A Large Neighborhood Search for a Cooperative Optimization Approach for Distributing Service Points in Mobility Applications

Thomas Jatschka, Tobias Rodemann, Günther Raidl April 20, 2021

Motivation

Goal: find an optimal set of locations within a certain geographical area for placing service points

for mobility purposes:

. . .

- bike sharing stations
- rental stations for car sharing
- charging stations for electric vehicles

Motivation

Cooperative Optimization Approach

\Rightarrow Cooperative Optimization Approach:

- solves demand data acquisition and optimization in one process:
 - preference-based optimization algorithm
 - customers interacting with the algorithm

expected benefits:

- faster and cheaper data acquisition
- stronger emotional link of users to the product
- better and more accepted optimization results

The Generalized Service Point Distribution Problem (GSPDP)

Problem Formalization

We are given

- ▶ a set of locations V = {1,..., n} at which service points may be built,
- a set of potential users $U = \{1, \ldots, m\}$,
- ▶ building costs z_v^{fix} and maintenance costs z_v^{var} for each location $v \in V$,
- a maximum budget B for building service points,
- and a prize q that is earned for each unit of satisfied customer demand

The Generalized Service Point Distribution Problem (GSPDP)

Problem Formalization

User Information:

- set of use cases C_u for each user u:
 - going to work
 - recreational facilities
 - shopping
 - ...
- ▶ use case demands D_{u,c}

• service point requirements (SPRs) $R_{u,c}$:

- EV charging: one station necessary
- bike sharing: two stations necessary (pickup & return)

The Generalized Service Point Distribution Problem (GSPDP) Objective Function

$$\max f(X) = \underbrace{q \cdot \sum_{u \in U} \sum_{c \in C_u} D_{u,c} \cdot \min_{r \in R_{u,c}} \left(\max_{v \in X} w_{r,v} \right)}_{\text{total price earned}} - \underbrace{\sum_{v \in X} z_v^{\text{var}}}_{\text{maintenance costs}}$$

building costs

The Generalized Service Point Distribution Problem (GSPDP) Suitability of a Service Point

Suitability of a Service Point

- ▶ $w_{r,v} \in [0,1]$: suitability of a service point at location v w.r.t. SPR r
- suitability values not explicitly known
- infeasible to ask all suitability values from users
- \blacktriangleright \Rightarrow reduce user interaction as much as possible
- ► ⇒ confront users with easy questions that provide strong guidance for the target system

The Generalized Service Point Distribution Problem (GSPDP) User Interaction

- a small number of location scenarios presented to users
- users are asked to evaluate location scenario S w.r.t. to one of their SPRs
- user selects most suitable location from S and provides suitability value on a five valued scale

The Generalized Service Point Distribution Problem (GSPDP)

User Interaction

Cooperative Optimization Approach (COA)

Feedback Component (FC)

solution

Evaluation Component (EC)

The Generalized Service Point Distribution Problem (GSPDP)

$$\max \quad \tilde{f}_{\Theta}(X) = q \cdot \sum_{u \in U} \sum_{c \in C_u} D_{u,c} \cdot \min_{r \in R_{u,c}} \left(\max_{v \in X} \tilde{w}_{\Theta}(r,v) \right) - \sum_{v \in X} z_v^{\text{var}}$$
$$\sum_{v \in V} z_v^{\text{fix}} x_v \le B$$

Mixed Integer Linear Programming Formulation

 $\max \quad q \cdot \sum \sum D_{u,c} y_{u,c} - \sum z_v^{var} x_v$ $u \in U \in C_u$ $v \in V$ $\sum o_{r,v} \leq 1$ $\forall r \in R$ $v \in V$ $\forall v \in V. r \in R$ $o_{r,v} < x_v$ $y_{u,c} \leq \sum \tilde{w}_{\Theta}(r,v) \cdot o_{r,v}$ $\forall u \in U, c \in C_u, r \in R_{u,c}$ $v \in V$ $\sum z_v^{\text{fix}} x_v \leq B$ $v \in V$ $x_{\nu} \in \{0, 1\}$ $\forall v \in V$ $\forall u \in U, c \in C_u$ $0 \leq y_{\mu,c} \leq 1$ $\forall r \in R. v \in V$ $0 \leq o_{r,v} \leq 1$

Large Neighborhood Search

- follows a classical local search framework but much larger neighborhoods considered in each iteration
- iterative destroy and repair scheme
 - $1. \ \text{incumbent solution is destroyed} \\$
 - 2. destroyed solution is repaired w.r.t. to a subset of V

- solutions are destroyed and repaired by greedy procedures
- greedy criterion: (surrogate) objective value not suitable ⇒ potential Π_Θ(X) of a solution X :

$$C(u, X) = \left\{ c \in C_u \mid \min_{r \in R_{u,c}} \left(\max_{v \in X} \tilde{w}_{\Theta}(r, v) \right) > 0 \right\}$$

$$R(u, c, X) = \left\{ r \in R_{u,c} \mid \max_{v \in X} \tilde{w}_{\Theta}(r, v) > 0 \right\}$$

$$\tilde{\Pi}_{\Theta}(X) = \tilde{f}_{\Theta}(X) + \beta \cdot q \cdot \sum_{u \in U} \sum_{c \in C_u \setminus C(u, X)} \frac{D_{u,c} \cdot \min_{r \in R(u,c, X)} \left(\max_{v \in X} \tilde{w}_{\Theta}(r, v) \right) \cdot |R(u, c, X)|}{|R_{u,c}|}$$

Large Neighborhood Search Destroy Procedure

Destroy Procedure:

greedy approach

select k "worst" locations in X w.r.t.

$$\omega^{\text{destroy}}(v, X) = \frac{1}{\tilde{\mathsf{\Pi}}_{\Theta}(X) - \tilde{\mathsf{\Pi}}_{\Theta}(X \setminus \{v\})}$$

choose random location from k selected to remove from X
 repeat k' times

Large Neighborhood Search Repair Procedure

Repair Procedure:

- greedy approach
- select k "best" locations in V w.r.t.

$$\omega^{\text{repair}}(v, X) = \tilde{\Pi}_{\Theta}(X \cup \{v\}) - \tilde{\Pi}_{\Theta}(X)$$

- choose random location from k selected to add to X
- repeat until budget is exhausted

Parameterization

two destroy operators:
k = k' = 5
k = k' = 7
two repair operators:
k = 3
k = 5
LNS terminates after 20 iterations without improvement

$$\triangleright$$
 $\beta = 0.1$

Large Neighborhood Search Evaluating Solutions

Surrogate objective function:

$$\widetilde{f}_{\Theta}(X) = q \cdot \sum_{u \in U} \sum_{c \in C_u} D_{u,c} \cdot \min_{r \in R_{u,c}} \left(\max_{v \in X} \widetilde{w}_{\Theta}(r,v) \right) - \sum_{v \in X} z_v^{\mathrm{var}}$$

Potential:

$$\tilde{\Pi}_{\Theta}(X) = \tilde{t}_{\Theta}(X) + \beta \cdot q \cdot \sum_{u \in U} \sum_{c \in C_{u} \setminus C(u,X)} \frac{D_{u,c} \cdot \min_{r \in R(u,c,X)} \left(\max_{v \in X} \tilde{w}_{\Theta}(r,v)\right) \cdot |R(u,c,X)|}{|R_{u,c}|}$$

 \Rightarrow time consuming to evaluate from scratch

Evaluation Graph

representation of objective function as graph

- consists of four layers:
 - Iocation layer
 - SPR layer
 - use case layer
 - evaluation layer
- each node has function α() for calculating output propagated to node in the next layer
- ► nodes store all outputs from previous generated solution ⇒ incremental evaluation of solution

Large Neighborhood Search Evaluation Graph

$$\alpha_{LL}(l_{v}, X) = \begin{cases} 1 & \text{if } v \in X \\ 0 & \text{otherwise} \end{cases}$$
$$\alpha_{SL}(l_{u,r}, X) = \max_{\substack{(l_{v}, l_{u,r}) \in A_{LL}}} (\alpha_{LL}(l_{v}, X) \cdot \tilde{w}_{\Theta}(v, r))$$
$$\alpha_{CL}(l_{c}, X) = \min_{\substack{(l_{u,r}, l_{c}) \in A_{SL}}} \alpha_{SL}(l_{u,r}, X)$$
$$\alpha_{eval}(l_{obj}, X) = \sum_{\substack{(l_{c}, l_{obj}) \in A_{CL}}} \alpha_{SL}(l_{c}, X) - \sum_{v \in X} z_{v}^{\text{var}}$$

Feedback Component

Generation of Scenarios

- iteratively present users scenarios containing all locations for which no suitability values are known yet w.r.t. SPR r
- ► $V(r) \leftarrow$ set of relvant locations for r, i.e., $V(r) = \{v \in V \mid w_{r,v} > 0\}$
- in each iteration new location in V(r) identified
- ► if none of the locations in scenario are suitable for r ⇒ V(r) completely known
- \Rightarrow V(r) completely known after |V(r)| + 1 user interactions
- \Rightarrow upper bound I_u^{UB} on the total number of required interactions with user *u*:

$$I_u^{\mathrm{UB}} = \sum_{r \in R_u} (|V(r)| + 1)$$

Development of Solution Quality

Computational Experiments

- Programming Languages: Python 3.9, Julia 1.6, C++
- Test runs have been executed on an Intel Xeon E5-2640 v4 with 2.40GHz
- 2 types of instances:
 - CSS:
 - inspired by car sharing scenario
 - use cases have two SPRs
 - MAN:
 - inspired by car sharing scenario
 - generated from real world data (New York Yellow Taxi Data)

Computational Experiments

OC - Computation Times (LNS)

Computational Experiments MILP/LNS - Runtime Comparison

25 35

interaction level ψ [%]

45 55 65 75 85

95

Computational Experiments

LNS - Optimality w.r.t. \tilde{w}_{Θ}

Computational Experiments

MILP/LNS - Optimality Gaps

	CSS											
(n,m)	(100, 500)		(100, 1000)		(200, 1000)		(200, 2000)		(300, 1500)		(300, 3000)	
ψ	MILP	LNS	MILP	LNS	MILP	LNS	MILP	LNS	MILP	LNS	MILP	LNS
30	12.00	13.12	19.39	19.62	1.39	1.17	6.60	9.59	0.74	0.57	5.56	5.40
40	3.70	4.64	9.27	5.22	1.06	1.44	4.05	5.28	0.46	0.42	2.00	2.09
50	2.10	2.42	4.31	4.20	0.75	0.69	2.07	3.67	0.23	0.29	1.32	1.39
60	0.65	1.81	1.90	2.83	0.19	0.41	1.59	2.25	0.18	0.20	0.55	0.91
70	0.20	1.56	0.49	3.12	0.12	0.11	0.79	1.78	0.13	0.09	0.21	0.61
80	0.02	1.56	0.92	1.09	0.04	0.08	0.36	0.90	0.03	0.03	0.12	0.41
90	0.02	1.10	0.06	1.09	0.01	0.07	0.03	0.77	0.01	0.03	0.02	0.25

	MAN										
b[%]	3	0	50)	70						
ψ	MILP	LNS	MILP	LNS	MILP	LNS					
30	15.71	20.19	7.46	8.32	2.09	2.27					
40	6.16	7.87	3.16	3.54	1.12	1.09					
50	3.15	5.95	1.81	2.16	0.73	0.87					
60	2.19	4.82	0.93	1.73	0.46	0.57					
70	1.32	4.16	0.49	1.47	0.29	0.37					
80	0.49	2.98	0.20	1.10	0.09	0.17					
90	0.27	2.33	0.01	1.01	0.01	0.09					

Conclusion

- Large Neighborhood Search (LNS) for COA
- potential as greedy criterion
- evaluation graph for incremental evaluation of solution
- LNS scales significantly better than MILP w.r.t. computation times
- LNS requires more tuning
- test LNS on more difficult instances to emphasize scalability even more

Thank you for your attention! Questions?