Improving User Experience in Interactive Job Scheduling

Johannes Varga^a Supervisors: Günther R. Raidl^a, Tobias Rodemann^b Advisor: Christiane Wiebel-Herboth^b

^aInstitute of Logic and Computation, TU Wien, Vienna, Austria

^bHonda Research Institute Europe, Offenbach, Germany

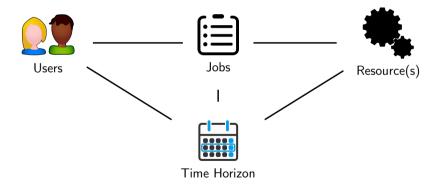
September 12, 2024

April 2022 Today March 2026

General Problem Setting

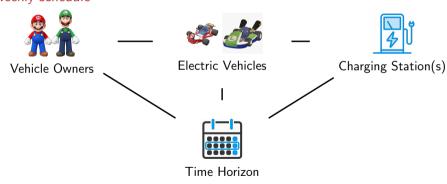
How to organize processes best that involve humans?

Formulate as scheduling problem



Scheduling the Charging of EVs¹

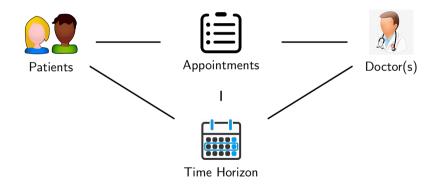
Time-dependent electricity prices Limited number of charging stations E.g. weekly schedule



¹Johannes Varga, Günther R. Raidl, and Steffen Limmer (2022). "Computational Methods for Scheduling the Charging and Assignment of an On-Site Shared Electric Vehicle Fleet". In: Access 10, p. 105786.

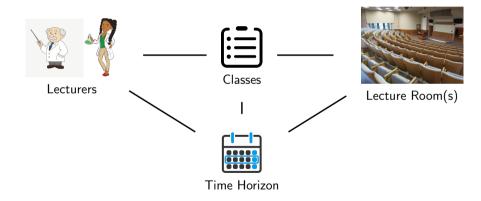
Scheduling Doctors Appointments

Rolling time horizon



Timetabling Classes

Semester-wise schedule



Classical Approaches

EV Charging Scheduling:

- Users specify preferences beforehand
- Optimization approach computes schedule

Doctors appointments: Secretary coordinates appointments with patients

Timetabling classes: Expert coordinates access to lecture rooms

Common disadvantages:

- Labour intensive
- Annoying for users
- Suboptimal results

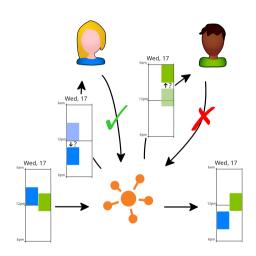
Cooperative Approach

Central unit: Scheduler

- Coordinates schedule among users
- Interacts with users to find out about their most relevant preferences

Advantages:

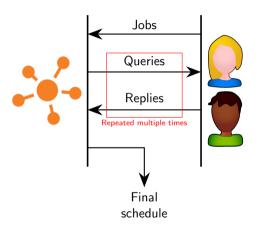
- Automated
- Low effort for users
- Optimized results



User Interaction

Key requirement: Do not annoy users

- → Limit user frustration
 - Low number of queries
 - Low effort
 - Only queries, where positive feedback is likely
 - Queries make sense to the user



Algorithmics Behind the Scenes

Integer Linear Programming (ILP)

- Technique to solve optimization problems
- Formulate with decision variables, linear constraints and linear objective
- State-of-the-art solvers: Gurobi, CPLEX
- Advanced techniques: Stochastic Programming, (Logic-based) Benders decomposition

Bayesian Learning and Probabilistic Programming

• Based on Bayes theorem: $p(Parameters|Observed) \sim p(Observed|Parameters) \cdot p(Parameters)$

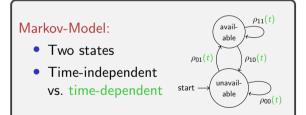
- Sample from posterior with e.g. Markov Chain Monte Carlo methods
- Advantages: Sample efficient, flexible, uncertainty measure of prediction

User Model

Task: Predict reply to query (\rightarrow acceptance probability)

Assumptions:

- Availabilities change slowly
- Users behave similar



Interval model:

- User is available in 2-3 intervals throughout the day
- Normally distributed startand endpoints

Learn parameters from user interaction of previous instances²

² Johannes Varga, Günther R. Raidl, and Tobias Rodemann (2025). "Learning to Predict User Replies in Interactive Job Scheduling". [submitted to AAAI].

Approaches

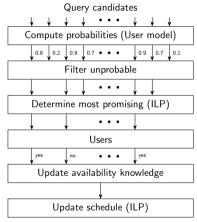
Query candidates: Move any job to any other time

Threshold approach³⁴:

- Discard queries below probability threshold
- Select queries that minimize costs

Stochastic Programming approach⁵:

- Prefer queries more that are likely accepted
- Minimize expected costs



³Johannes Varga et al. (2023). "Interactive Job Scheduling with Partially Known Personnel Availabilities". In: *OLA 2023: Optimization and Learning*. Ed. by B. Dorronsoro et al. Vol. 1824. Communications in Computer and Information Science. Springer, pp. 236–247

⁴Johannes Varga et al. (2024). "Scheduling jobs using queries to interactively learn human availability times". In: Computers & Operations Research 167, p. 106648

⁵ Johannes Varga, Günther R. Raidl, and Tobias Rodemann (2024). "Selecting User Queries in Interactive Job Scheduling". [to appear]

Approaches

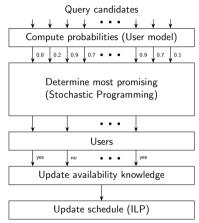
Query candidates: Move any job to any other time

Threshold approach³⁴:

- Discard queries below probability threshold
- Select queries that minimize costs

Stochastic Programming approach⁵:

- Prefer queries more that are likely accepted
- Minimize expected costs



³Johannes Varga et al. (2023). "Interactive Job Scheduling with Partially Known Personnel Availabilities". In: *OLA 2023: Optimization and Learning*. Ed. by B. Dorronsoro et al. Vol. 1824. Communications in Computer and Information Science. Springer, pp. 236–247

⁴Johannes Varga et al. (2024). "Scheduling jobs using queries to interactively learn human availability times". In: Computers & Operations Research 167, p. 106648

⁵ Johannes Varga, Günther R. Raidl, and Tobias Rodemann (2024). "Selecting User Queries in Interactive Job Scheduling". [to appear]

Simulation Results⁶

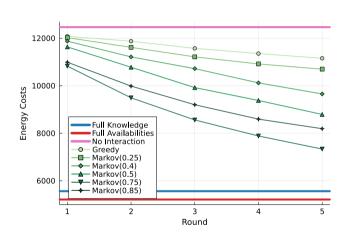
Setting: Employees of company want to use expensive machine

5 machines, 30 users

5 rounds of user interaction, 30 queries per round

Threshold approach with different thresholds

Cost reduction after five rounds: $12400 \rightarrow 7300 \ (41\%)$



⁶Johannes Varga et al. (2024). "Scheduling jobs using queries to interactively learn human availability times". In: Computers & Operations Research 167, p. 106648.

Currently: Psychological Factors

Cooperation with Christiane Attig

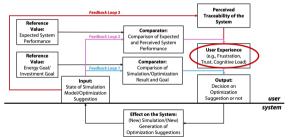
Plan: submit at Conference on Intelligent User Interfaces (IUI)

Idea: Model user frustration with system

Consider in the scheduler

Important aspects we plan to consider in the future:

- Cognitive Load⁷
- Explainability/Traceability⁸



⁷Paul Slovic et al. (2013). "Risk as analysis and risk as feelings: Some thoughts about affect, reason, risk and rationality". In: *The feeling of risk*. Routledge, pp. 21–36

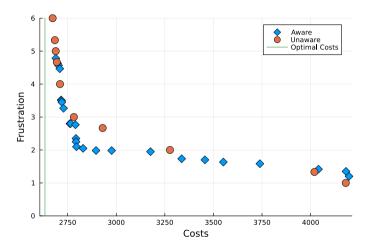
⁸Serge Thill et al. (2018). "Driver adherence to recommendations from support systems improves if the systems explain why they are given: A simulator study". In: *Transportation research part F: traffic psychology and behaviour* 56, pp. 420–435

Currently: Psychological Factors

Frustration: linear with number of queries

Approaches

- Unaware: Minimizing only costs
- Aware: Multi-objective optimization considering frustration and costs



First insight: Better tradeoff between frustration and costs when considering frustration

Outlook: Fairness¹⁰

Differences in frustration between users \rightarrow unfair?

"Min-max fairness: The primary objective for distribution is to ensure an allocation of resources that maximizes the minimum benefit received by any user." ⁹

Benefit (aka utility) depends on frustration and time of the scheduled jobs

Potential research questions:

- How much does fairness cost?
- How can incentives be used to increase fairness?

⁹ João Soares et al. (2024). "Review on fairness in local energy systems". In: Applied Energy 374, p. 123933.

¹⁰Violet Xinying Chen and John N Hooker (2023). "A guide to formulating fairness in an optimization model". In: *Annals of Operations Research* 326.1, pp. 581–619.

Conclusion

Optimization important when scheduling human activities

Works better when coordinating cooperation

Also important:

- Optimization approach
- User frustration
- Fairness

We implemented and evaluated: efficient scheduling system

Cost reduction after five rounds: 41%

References I

- Slovic, Paul et al. (2013). "Risk as analysis and risk as feelings: Some thoughts about affect, reason, risk and rationality". In: *The feeling of risk*. Routledge, pp. 21–36.
- Soares, João et al. (2024). "Review on fairness in local energy systems". In: *Applied Energy* 374, p. 123933.
- Thill, Serge et al. (2018). "Driver adherence to recommendations from support systems improves if the systems explain why they are given: A simulator study". In: *Transportation research part F: traffic psychology and behaviour* 56, pp. 420–435.
- Varga, Johannes, Günther R. Raidl, and Tobias Rodemann (2025). "Learning to Predict User Replies in Interactive Job Scheduling". [submitted to AAAI].
- Varga, Johannes, Günther R. Raidl, and Steffen Limmer (2022). "Computational Methods for Scheduling the Charging and Assignment of an On-Site Shared Electric Vehicle Fleet". In: Access 10, p. 105786.

References References

References II

- Varga, Johannes, Günther R. Raidl, and Tobias Rodemann (2024). "Selecting User Queries in Interactive Job Scheduling". [to appear].
- Varga, Johannes et al. (2023). "Interactive Job Scheduling with Partially Known Personnel Availabilities". In: *OLA 2023: Optimization and Learning*. Ed. by B. Dorronsoro et al. Vol. 1824. Communications in Computer and Information Science. Springer, pp. 236–247.
- Varga, Johannes et al. (2024). "Scheduling jobs using queries to interactively learn human availability times". In: Computers & Operations Research 167, p. 106648.
- Xinying Chen, Violet and John N Hooker (2023). "A guide to formulating fairness in an optimization model". In: *Annals of Operations Research* 326.1, pp. 581–619.