaction of previous problem instances. We propose and
train three different models, two of them based on a two-state Markov chain with
time-independent, resp. time-dependent transition probabilities, and the third
model learns intervals in which the user is available. We compare the models on
two different datasets that are based on artificially generated availabilities and
the Dutch time-use-survey, resp. Results show that the time-dependent Markov
model performs best and similar to the true model for the generated dataset, and
the interval model with two intervals performs best for the other dataset. If the
models are given less information from user interaction, they perform marginally
worse, but these differences are smaller than the differences between the models.

So far, we evaluate the user models based on precision and recall. Future
work should investigate the impact of the learned user model on the obtained
schedules. Since the user model has influence on how training data for future
iterations is collected, active learning appears to be a promising way to improve
future predictions. As we use Bayesian Learning, our learned models provide a
variance along with the acceptance probability that indicates whether training
data or the data given with the sample is insufficient to make a definite prediction
and gives a useful hint about the information gain of a query.
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