
A Large Neighborhood Search for a Cooperative
Optimization Approach for Distributing Service
Points in Mobility Applications

Thomas Jatschka, Tobias Rodemann, Günther Raidl
April 20, 2021

1 / 33

Motivation

Goal: find an optimal set of locations within a certain
geographical area for placing service points

I for mobility purposes:
I bike sharing stations
I rental stations for car

sharing
I charging stations for

electric vehicles
I . . .

2 / 33

Motivation
Cooperative Optimization Approach

⇒ Cooperative Optimization Approach:

I solves demand data acquisition and optimization in one
process:
I preference-based optimization algorithm
I customers interacting with the algorithm

I expected benefits:
I faster and cheaper data acquisition
I stronger emotional link of users to the product
I better and more accepted optimization results

3 / 33

The Generalized Service Point Distribution Problem
(GSPDP)
Problem Formalization

We are given
I a set of locations V = {1, . . . , n} at which service points may

be built,
I a set of potential users U = {1, . . . ,m},
I building costs zfix

v and maintenance costs zvar
v for each

location v ∈ V ,
I a maximum budget B for building service points,
I and a prize q that is earned for each unit of satisfied customer

demand

4 / 33

The Generalized Service Point Distribution Problem
(GSPDP)
Problem Formalization

User Information:
I set of use cases Cu for each user u:

I going to work
I recreational facilities
I shopping
I . . .

I use case demands Du,c
I service point requirements (SPRs) Ru,c :

I EV charging: one station necessary
I bike sharing: two stations necessary (pickup & return)

5 / 33

The Generalized Service Point Distribution Problem
(GSPDP)
Objective Function

max f (X) = q ·
∑
u∈U

∑
c∈Cu

Du,c · min
r∈Ru,c

(
max
v∈X

wr ,v

)
︸ ︷︷ ︸

total price earned

−
∑
v∈X

zvar
v︸ ︷︷ ︸

maintenance costs∑
v∈V

zfix
v xv︸ ︷︷ ︸

building costs

≤ B

6 / 33

The Generalized Service Point Distribution Problem
(GSPDP)
Suitability of a Service Point

I wr ,v ∈ [0, 1]: suitability of a service point at location v w.r.t.
SPR r

I suitability values not explicitly known
I infeasible to ask all suitability values from users
I ⇒ reduce user interaction as much as possible
I ⇒ confront users with easy questions that provide strong

guidance for the target system

7 / 33

The Generalized Service Point Distribution Problem
(GSPDP)
User Interaction

I a small number of location scenarios presented to users
I users are asked to evaluate location scenario S w.r.t. to one of

their SPRs
I user selects most suitable location from S and provides

suitability value on a five valued scale

8 / 33

The Generalized Service Point Distribution Problem
(GSPDP)
User Interaction

9 / 33

Cooperative Optimization Approach (COA)

FC

EC

OC

SMC

Users

COA Framework

best found
solution

10 / 33

Feedback Component (FC)

I gathers use case information
of customers

I generates location scenarios
for users to evaluate

⇒ interacts with users

FC

EC

OC

SMC

Users

COA Framework

best found
solution

11 / 33

Evaluation Component (EC)

I processes user feedback
obtained from the FC

I derives the means for
evaluating candidate solutions
without relying on users

⇒ surrogate function

FC

EC

OC

SMC

Users

COA Framework

best found
solution

12 / 33

Optimization Component (OC)

I generates optimal or
close-to-optimal solution

I based on current surrogate
objective function

FC

EC

OC

SMC

Users

COA Framework

best found
solution

13 / 33

Optimization Component (OC)
The Generalized Service Point Distribution Problem (GSPDP)

max f̃Θ(X) = q ·
∑
u∈U

∑
c∈Cu

Du,c · min
r∈Ru,c

(
max
v∈X

w̃Θ(r , v)
)
−
∑
v∈X

zvar
v∑

v∈V
zfix

v xv ≤ B

14 / 33

Optimization Component (OC)
Mixed Integer Linear Programming Formulation

max q ·
∑
u∈U

∑
c∈Cu

Du,c yu,c −
∑
v∈V

zvar
v xv∑

v∈V
or ,v ≤ 1 ∀r ∈ R

or ,v ≤ xv ∀v ∈ V , r ∈ R
yu,c ≤

∑
v∈V

w̃Θ(r , v) · or ,v ∀u ∈ U, c ∈ Cu, r ∈ Ru,c∑
v∈V

zfix
v xv ≤ B

xv ∈ {0, 1} ∀v ∈ V
0 ≤ yu,c ≤ 1 ∀u ∈ U, c ∈ Cu

0 ≤ or ,v ≤ 1 ∀r ∈ R, v ∈ V

15 / 33

Optimization Component (OC)
Large Neighborhood Search

I follows a classical local search framework but much larger
neighborhoods considered in each iteration

I iterative destroy and repair scheme
1. incumbent solution is destroyed
2. destroyed solution is repaired w.r.t. to a subset of V

16 / 33

Large Neighborhood Search
Potential

I solutions are destroyed and repaired by greedy procedures
I greedy criterion: (surrogate) objective value not suitable ⇒

potential Π̃Θ(X) of a solution X :

C(u, X) =

{
c ∈ Cu | min

r∈Ru,c

(
max
v∈X

w̃Θ(r, v)
)
> 0

}
R(u, c, X) =

{
r ∈ Ru,c | max

v∈X
w̃Θ(r, v) > 0

}
Π̃Θ(X) = f̃Θ(X) + β · q ·

∑
u∈U

∑
c∈Cu\C(u,X)

Du,c · minr∈R(u,c,X)

(
maxv∈X w̃Θ(r, v)

)
· |R(u, c, X)|

|Ru,c |

17 / 33

Large Neighborhood Search
Destroy Procedure

Destroy Procedure:
I greedy approach
I select k “worst” locations in X w.r.t.

ωdestroy(v ,X) = 1
Π̃Θ(X)− Π̃Θ(X \ {v})

I choose random location from k selected to remove from X
I repeat k ′ times

18 / 33

Large Neighborhood Search
Repair Procedure

Repair Procedure:
I greedy approach
I select k “best” locations in V w.r.t.

ωrepair(v ,X) = Π̃Θ(X ∪ {v})− Π̃Θ(X)

I choose random location from k selected to add to X
I repeat until budget is exhausted

19 / 33

Large Neighborhood Search
Parameterization

I two destroy operators:
I k = k ′ = 5
I k = k ′ = 7

I two repair operators:
I k = 3
I k = 5

I LNS terminates after 20 iterations without improvement
I β = 0.1

20 / 33

Large Neighborhood Search
Evaluating Solutions

Surrogate objective function:

f̃Θ(X) = q ·
∑
u∈U

∑
c∈Cu

Du,c · min
r∈Ru,c

(
max
v∈X

w̃Θ(r , v)
)
−
∑
v∈X

zvar
v

Potential:

Π̃Θ(X) = f̃Θ(X) + β · q ·
∑
u∈U

∑
c∈Cu\C(u,X)

Du,c · minr∈R(u,c,X)

(
maxv∈X w̃Θ(r, v)

)
· |R(u, c, X)|

|Ru,c |

⇒ time consuming to evaluate from scratch

21 / 33

Large Neighborhood Search
Evaluation Graph

I representation of objective function as graph
I consists of four layers:

I location layer
I SPR layer
I use case layer
I evaluation layer

I each node has function α() for calculating output propagated
to node in the next layer

I nodes store all outputs from previous generated solution ⇒
incremental evaluation of solution

22 / 33

Large Neighborhood Search
Evaluation Graph

αLL(lv ,X) =
{

1 if v ∈ X
0 otherwise

αSL(lu,r ,X) = max
(lv ,lu,r)∈ALL

(αLL(lv ,X) · w̃Θ(v , r))

αCL(lc ,X) = min
(lu,r ,lc)∈ASL

αSL(lu,r ,X)

αeval (lobj,X) =
∑

(lc ,lobj)∈ACL

αSL(lc ,X)−
∑
v∈X

zvar
v

23 / 33

Large Neighborhood Search
Evaluation Graph

x1 →

x2 →

x3 →

x98 →

x99 →

lv1

lv2

lv3

lv49

lv50

lr1

lr2

lr80

lr81

lr82

lr83

lu1,c1

lu50,c3

lu50,c4

obj

Location
Layer

SPR
Layer

Use Case
Layer

24 / 33

Large Neighborhood Search
Evaluation Graph

x1 →

x2 →

x3 →

x98 →

x99 →

lv1

lv2

lv3

lv49

lv50

lr1

lr2

lr80

lr81

lr82

lr83

lu1,c1

lu50,c3

lu50,c4

obj

Location
Layer

SPR
Layer

Use Case
Layer

w̃Θ(r1, v1)

24 / 33

Large Neighborhood Search
Evaluation Graph

x1 →

x2 →

x3 →

x98 →

x99 →

lv1

lv2

lv3

lv49

lv50

lr1

lr2

lr80

lr81

lr82

lr83

lu1,c1

lu50,c3

lu50,c4

obj

Location
Layer

SPR
Layer

Use Case
Layer

w̃Θ(r1, v1) max(lvi ,lr1) w̃Θ(vi , r1)

24 / 33

Large Neighborhood Search
Evaluation Graph

x1 →

x2 →

x3 →

x98 →

x99 →

lv1

lv2

lv3

lv49

lv50

lr1

lr2

lr80

lr81

lr82

lr83

lu1,c1

lu50,c3

lu50,c4

obj

Location
Layer

SPR
Layer

Use Case
Layer

w̃Θ(r1, v1) max(lvi ,lr1) w̃Θ(vi , r1)

min(lri ,lu50,c4)

(
max(lvj ,lri) w̃Θ(vj , ri)

)
24 / 33

Feedback Component
Generation of Scenarios

I iteratively present users scenarios containing all locations for
which no suitability values are known yet w.r.t. SPR r

I V (r)← set of relvant locations for r , i.e.,
V (r) = {v ∈ V | wr ,v > 0}

I in each iteration new location in V (r) identified
I if none of the locations in scenario are suitable for r ⇒ V (r)

completely known
⇒ V (r) completely known after |V (r)|+ 1 user interactions
⇒ upper bound IUB

u on the total number of required interactions
with user u:

IUB
u =

∑
r∈Ru

(|V (r)|+ 1)

25 / 33

Development of Solution Quality

25 35 45 55 65 75 85 95
interaction level [%]

0.0

2.5

5.0

7.5

10.0

12.5

ga
p[

%
]

v = 3, r = 0.03
(n,m)
(100, 500)
(200, 1000)
(300, 1500)

CSS

25 35 45 55 65 75 85 95
interaction level [%]

0

5

10

15

20

ga
p[

%
]

v = 5, r = 0.15
(n,m)
(100, 1000)
(200, 2000)
(300, 3000)

CSS

25 35 45 55 65 75 85 95
interaction level [%]

0

5

10

15

20

ga
p[

%
]

MAN
b[%]

30
50
70

26 / 33

Computational Experiments

I Programming Languages: Python 3.9, Julia 1.6, C++
I Test runs have been executed on an Intel Xeon E5-2640 v4

with 2.40GHz
I 2 types of instances:

I CSS:
I inspired by car sharing scenario
I use cases have two SPRs

I MAN:
I inspired by car sharing scenario
I generated from real world data (New York Yellow Taxi Data)

27 / 33

Computational Experiments
OC - Computation Times (LNS)

25 35 45 55 65 75 85 95
interaction level [%]

5

10

15

20

tim
e[

s]

v = 3, r = 0.03
(n,m)
(100, 500)
(200, 1000)
(300, 1500)

CSS

25 35 45 55 65 75 85 95
interaction level [%]

10

20

30

40

tim
e[

s]

v = 5, r = 0.15
(n,m)
(100, 1000)
(200, 2000)
(300, 3000)

CSS

25 35 45 55 65 75 85 95
interaction level [%]

15

20

25

30

35

tim
e[

s]

MAN
b[%]

30
50
70

28 / 33

Computational Experiments
MILP/LNS - Runtime Comparison

25 35 45 55 65 75 85 95
interaction level [%]

15

10

5

0

-ti
m

e[
s]

v = 3, r = 0.03

(n,m)
(100, 500)
(200, 1000)
(300, 1500)

CSS

25 35 45 55 65 75 85 95
interaction level [%]

20

40

60

80

100

120

-ti
m

e[
s]

v = 5, r = 0.15
(n,m)
(100, 1000)
(200, 2000)
(300, 3000)

CSS

25 35 45 55 65 75 85 95
interaction level [%]

0

100

200

300

-ti
m

e[
s]

MAN

b[%]
30
50
70

29 / 33

Computational Experiments
LNS - Optimality w.r.t. w̃Θ

25 35 45 55 65 75 85 95
interaction level [%]

0.0

0.5

1.0

1.5

2.0

w
-g

ap
[%

]

v = 3, r = 0.03
(n,m)
(100, 500)
(200, 1000)
(300, 1500)

CSS

25 35 45 55 65 75 85 95
interaction level [%]

0.5

1.0

1.5

w
-g

ap
[%

]

v = 5, r = 0.15
(n,m)
(100, 1000)
(200, 2000)
(300, 3000)

CSS

25 35 45 55 65 75 85 95
interaction level [%]

0

1

2

3

4

w
-g

ap
[%

]

MAN
30
50
70

30 / 33

Computational Experiments
MILP/LNS - Optimality Gaps

CSS

(n,m) (100, 500) (100, 1000) (200, 1000) (200, 2000) (300, 1500) (300, 3000)

ψ MILP LNS MILP LNS MILP LNS MILP LNS MILP LNS MILP LNS

30 12.00 13.12 19.39 19.62 1.39 1.17 6.60 9.59 0.74 0.57 5.56 5.40
40 3.70 4.64 9.27 5.22 1.06 1.44 4.05 5.28 0.46 0.42 2.00 2.09
50 2.10 2.42 4.31 4.20 0.75 0.69 2.07 3.67 0.23 0.29 1.32 1.39
60 0.65 1.81 1.90 2.83 0.19 0.41 1.59 2.25 0.18 0.20 0.55 0.91
70 0.20 1.56 0.49 3.12 0.12 0.11 0.79 1.78 0.13 0.09 0.21 0.61
80 0.02 1.56 0.92 1.09 0.04 0.08 0.36 0.90 0.03 0.03 0.12 0.41
90 0.02 1.10 0.06 1.09 0.01 0.07 0.03 0.77 0.01 0.03 0.02 0.25

MAN

b[%] 30 50 70

ψ MILP LNS MILP LNS MILP LNS

30 15.71 20.19 7.46 8.32 2.09 2.27
40 6.16 7.87 3.16 3.54 1.12 1.09
50 3.15 5.95 1.81 2.16 0.73 0.87
60 2.19 4.82 0.93 1.73 0.46 0.57
70 1.32 4.16 0.49 1.47 0.29 0.37
80 0.49 2.98 0.20 1.10 0.09 0.17
90 0.27 2.33 0.01 1.01 0.01 0.09

31 / 33

Conclusion

I Large Neighborhood Search (LNS) for COA
I potential as greedy criterion
I evaluation graph for incremental evaluation of solution
I LNS scales significantly better than MILP w.r.t. computation

times
I LNS requires more tuning
I test LNS on more difficult instances to emphasize scalability

even more

32 / 33

Thank you for your attention!
Questions?

33 / 33

