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Abstract. In this work we apply machine learning to better guide a
biased random key genetic algorithm (Brkga) for the longest common
square subsequence (LCSqS) problem. The problem is a variant of the
well-known longest common subsequence (LCS) problem in which valid
solutions are square strings. A string is square if it can be expressed as
the concatenation of a string with itself. The original Brkga is based
on a reduction of the LCSqS problem to the LCS problem by cutting
each input string into two parts. Our work consists in enhancing the
search process of Brkga for good cut points by using a machine learning
approach, which is trained to produce promising cut points for the input
strings of a problem instance. In this study, we show the benefits of this
approach by comparing the enhanced Brkga with the original Brkga,
using two benchmark sets from the literature. We show that the results
of the enhanced Brkga significantly improve over the original results,
especially when tackling instances with non-uniformly generated input
strings.
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1 Introduction

Recently, the use of machine learning (ML) for guiding metaheuristic algorithms
has become popular in order to enhance performance [2]. In this work, we show
how this idea can be beneficially applied within genetic algorithms (GAs). More
specifically, information obtained through a ML approach is used to guide a
biased random key genetic algorithm (Brkga). In the context of combinatorial
optimization, Brkga work on a population of individuals indirectly representing
solutions to the problem at hand by means of vectors of real values in (0, 1).
An important aspect of a Brkga is the so-called decoder which maps every
individual to a solution to the problem at hand. The methodology proposed
in this work consists of biasing individuals towards vectors learned by a feed-
forward neural network [1] before applying the decoder.

Our approach is evaluated using the Longest Common Square Subsequence
(LCSqS) problem, a variation of the well-known Longest Common Subsequence
(LCS) problem. Both problems are formally introduced in the following.

1.1 The LCSqS Problem

A string is considered a finite sequence of characters drawn from a finite set
Σ, referred to as the alphabet. Given a string s, a subsequence of s is a string
that can be derived from s by selectively removing zero or more characters while
preserving the original order of the remaining ones. The longest common subse-
quence (LCS) problem entails, given a set of input strings S = {s1, s2, . . . , sm}
(m ≥ 2), the task of identifying the longest possible string that is as a subse-
quence of all the strings in S. This problem, known to be NP-hard when the
number of input strings is not fixed [13], finds vital applications across diverse
domains including bioinformatics, file plagiarism detection, and time series anal-
ysis [11,14,15,18].

In our present study, we concentrate on a specific variation of this problem
known as the longest common square subsequence (LCSqS) problem as intro-
duced by Inoue et al. [9]. A string s is classified as a square string if it can be
expressed by concatenating a string s′ with itself. The aim of the LCSqS problem
is to find a longest common subsequence within the set S of input strings that
is also a square string. Similarly to the LCS problem, the LCSqS problem pos-
sesses applications in bioinformatics, in particular facilitating the identification
of internal structural similarities within molecular data [8].

Reduction to the LCS Problem. Before we explain the reduction, let us introduce
additional notation. For a string s, we denote its length by |s|. For two integers
i, j ≤ |s|, s[i, j] refers to a (continuous) part of string s that starts from the
character at position i and ends with the character at position j; when i = j,
the single-character string s[i] is given, or when i > j, the empty string ε. Note
that the starting character of each string holds position one.

A notable characteristic of the LCSqS problem, effectively leveraged by exist-
ing heuristic algorithms, is its reducibility to the LCS problem. Given a set of
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input strings S = {s1, s2, . . . , sm}, let P = {(p1, p2, . . . , pm) ∈ ∏m
i=1{1, . . . , |si|−

1}} denote the set of all possibilities for partitioning each string of S into two
parts. The LCSqS problem with input strings S can then be solved as follows.
First, for every p ∈ P a solution sp to the LCS problem with input strings Sp =
{s1[1, p1], s1[p1 + 1, |s1|], s2[1, p2], s2[p2 + 1, |s2|], . . . , sm[1, pm], sm[pm + 1, |sm|]}
is computed. It is rather easy to see that the concatenation of s∗

p = arg maxp∈Psp

with itself, that is s∗
p ·s∗

p, gives an optimal solution to the original LCSqS problem
[16]. Thus, the LCSqS problem with input strings S can be solved by finding the
cut point vector p ∈ P that leads to the longest LCS solution for input strings
Sp and concatenating this LCS solution with itself.

1.2 Literature Review

Numerous algorithms have been devised for addressing the LCS problem, owing
to its many important practical applications. Exact solutions can be obtained
through dynamic programming approaches, but their computational complexity
is in O(nm), where m refers to the number of input strings, and n is the length
of the longest input string. As this number of strings m grows, the practicality
of these dynamic programming methods diminishes, leading to the adoption of
heuristic and metaheuristic approaches. Among these, one of the most successful
is beam search (BS), which was initially introduced in the context of the LCS
problem by Blum et al. in [3].

When it comes to the LCSqS problem, Inoue et al. introduced exact dynamic
programming algorithms in [9], which necessitate O(n6) time for the scenario
involving two input strings. Conversely, Djukanović et al. [8] proposed two heuris-
tic algorithms, with the most effective one being a hybrid approach combin-
ing reduced variable neighborhood search (RVNS) with BS. The so far leading
heuristic algorithm is a Brkga searching through the space of cut points and
using BS for solving the corresponding LCS problems [16]. The used BS approach
is the one outlined by Djukanov́ıc et al. [7], which offers two distinct designs for
its guiding heuristic function. In our work, we enhance this Brkga through the
integration of a ML technique, and we refer to this enhanced version as Brkga-
Learn. A brief overview of Brkga is provided in the following sections, while a
more comprehensive explanation of this algorithm can be found in the referenced
articles.

1.3 Our Contribution

As already mentioned, the original Brkga for the LCSqS problem from [16]
searches the space of possible cut points heuristically, because a complete explo-
ration of such a vast space is intractable in general. Each possible individual
is mapped to a valid solution (consisting of a cut point for each input string)
and then evaluated by applying the BS approach from [7] to the resulting LCS
problem. Due to the high complexity of solving the LCS problem, this step of
solving each LCS problem instance is done in a heuristic manner by BS. The
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Fig. 1. General structure of the proposed Brkga-Learn approach

mapping process is performed within a decoder that also makes use of greedy
information consisting of cut points deemed promising for every input string.

We introduce a novel approach to enhance the Brkga for the LCSqS problem
from [16] by replacing its original greedy mechanism with learned information
provided by a ML model. Specifically, we advocate the utilization of a feed-
forward neural network (NN). To determine a cut point for a given string s
from the set S of all input strings, this NN takes as input features from s in
combination with overarching features drawn from the entire set S. The overall
structure of our proposed approach is illustrated in Fig. 1. First, given a set of
input strings for the LCSqS problem, individual features for each input string and
global features of S are extracted. Afterward, these are fed into the (previously
trained) neural net, obtaining a cut point for each input string. Finally, these
cut points are used by the decoder of the Brkga, which uses them in order to
replace greedy information.

The rest of this work is organized as follows. In Sect. 2, the original Brkga is
explained with a focus on its cut point search. Next, Sect. 3 develops the proposed
learning mechanism, explaining the selected features and the training approach
used for the NN. Section 4 presents a comprehensive experimental evaluation
including a comparison of the proposed Brkga-Learn with the original Brkga.
Finally, in Sect. 5 some conclusions are derived and an outlook on future work
is given.

2 The Original BRKGA

The top part of Fig. 1 illustrates the main idea of the Brkga for the LCSqS
problem. In the following, we will summarize the working mechanism of this
algorithm. For an explanation of the BS we refer to the original publication [7].

In the context of any combinatorial optimization problem, a Brkga works
on a population in which each individual v, represented by a vector of real values
from (0, 1), can be mapped to a valid solution to the problem at hand. In the
case of the application to the LCSqS problem, an individual v is mapped to a
cut point vector for the set of input strings S, that is, an element of the set of
all possible cut point vectors P as defined in Sect. 1.1. The goal is to find an
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Algorithm 1. The decoder of the Brkga for the LCSqS problem
Input: Input strings S = {s1, . . . , sm}, an individual v, beam width β, and BS
guidance function h

1: v′ ← greedy transformation(v)
2: pv ← map to cut points(v′)
3: Spv ← LCS problem instance induced by pv

4: tv ← beam search for LCS problem(Spv , β, h)
5: return tv · tv

individual v that maps to a cut point vector pv ∈ P that maximizes the length
of the solution to the LCS problem with input strings Spv . The decoder that
takes care of the mapping process is a critical part of the algorithm and will be
explained below.

A Brkga works as follows. First, a population of psize individuals is initialized
at random, by setting every individual to a random vector of values from (0, 1).
Afterward, the main loop is entered, in which the fitness of each individual is
determined by applying the decoder and further evaluating the obtained solution.
The population is then split into the following two parts:

1. The elite population Pe ⊂ P that consists of the best pe individuals of P .
2. The non-elite population, consisting of the remaining psize −pe individuals of

the current population P .

Here, pe < psize−pe is a algorithm parameter, called the number of elites. Another
algorithm parameter, pm < psize−pe, called the number of mutants, is then used
to generate the next population of individuals in the following way. The elite
population is passed to the next generation along with pm mutant individuals,
which are constructed randomly as in the case of the initial population. The
remaining psize−pe−pm individuals are introduced through the process of mating.
This consists of selecting two parents at random from the current population,
one elite and one non-elite, and constructing a new individual by setting its i-th
vector position to one of the parents’ i-th vector positions, choosing for each
position between the two parents depending on a parameter ρe ∈ (0.5, 1], called
the elite inheritance probability, which determines the probability of choosing
the i-th vector position of the elite parent.

2.1 The Decoder

The decoder, which is shown in Algorithm 1, first applies a greedy transfor-
mation to individual v (line 1). Hereby, some greedy information is given by a
vector u of the same dimension as v and the following expression is applied:

v′
i := vi + γ · (ui − vi) (1)

Algorithm parameter γ ∈ [0, 1] is the so-called greedy rate and controls the
extent to which vi is moved towards ui, for all i = 1, . . . , m. In case γ = 1, vi
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is simply replaced by ui. In the other extreme, if γ = 0 the greedy information
is not used at all. In [16], three different designs were proposed for u (see the
subsequent section). Next, vector v′ = (v′

1, v
′
2, . . . , v

′
m) ∈ (0, 1)m is mapped to

the cut point vector pv, where pv
i = �v′

i · |si|� for all i = 1, . . . , m; see line 2 of
Algorithm 1. Notation �r� refers to rounding value r to the closest integer. If pv

i

is 0 or |si|, the cut is set to 1 and |si| − 1 respectively, in order to only consider
feasible cuts. Finally, BS is applied to the 2m input strings obtained after cutting
the strings of S at the positions given by pv. The resulting LCS solution is
concatenated with itself, producing a solution to the original LCSqS problem.
After this is done, a measure of fitness is given to the individual, depending on
its associated solution quality. The fitness measure used comprises two distinct
values. The first value represents the length of the solution, while the second
value is designed as a tie breaker to differentiate between individuals generating
solutions of equal length. For a comprehensive description of this secondary
fitness measure, which is elaborated upon with three different designs, we refer
to the original article [16].

2.2 Different Designs for the Greedy Vector u

1. The first option consists in simply using u = (0.5, . . . , 0.5). This is moti-
vated by the fact that, in general, the middle point of every input string is
potentially a good place for cutting the string into two pieces, as these cuts
maximize the resulting strings minimum length obtained after cutting.

2. The second approach determines ui for all i = 1, . . . , m by

ui = arg min
r∈[0,1]

∑

a∈Σ

∣
∣
∣
∣
∣
∣si[1, �r · |si|�]

∣
∣
a

− ∣
∣si[�r · |si|� + 1, |si|]

∣
∣
a

∣
∣
∣
∣ (2)

Here,
∣
∣si[1, �r · |si|�]

∣
∣
a

and
∣
∣si[�r · |si|�+1, |si|]

∣
∣
a

denote the numbers of occur-
rences of character a in the two strings obtained after cutting si after position
�r · |si|�. This approach looks for the cut that maximizes the overall equilib-
rium of the quantity of each character at both sides of the cut. The value
that minimizes the previous expression may not be unique. In this case a
random value among the candidate values is chosen. With this design, the
greedy value exploits some information about the distribution of characters
within the strings to decide which cut appears most promising.

3. The last considered design determines ui for all i = 1, . . . ,m by

ui = arg max
r∈[0,1]

∣
∣
∣
∣LCS

(

si[1, �r · |si|�], si[�r · |si|� + 1, |si|]
)∣

∣
∣
∣ (3)

Hereby, the LCS of the pair of substrings is determined with the dynamic
programming approach from [17]. The motivation for this design is that the
ultimate goal for deciding the cuts is maximizing the LCS length between
the resulting 2 m strings. As it is intractable to maximize this value for all
strings together, we choose each cut to be the one that maximizes the LCS
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length between the resulting two parts of each string. Just as with the second
design, the value that maximizes the latter expression may not be unique. In
this case, the tie is broken randomly.

3 Machine Learning Based Guidance for BRKGA

Our approach presented in this paper, henceforth called Brkga-Learn, differs
from the original Brkga in the design of the greedy information vector u. More
specifically, ui is now determined by a feed-forward NN that receives features of
the input string si together with some global features.

3.1 Features

Six features are used as input to the NN for each input string. The first
two are specific to each string, while the last four are global ones. With
this, we intend to capture information both about individual strings and the
whole problem instance. Given a problem instance consisting of input strings
S = {s1, s2, . . . , sm}, we denote by gv2i and gv3i the values for the second and
third greedy value designs as outlined in the previous sub-section for the i-th
string respectively.

The following features are extracted for every string si, i = 1, 2, . . . ,m:

X =
(
gv2i, gv3i, gv2, gv3, σ(gv2), σ(gv3)

)

Hereby, gv2 and gv3 denote the averages of the second and third greedy
values across all strings in S and σ(gv2) and σ(gv3) are the corresponding sample
standard deviations, respectively:

gv2 =
∑m

i=1 gv2i

m
, σ(gv2) =

√
∑m

i=1

(
gv2i − gv2

)2

m − 1
(4)

gv3 =
∑m

i=1 gv3i

m
, σ(gv3) =

√
∑m

i=1

(
gv3i − gv3

)2

m − 1
(5)

Feature values are standardized before being fed into the NN in order to have
a mean of zero and a standard deviation of one. The NN comprises a single node
in the output layer with a sigmoid activation function as the NN is applied to a
single string at a time, representing a promising cut point in the form of a value
in (0, 1). Moreover, tuning indicated that one dense hidden layer consisting of
just five nodes with a ReLU activation function is sufficient, as more complex
networks did not yield significantly better results. Figure 2 provides a graphical
representation of the used NN architecture.

The expressions for the ReLU and the sigmoid function are given below.

ReLU(x) = max{0, x}, x ∈ R (6)
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Fig. 2. A graphical representation of the employed feed-forward NN. f(X) is the output
of the neural network for the feature value vector X = (X1, X2, . . . , X6). {wk,j} and
{βk} are the 41 parameters of the neural net. Particularly, {wk,j} transform the features
into the hidden-layer and {βk} transform the hidden-layer into the output. Morever, the
lines from the top node in each layer represent the biases, which consist of parameters
{wk0} and β0.

sigmoid(x) =
1

1 + e−x
, x ∈ R (7)

3.2 Neural Net Training

To train the NN we have considered the following two options:

1. The first option consists in generating toy LCSqS problem instances, finding
the optimal cuts for their input strings by complete enumeration, and then
using these to train the NN. With this method each string and optimal cut
pair is used as a training example for the NN, which is then trained in a
classical supervised fashion using the Adam [10] stochastic gradient descent-
based optimizer. A critical question clearly is here whether or not such a NN
will generalize to out-of-distribution inputs for larger problem instances.

2. Training the NN on full-size instances using a Genetic Algorithm (GA).
Hereby, each individual represents a complete set of weights for the NN, and
the population is evolved until overfitting is detected. This has been shown
to be a valid alternative for training neural networks [5,6].

Overall, the first approach produced unsatisfactory results. This may be
attributed to the limitation that finding optimal cuts through complete enu-
meration is only feasible for problem instances of modest size. In our study, we
employed instances, each comprising five strings of length 50. It is likely that
the model’s inability to generalize effectively to larger instances was due to the
small size of the training data. As a result, we decided to pursue the second app-
roach, which does not depend on knowledge of the optimal cuts for the training
instances.

To delve into further detail, the genetic algorithm (GA) utilized for the NN
training is a random key genetic algorithm (Rkga), which operates very similarly
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to the general process employed in a Brkga. The primary distinction lies in
the mating procedure. In the case of a Rkga, parental candidates are chosen
randomly, whereas in a Brkga, one parent is selected from the elites, and the
other from the non-elite group. Additionally, in an Rkga, the offspring is derived
by randomly selecting positions from the parents’ vectors. The Rkga was applied
using a population of 20 individuals, one elite individual, and seven mutants.
Remember, in this context, that each individual is a vector of 41 real values that
represent the NN weights.

Given a set of training LCSqS instances, the evaluation of an individual
works as follows. First, a value ui is obtained by supplying the NN (equipped
with the weights of the individual) for every string si of every problem instance
in the training set. Afterward, the decoder is applied in order to obtain the
corresponding cut points. Lastly, BS is used to evaluate the obtained cut points.
The average of the obtained solution lengths for all training instances is then
used as a measure of fitness and associated to the corresponding individual. One
may object that it would be better to run the whole Brkga instead of just BS
in order to evaluate an individual. However, this would lead to training times
too large for practical purposes.

Once a new best individual is found during the search process of the training
GA, a validation value is calculated in order to check for overfitting. This is done
on the basis of a set of validation instances. The validation value is calculated by
applying Brkga for 10 min on the validation instances guided by the u vector
obtained by the NN equipped with the corresponding individuals’ weights. The
average of the resulting LCSqS lengths is used as a validation value. Note that,
in the case of validation it is computationally feasible to run Brkga instead of
BS, as new best individuals are found only sporadically.

Finally, when designing the training procedure one has to decide on an
allowed domain for values for the NN weights. This is crucial since, during the
generation of random individuals, they must be assigned random values within a
specific interval. In our case we allowed weights to take real values from (−1, 1).
When allowing for larger values we observed that the NN fitted with random
weights often produced output values close to either 0 or 1, which is undesirable
as cut points too close to the start or end of strings usually lead to poor results.

In the BS for the NN training, we always applied a beam width of β = 250 and
the UB1 guidance function from [3]. For Brkga, we used the parameter values
determined for the experimental evaluation in the original Brkga article, which
were obtained by tuning depending on the benchmark set and string length.

4 Experimental Evaluation

In this section we experimentally evaluate Brkga-Learn and compare its per-
formance to the one of the original Brkga, the so far leading approach for
solving the LCSqS problem. To do so, we train and run Brkga-Learn on two
benchmark sets that were already used for the evaluation of the original Brkga
in [16]. The first benchmark set, named Random, consists of instances with
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strings generated uniformly at random. In contrast, the second set named Non-
Random consists of instances with non-uniform strings generated by implanting
appropriate patterns. For evaluating the original Brkga a third benchmark set
consisting of real-world instances was used, which we do not consider here due to
its strong structural similarity to benchmark set Random. For a more detailed
explanation of the benchmark sets we refer to [16].

In order to keep the comparison fair, Brkga-Learn was given the same
computation time for the application to each problem instance as Brkga. In
particular, we used a computation time limit of 600 CPU seconds per instance.
This time limit was also the one applied for each algorithm execution during
parameter tuning and for the calculation of the validation value during training.
Benchmark sets Random and Non-Random consist of 150 and 100 instances,
respectively, for each n ∈ {100, 500, 1000}, where n denotes the length of the
strings in the instances. Moreover, Non-Random instances can be split into
two sets depending on a parameter type, which indicates the way in which the
patterns were implanted.

Brkga-Learn was trained depending on n for instance set Random and
depending on n and type for instance set Non-Random. Therefore, three sep-
arate training procedures were conducted for benchmark set Random, and six
ones for benchmark set Non-Random. On the other hand, we performed the
parameter tuning depending on n for both instance sets, following the same pro-
cedure as for the original Brkga. Moreover, we also used different equivalently
generated instances for training, parameter tuning, and evaluation. Each Ran-
dom training used fifteen instances for calculating training values and fifteen
more for calculating validation values. One for every combination of m (number
of strings) and |Σ| (alphabet size). Similarly, Non-Random trainings used two
sets of ten instances, with two instances for every possible value of m.

Brkga-Learn was implemented in C++ and training was executed in paral-
lel using the OpenMP API [4], with the goal of speeding up the training process.
Each training and evaluation run was executed on a cluster of machines with 10-
core Intel Xeon processors at 2.2Ghz with 8Gb of RAM. The parallelism in the
training runs was implemented in the calculation of the validation and training
values. Each training uses 10 cores by distributing the training and validation
instances within these. On the other hand, no parallelism was used for parameter
tuning and the final experimental evaluation, just like in the case of the original
Brkga. Early stopping was used for the training runs, meaning that they were
run until the validation value decreased, which indicates a possible overfitting.
Training runs lasted about one hour on average, with runs trained using larger
instances requiring up to four hours.

Tables 1 and 2 show the results obtained from parameter tuning. Firstly, pe,
pm, ρe, psize, of2 are the proportion of elites, the proportion of mutants, the elite
inheritance probability, the population size and the secondary objective function
design, respectively. Secondly, γ is the greedy rate, which controls the amount
of greedy information used, and finally, β and h are the parameters of the beam
search, namely the beam width and the guiding function design.
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Table 1. Parameter tuning results for benchmark set Random.

pe pm ρe psiz e of2 γ β h

n = 100 0.15 0.13 0.35 706 1 0.51 113 UB1

n = 500 0.21 0.03 0.45 329 3 0.92 53 UB1

n = 1000 0.31 0.28 0.68 737 2 0.98 587 UB1

Table 2. Parameter tuning results for benchmark set Non-Random.

pe pm ρe psiz e of2 γ β h

n = 100 0.18 0.04 0.47 906 2 0.79 388 UB1

n = 500 0.16 0.33 0.58 372 2 0.84 6 UB1

n = 1000 0.23 0.02 0.56 218 1 0.87 6 UB1

To perform parameter tuning we made use of the automatic configuration
tool irace [12]. For benchmark set Random, one tuning instance for every com-
bination of m and |Σ| was used. Similarly, for benchmark set Non-Random,
one instance for every combination of m and type was used. This means 15 tun-
ing instances were used for each of the parameter tuning runs concerning the
Random benchmark set, while 10 instances were used for each Non-Random
one. Every tuning was allowed a budget of 5000 algorithm runs.

4.1 Benchmark Set RANDOM

The results obtained for benchmark set Random are reported in Tables 3, 4 and
5. These contain the results for the instances with n = 100, n = 500 and n = 1000
respectively. For each combination of n, m and |Σ| and for each algorithm we
present the average length of the best solutions found (|s|) and the average time
required for finding these best solutions (tbest[s]). As each group consists of ten
instances, and each algorithm was applied ten times to each instance, the results
for each of the 45 table rows average over 100 runs. In each row, the best result
is shown in bold.

We can observe that results for this benchmark set differ not by much
among the two solution approaches, although Brkga-Learn performs more
often slightly better. Note that, for this set of instances, the original Brkga
used the first greedy information design which simply consists of biasing cuts
towards the middle of every string.

As these instances consist of uniform strings, this approach already produces
a good prediction on the optimal cut point, which did not leave our proposed
guidance much room for improvement.
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Table 3. Comparison of Brkga-Learn
and Brkga on Random instances with
string length n = 100.

m |Σ| Brkga-Learn Brkga

|s| tbest[s] s tbest[s]

10 4 28.44 98.36 28.34 19.06

10 12 8.94 11.73 8.00 0.06

10 20 4.20 0.04 4.00 0.00

50 4 19.02 144.95 19.94 85.65

50 12 4.00 0.03 4.00 1.25

50 20 1.40 0.39 0.20 0.00

100 4 15.72 168.17 17.16 68.45

100 12 2.42 30.20 2.20 5.38

100 20 0.12 12.91 0.00 0.00

150 4 13.16 160.99 15.94 53.37

150 12 2.00 0.02 2.00 0.20

150 20 0.00 0.00 0.00 0.00

200 4 12.02 34.86 14.78 92.28

200 12 2.00 0.29 1.60 1.08

200 20 0.00 0.00 0.00 0.00

Table 4. Comparison of Brkga-Learn
and Brkga on Random Instances With
string length n = 500.

m |Σ| Brkga-Learn Brkga

|s| tbest[s] |s| tbest[s]

10 4 159.56 235.68 158.94 226.69

10 12 59.90 47.88 59.60 51.22

10 20 36.12 11.69 36.04 7.97

50 4 126.40 297.95 125.76 146.66

50 12 40.06 65.44 40.00 52.29

50 20 22.00 25.71 21.82 14.19

100 4 117.26 246.59 116.82 102.85

100 12 34.30 55.78 34.12 21.53

100 20 18.00 0.70 18.00 0.60

150 4 112.50 125.87 112.50 64.91

150 12 32.00 2.71 32.00 2.14

150 20 16.02 0.99 16.00 0.16

200 4 109.96 109.96 110.00 26.02

200 12 30.08 17.80 30.04 6.96

200 20 15.76 74.79 15.90 73.57

Table 5. Comparison of Brkga-Learn and Brkga on Random instances with string
length n = 1000.

m |Σ| Brkga-Learn Brkga

|s| tbest[s] |s| tbest[s]

10 4 324.42 155.60 323.98 164.38

10 12 125.44 78.44 125.78 110.02

10 20 77.68 46.47 78.02 107.96

50 4 263.90 88.78 263.74 96.49

50 12 87.62 99.69 87.62 87.74

50 20 50.16 17.68 50.54 43.04

100 4 249.30 70.03 248.84 78.81

100 12 78.36 44.55 78.48 58.38

100 20 44.00 3.68 44.00 1.76

150 4 242.22 62.90 242.06 73.12

150 12 74.26 40.61 74.42 49.93

150 20 41.26 100.94 41.32 87.43

200 4 237.50 64.25 237.32 69.46

200 12 72.02 19.07 72.00 13.19

200 20 39.88 124.41 39.94 77.83

4.2 Benchmark Set NON-RANDOM

The results for benchmark set Non-Random are shown in Tables 6, 7 and 8,
which follow the same structure as outlined in the last section.



NN Based Guidance for a BRKGA: An Application to the LCSqS Problem 13

Table 6. Comparison of Brkga-Learn
and Brkga on Non-Random instances
with string length n = 100.

m type Brkga-Learn Brkga

|s| tbest[s] |s| tbest[s]

10 1 32.24 97.06 32.14 114.59

10 2 30.56 66.05 30.84 95.25

50 1 25.78 151.84 24.98 227.49

50 2 25.28 100.28 24.86 183.25

100 1 22.16 107.93 19.34 180.61

100 2 21.98 120.53 20.08 149.02

150 1 19.36 127.27 16.76 154.21

150 2 19.76 161.05 16.68 147.78

200 1 18.10 136.83 14.72 145.22

200 2 18.58 120.13 14.70 160.61

Table 7. Comparison of Brkga-Learn
and Brkga on Non-Random instances
with string length n = 500.

m type Brkga-Learn Brkga

|s| tbest[s] |s| tbest[s]

10 1 66.18 39.68 70.92 129.82

10 2 70.14 60.28 64.78 117.03

50 1 58.58 160.06 59.16 287.05

50 2 60.76 218.02 55.32 187.35

100 1 52.58 205.24 49.30 321.75

100 2 53.60 222.17 51.00 277.44

150 1 51.08 286.49 46.52 344.74

150 2 48.80 285.49 48.78 315.31

200 1 48.18 327.75 43.62 354.31

200 2 45.60 368.48 43.60 407.89

Table 8. Comparison of Brkga-Learn and Brkga on Non-Random instances with
string length n = 1000.

m type Brkga-Learn Brkga

|s| tbest[s] |s| tbest[s]

10 1 90.50 96.65 91.14 113.29

10 2 90.92 130.95 91.38 102.84

50 1 66.16 154.49 65.40 284.90

50 2 66.28 157.41 63.94 255.81

100 1 61.66 228.93 59.60 346.65

100 2 60.32 223.04 57.88 266.50

150 1 57.70 286.83 55.74 306.60

150 2 57.20 258.09 54.38 195.92

200 1 54.62 282.27 52.46 72.89

200 2 54.48 268.08 52.06 149.85

In this case, Brkga-Learn obtains consistently and significantly better
results than the original Brkga with the exception of the instances with a
very low number of input strings (m), for which the results are inconclusive. For
all other instances, Brkga-Learn obtains better solutions than Brkga, indi-
cating a clear benefit from the proposed ML guidance in the case of non-uniform
strings.

In order to measure the statistical significance of the differences between the
obtained solution lengths of Brkga-Learn and Brkga on the Non-Random
benchmark set, we employed the signed-rank Wilcoxon test [19]. It tests the one-
sided alternative hypothesis that a solution value obtained by Brkga-Learn is
in the expected case larger than the corresponding solution value obtained by
Brkga. We obtained a p-value of less than 10−4 indicating that the differences
observed are statistically highly significant.
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5 Conclusions and Future Work

This paper presented an example of how machine learning can be used to improve
the performance of genetic algorithms. Particularly, we introduced a neural net-
work based guidance for a biased random key genetic algorithm (Brkga) applied
to the longest common square subsequence (LCSqS) problem. Brkga works on
the basis of reducing from the LCSqS problem to the well-known longest com-
mon subsequence (LCS) problem. This is done by cutting each input string into
two parts. The Brkga is used to explore the set of possible cut points in the
search for the best possible cut points. The presented machine learning guidance
is implemented in order to leverage this search process. Given a string from a set
of input strings, individual features for each input string are extracted, together
with global ones. These are then fed into a neural network whose task it is to
provide a presumably good cut point for the string. This information is then
used inside Brkga as greedy information.

We have experimentally evaluated the enhanced Brkga (Brkga-Learn)
against the original Brkga using two sets of benchmark instances from the
literature. Brkga-Learn has significantly improved the results of Brkga for
non-uniform instances. On the other hand, for the random instances, Brkga
turned out to not benefit as much from the machine learning guidance. The
reason behind is that the original Brkga naturally preferred greedy value for
this benchmark set that simply consisted in biasing cut points towards the middle
of the input strings.

As for future work, concerning the methodological aspects it would be inter-
esting to try other machine learning models for regression as a replacement for
the neural net and to extend the set of used features for the input strings.
Concerning the training, another promising approach would be the application
of reinforcement learning. Last but not least, the principles of the proposed
learning-based approach are rather general, and it appears promising to apply
this learning-based framework also to other Brkga approaches for different hard
optimization problems.
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