Letting a Large Neighborhood Search for an Electric Dial-A-Ride Problem Fly: On-The-Fly Charging Station Insertion

Maria Bresich¹ Günther R. Raidl¹ Steffen Limmer²

1 Institute of Logic and Computation, TU Wien, Austria [{mbresich,raidl}@ac.tuwien.ac.at](mailto:mbresich@ac.tuwien.ac.at,raidl@ac.tuwien.ac.at) ²Honda Research Institute Europe, Germany steffen.limmer@honda-ri.de

> GECCO 2024, Melbourne, Australia July 14 – 18, 2024

Dial-A-Ride Services

- On-demand, public transit services
	- + Cost efficient, environment-friendlier, customizable service
	- − Ride-sharing, detours

- Dial-A-Ride Problem (DARP)
	- Planning and scheduling of DAR services
	- Combinatorial optimization problem
	- NP-hard

 $\overline{\mathsf{ac}}$ ll' \mathbb{H}

Electric Autonomous DARP (E-ADARP) ac^{III HRI}

Bongiovanni et al.

Definition

- Given:
	- *n* transportation requests
	- *m* electric autonomous vehicles
- Task:
	- Design *m* vehicle routes serving all requests
	- Minimize total travel and excess ride time
	-

Satisfy constraints Example from Masmoudi et al. (2018).

E-ADARP Constraints I

- Start and end at a depot
- Pickup and drop-off of request in same route
- Respect time windows and planning horizon
- \bullet User ride time \leq maximum ride time
	- → Consideration of user inconvenience

E-ADARP Constraints II

Battery management:

- Minimal battery levels at destination depots
- Only unoccupied vehicles can charge
- \bullet \leq 1 visit per charging station (CS)

Simplifying assumption:

• Charging: linear increase of state-of-charge

Related Work

Static E-ADARP:

- Bongiovanni et al. (2019):
	- mixed integer linear programming (MILP) formulations
	- branch-and-cut algorithm
- Su et al. (2023):
	- deterministic annealing (DA) algorithm
- Limmer (2023):
	- bilevel large neighborhood search (BI-LNS)

 $\overline{\mathsf{ac}}$ ll' $\overline{\mathsf{H}}$

acilii HRI Large Neighborhood Search (LNS)

Initial solution. The Destroyed solution. The Repaired solution.

Destroy operator: random removal (Ropke and Pisinger, 2006)

July 14-18, 2024 Maria Bresich - Letting an LNS Fly 7

LNS: Repair Operators

Greedy heuristic:

- Cheapest insertion over all unserved requests and routes
- Time window order based heuristic:
- Non-decreasing order of the start of pickup time windows
- Cheapest insertion over all routes
- Random order based heuristic:
	- \bullet Random order
	- Cheapest insertion over all routes

 $\overline{\mathsf{ac}}$ ll' $\overline{\mathsf{H}}$

Solving Approaches

2 approaches for:

- Insertion and optimization of charging stops
- Efficient scheduling and evaluation

Direct Approach:

- Destroy and repair operators for charging stops
- Labeling algorithm

On-the-fly (OTF) approach: evaluation with OTF insertion of charging stops

- MILP formulation
- Time-efficient heuristic

 $\overline{\mathsf{ac}}$ ll' \mathbb{H} rik

On-The-Fly Approach

- Route evaluation procedure:
	- Checks feasibility
	- Inserts charging stops
	- Determines charging durations

ac^{ili HRI}

OTF Heuristic: Workflow I

- Remove charging stops from route
- Identify fragments and depots
- Forward pass:
	- Earliest service start times and waiting durations
	- **Battery levels of vehicle**
	- Latest stop *i*^{ch} before which charging is necessary
- Backward pass:
	- Latest service start times and backward-waiting durations

 $\overline{\mathsf{ac}}$ ll' $\overline{\mathsf{H}}$

OTF Heuristic: Workflow II

- Charging not necessary: terminate \rightarrow feasible route
- Charging necessary
	- Go backwards from *i*^{ch}
	- Check each possible position and charging station
- No feasible insertion: terminate \rightarrow infeasible route
- Feasible insertions: select and insert stop
- Update all affected data
- Repeat

Computational Study

- Implementation in Julia 1.10.0
- Gurobi 10.0.3 (single-threaded)
- Runs per instance: 30
- Time limit: 300 s
- Memory limit: 20 GB
- Intel Xeon E5-2640 with 2.4 GHz

Benchmark Instances

- 2 data sets:
	- \cdot 14 Cordeau^{1,3} instances: 2 5 vehicles, 16 50 requests
	- 10 Ropke^{2,4} instances: $5 8$ vehicles, $48 96$ requests
	- \rightarrow Enhanced with E-ADARP features
- Minimum end battery level ratio: $v = 0.7$
- 2 modes for CS visits:
	- 1 visit per CS: $n_s = 1$
	- Unlimited visits per CS: $n_S = \infty$

 1 Cordeau (2006) 2 Ropke et al. (2007) ³Bongiovanni et al. (2019) 4 Limmer (2023)

 $\overline{\mathsf{ac}}$ ll' $\mathbb{H}\mathbb{R}$

Results: Cordeau

acili HRI

Results: Ropke

Conclusions & Outlook

Conclusion

- Charging stops important for route quality
- All approaches competitive
- OTF heuristic overall best approach
	- 23/48 new best solutions

Future Work

- Very large-scale instances
- Machine learning-supported operators
- Dynamic E-ADARP

Discussion & Questions

Thank you!

Maria Bresich¹: mbresich@ac.tuwien.ac.at Günther R. Raidl¹: raidl@ac.tuwien.ac.at Steffen Limmer²: steffen.limmer@honda-ri.de

1 Institute of Logic and Computation, TU Wien, Austria 2Honda Research Institute Europe, Offenbach/Main, Germany

References I

- Claudia Bongiovanni, Mor Kaspi, and Nikolas Geroliminis. The electric autonomous diala-ride problem. Transportation Research Part B: Methodological, 122:436–456, 2019.
- Jean-François Cordeau. A Branch-and-Cut Algorithm for the Dial-a-Ride Problem. Operations Research, 54(3):573–586, 2006.
- Jean-François Cordeau and Gilbert Laporte. A tabu search heuristic for the static multivehicle dial-a-ride problem. Transportation Research Part B: Methodological, 37(6):579– 594, 2003.
- Sin C. Ho, Wai Y. Szeto, Yong-Hong Kuo, Janny M. Y. Leung, Matthew Petering, and Terence W. H. Tou. A survey of dial-a-ride problems: Literature review and recent developments. Transportation Research Part B: Methodological, 111:395–421, 2018.
- Steffen Limmer. Bilevel large neighborhood search for the electric autonomous dial-aride problem. Transportation Research Interdisciplinary Perspectives, 21:100876, 2023.

References II

- Mohamed A. Masmoudi, Manar Hosny, Emrah Demir, Konstantinos N. Genikomsakis, and Naoufel Cheikhrouhou. The dial-a-ride problem with electric vehicles and battery swapping stations. Transportation Research Part E: Logistics and Transportation Review, 118:392–420, 2018.
- David Pisinger and Stefan Ropke. Large neighborhood search. In Michel Gendreau and Jean-Yves Potvin, editors, Handbook of Metaheuristics, pages 399–419. Springer US, Boston, MA, 2010. ISBN 978-1-4419-1665-5.
- Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 40(4):455–472, 2006.
- Stefan Ropke, Jean-François Cordeau, and Gilbert Laporte. Models and branch-and-cut algorithms for pickup and delivery problems with time windows. Networks, 49(4):258–272, 2007 .
- Yue Su, Nicolas Dupin, and Jakob Puchinger. A deterministic annealing local search for the electric autonomous dial-a-ride problem. European Journal of Operational Research, 309(3):1091–1111, 2023.

Battery-Restricted Fragments Su et al. (2023)

Route with battery-restricted fragments, taken from Su et al. (2023).

- Subsequence of only pickup and drop-off nodes
- Vehicle arrives and leaves empty
- Minimum user excess ride time: exact calculation with a linear program (LP)

 $\overline{\mathsf{ac}}$ ll' $\overline{\mathsf{H}}$

Battery-Restricted Fragments: Usage acli HRI

Efficient route cost computation:

• Sum of fragments' minimum user excess ride times

Su et al. (2023):

- Preprocessing: enumerate and evaluate all feasible fragments
	- Time-consuming, memory-demanding

Our approach:

- Evaluate fragments on $1st$ encounter
	- \rightarrow Better scalability
- Improve charging stop insertion

OTF Heuristic

- Feasibility with 1 charging stop:
	- **Optimal insertion**
	- Linear run time: *O(|R|)*
		- *R* … fragment-based route
- Multiple charging stops:
	- **Best insertion heuristic**
	- Run time: *O(|R| * |S'| * n*charging*)*
		- *S'* … set of available CSs
		- n_{charging} ... number of inserted CSs

acill HRI