
A∗-based compilation
of decision diagrams for the

maximum independent set problem
Dissertantenseminar

Matthias Horn1

1 Institute of Logic and Computation, TU Wien, Vienna, Austria,
horn@ac.tuwien.ac.at

Oct 19, 2020

Overview

I Decision Diagrams 101
I exact, relaxed and restricted decision diagrams

I link to dynamic programming

I compilation of decision diagrams

I A∗ construction

I Maximum Independent Set Problem
I definition

I top-down construction + advanced techniques

I applying A∗ construction method

I results

Decision Diagrams (DDs) 101

I well known in computer science for decades
I logic circuit design, formal verification, . . .

I get popular in combinatorial optimization in the last decade
I graphical representation of solutions

of a combinatorial optimization problem (COP)

I weighted directed acyclic multi-graph
with one root node r and one target node t

I each r-t path corresponds to a solution of the COP

I length of a path coincides with the solution’s objective value

I state of the art results could be obtained on several problems

Decision Diagrams (DDs) 101

r

t

Exact DD

x0 ∈ {1, 2, 3}

x1 ∈ X1

...

xn ∈ Xn

1 2 3

r

t

Relaxed DD

x0

x1

...

xn

1 2 3

r

t

Restricted DD

x0

x1

...

xn

1 2 3

Exact DDs

I represent precisely the set of feasible solutions of a COP

I longest path: corresponds to optimal solution

I tend to be exponential in size ⇒ approximate exact DD

Decision Diagrams (DDs) 101

r

t

Exact DD

x0 ∈ {1, 2, 3}

x1 ∈ X1

...

xn ∈ Xn

1 2 3

r

t

Relaxed DD

x0

x1

...

xn

1 2 3

r

t

Restricted DD

x0

x1

...

xn

1 2 3

Restricted DDs

I represent subset of feasible solutions of a COP

I by removing nodes and edges

I length of longest path: corresponds to a primal bound

Decision Diagrams (DDs) 101

r

t

Exact DD

x0 ∈ {1, 2, 3}

x1 ∈ X1

...

xn ∈ Xn

1 2 3

r

t

Relaxed DD

x0

x1

...

xn

1 2 3

r

t

Restricted DD

x0

x1

...

xn

1 2 3

Relaxed DDs

I represent superset of feasible solutions of a COP

I by merging nodes

I length of longest path: corresponds to an upper bound

I discrete relaxation of solution space

Decision Diagrams (DDs) 101

r

t

Exact DD

x0 ∈ {1, 2, 3}

x1 ∈ X1

...

xn ∈ Xn

1 2 3

r

t

Relaxed DD

x0

x1

...

xn

1 2 3

r

t

Restricted DD

x0

x1

...

xn

1 2 3

Relaxed DDs

I represent superset of feasible solutions of a COP

I by merging nodes

I length of longest path: corresponds to an upper bound

I discrete relaxation of solution space

Relaxed DDs

I discrete relaxation of solution space

I usage
I to obtain dual bounds

I as constraint store in constraint propagation

I derivation of cuts in mixed integer programming (MIP)

I branch-and-bound: branching on merged nodes

I . . .

I excellent results on e.g.
I set covering (Bergman et al., 2011)

I independent set (Bergman et al., 2014)

I time dependent traveling salesman (Cire and Hoeve, 2013)

I time dependent sequential ordering (Kinable et al. 2017)

DDs - Construction Methods

I Top-Down Construction (TDC)
I compile relaxed DD layer by layer

I layer width is limited

I if current layer gets too large ⇒ merge nodes

I Incremental Refinement (IR)
I start with relaxed DD of width one

I iteratively refine by splitting nodes and filtering arcs

I A∗-based Construction (A∗C)
I accepted for publication in Computers & Operations Research

I construct a relaxed DD by a modified A∗ algorithm

I the size of the open list is limited by parameter φ

I for PC-JSOCMSR: obtained smaller DDs with stronger bounds in
shorter time

DDs and Dynamic Programming

I dynamic programming (DP)
I controls xi ∈ Xi, current state si, stages i = 1, . . . , n

I transitions: si+1 = φi(si, xi), i = 1, . . . , n

I objective function: f(x) =
∑n
i=1 ci(si, xi)

I can be solved recursively

gi(xi) = min
xi∈Xi(si)

{ci(si, xi) + gi+1(φi(si, xi))} , i = 1, . . . , n

I exact DDs are strongly related to DP
I J. N. Hooker, Decision Diagrams and Dynamic Programming, 2013.

I each node of DD is associated to a DP state

I root node s0, target node sn+1

I arc (si, φi(si, xi)) with cost ci(si, xi) for each control xi ∈ Xi

I create a DD based on a DP formulation without solving it

I provides recursive formulations of the COP

Relaxed DD - Top Down Construction

I compiled layer by layer

I the size of each layer is limited by width β (here β = 3)

I merge strategy: rank states of the current layer and merge the
worst states

r

t

x0

x1

x2

xn

Relaxed DD - Top Down Construction

I compiled layer by layer

I the size of each layer is limited by width β (here β = 3)

I merge strategy: rank states of the current layer and merge the
worst states

r

t

x0

x1

x2

xn

Relaxed DD - Top Down Construction

I compiled layer by layer

I the size of each layer is limited by width β (here β = 3)

I merge strategy: rank states of the current layer and merge the
worst states

r

t

x0

x1

x2

xn

Relaxed DD - Top Down Construction

I compiled layer by layer

I the size of each layer is limited by width β (here β = 3)

I merge strategy: rank states of the current layer and merge the
worst states

r

t

x0

x1

x2

xn

Relaxed DD - Top Down Construction

I compiled layer by layer

I the size of each layer is limited by width β (here β = 3)

I merge strategy: rank states of the current layer and merge the
worst states

r

t

x0

x1

x2

xn

Relaxed DD - Top Down Construction

I compiled layer by layer

I the size of each layer is limited by width β (here β = 3)

I merge strategy: rank states of the current layer and merge the
worst states

r

t

x0

x1

x2

xn

Relaxed DD - Top Down Construction

I compiled layer by layer

I the size of each layer is limited by width β (here β = 3)

I merge strategy: rank states of the current layer and merge the
worst states

r

t

x0

x1

x2

xn

Relaxed DD - Top Down Construction

I compiled layer by layer

I the size of each layer is limited by width β (here β = 3)

I merge strategy: rank states of the current layer and merge the
worst states

r

t

x0

x1

x2

xn

Relaxed DD - A∗ Construction (A∗C)
I Disadvantages of TDC

I states can only be merged within layers

I nodes on different layers may correspond to the same state

I isomorphic substructures may appear

r

v

v′

t

(a)

π1

π2

π3

π4

π5

1|1
2|1 3|1 4|1 5|1

3|14|16|1 1|1 2|1 1|1 3|1

3|15|15|1 6|1 1|1 2|1

5|1 6|1

T|0

T|0

T|0

T|0

T|0
T|0 T|0

T|0

r

v

v′

t

(b)

5|1

1|1
2|1 3|1 4|1

4|16|1 1|1 2|1 1|1 3|1

1|1 2|1

3|1
3|1

5|1 5|1 6|1

5|1
6|1

r

v′

t

(c)

5|1

1|1
2|1

3|1

4|1

4|1

6|1

3|1

1|1

1|1 2|1

3|1
3|1

5|1

5|1
6|1

Relaxed DD - A∗ Construction (A∗C)

I Idea: Switch from breadth-first search to best-first search!
I layers do not play a role anymore

I Construct a DD by using a modified A* algorithm:
I the size of the open list |Q| is limited by parameter φ

I if φ would be exceeded, worst ranked nodes are merged.

I Key characteristics:
I naturally avoids multiple nodes for identical states at different

substructures and

I consequently multiple copies of isomorphic substructures

I node expansions and selection of nodes to be merged are guided by
an auxiliary upper bound function

A* Search

A∗: classical informed search algorithm for path planning in possibly
huge graphs (Hart et al., 1968)

I uses a heuristic function, here an upper bound Zub, to guide the
search

I maintains an open list Q of nodes sorted according to priorities

f(u) = Z lp(u) + Zub(u)

Initially: Q = {r}
Repeat:

I pop node u ∈ Q with maximum f(u)

I if u = t terminate

I expand u: determine successor nodes

Relaxed DD - A* Construction

r

t

At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction

r

t
At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction

r

t
At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction

r

t
At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction

r

t
At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction

r

t
At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction

r

t

At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction

r

t

At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction

r

t

At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction

r

t

At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction

r

t

At each iteration:
pop node u ∈ Q with maximum f(u) and expand u

if |Q| > φ: merge nodes

First time target state expanded:
⇒ Zub

min := Z lp(t) is a feasible UB

To get complete relaxed DD:
continue until Q is empty

Relaxed DD - A* Construction
Merging Strategies

Q:

φ

We cannot just merge all worst |Q| − φ+ 1 states into a single state:

> cycles can emerge

� must be taken into consideration when merging nodes

> there may be already expanded states in Q

� merge only not yet expanded states

> merging different states may introduce a large relaxation loss

� try to merge only similar states

Relaxed DD - A* Construction
Merging Strategies

Q:

φ

We cannot just merge all worst |Q| − φ+ 1 states into a single state:

> cycles can emerge
� must be taken into consideration when merging nodes

> there may be already expanded states in Q
� merge only not yet expanded states

> merging different states may introduce a large relaxation loss
� try to merge only similar states

Relaxed DD - A* Construction
Merging Strategies

To efficiently reduce Q and identify similar states we maintain

I we apply labeling function L(u) and maintain

I a dictionary of collector nodes V C indexed by L(u).

I only ever merge nodes having the same label

While |Q| > φ, iteratively consider not yet expanded states u ∈ Q \ V C

in increasing priority order:

I if ∃v ∈ V C : L(v) = L(u) then merge u into v

I otherwise V C ← V C ∪ {u}

Maximum Independent Set Problem (MISP)

I Definition
I given: graph G = (V,E), V = {1, 2, . . . , n}
I find the maximum independent set I, s.t. I ⊆ V and

no two vertices in I are connected by an edge in E

I let N(j) = {j′ | (j, j′) ∈ E} ∪ {j} be the neighborhood of j

I Example (from Bergman et al., 2016)

1

2

3

4

5

I = {1, 5}

Maximum Independent Set Problem (MISP)

I Definition
I given: graph G = (V,E), V = {1, 2, . . . , n}
I find the maximum independent set I, s.t. I ⊆ V and

no two vertices in I are connected by an edge in E

I let N(j) = {j′ | (j, j′) ∈ E} ∪ {j} be the neighborhood of j

I Example (from Bergman et al., 2016)

1

2

3

4

5

I = {1, 5}

Maximum Independent Set Problem (MISP)

Binary DDs (BDDs) for MISP
I well studied in literature

I BDD-based branch and bound algorithm

I branching on merged nodes

I uses TDC to created relaxed and restricted BDDs

I advanced techniques
I long arcs: zero-suppressed BDD

skip over variables whose values are represented implicitly

I dynamic variable ordering
select next decision variable during compilation of BDD

I we aim to compile relaxed BBDs with A∗C

Maximum Independent Set Problem (MISP)
BDD - Top Down Construction

Dynamic Programming Formulation

I decision variables:
xj ∈ {0, 1}, j = 1, . . . , n, if j is selected (=1) or not (=0)

I state space:
Sj = 2Vj for j = 2, . . . , n, r̂ = V , t̂ = ∅ and Vj = {j, . . . , n}

I transition functions:

tj(s
j , 0) = sj \ {j}; tj(s

j , 1) =

{
sj \N(j), if j ∈ sj ;
0̂, if j 6∈ sj ;

I cost functions: hj(s
j , 0) = 0; hj(s

j , 1) = 1;

I node merger: union

Maximum Independent Set Problem (MISP)
BDD - Top Down Construction

r

t

exact BDD

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {4, 5}

{5} {3, 4, 5} {4, 5}

{5} {4, 5}

{5} ∅

∅

{1, 2, 3, 4, 5}, 0

{2, 3, 4, 5}, 0 {4, 5}, 1

{5}, 1 {3, 4, 5}, 0 {4, 5}, 1

{5}, 1 {4, 5}, 1

{5}, 1 ∅, 1

∅, 2

x1

x2

x3

x4

x5

r

t

relaxed BDD, β = 2

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {4, 5}

{3, 4, 5} {4, 5}

{5} {4, 5}

{5} ∅

∅

{1, 2, 3, 4, 5}, 0

{2, 3, 4, 5}, 0 {4, 5}, 1

{3, 4, 5}, 1 {4, 5}, 1

{5}, 2 {4, 5}, 1

{5}, 2 ∅, 2

∅, 3

node ranking: Zlp, decreasing

Zlp(v): longest path from r to node v

1

2

3

4

5

MISP instance:

Maximum Independent Set Problem (MISP)
BDD - Top Down Construction

r

t

exact BDD

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {4, 5}

{5} {3, 4, 5} {4, 5}

{5} {4, 5}

{5} ∅

∅

{1, 2, 3, 4, 5}, 0

{2, 3, 4, 5}, 0 {4, 5}, 1

{5}, 1 {3, 4, 5}, 0 {4, 5}, 1

{5}, 1 {4, 5}, 1

{5}, 1 ∅, 1

∅, 2

x1

x2

x3

x4

x5

r

t

relaxed BDD, β = 2

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {4, 5}

{3, 4, 5} {4, 5}

{5} {4, 5}

{5} ∅

∅

{1, 2, 3, 4, 5}, 0

{2, 3, 4, 5}, 0 {4, 5}, 1

{3, 4, 5}, 1 {4, 5}, 1

{5}, 2 {4, 5}, 1

{5}, 2 ∅, 2

∅, 3

node ranking: Zlp, decreasing

Zlp(v): longest path from r to node v

1

2

3

4

5

MISP instance:

Maximum Independent Set Problem (MISP)
BDD - Top Down Construction

r

t

exact BDD

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {4, 5}

{5} {3, 4, 5} {4, 5}

{5} {4, 5}

{5} ∅

∅

{1, 2, 3, 4, 5}, 0

{2, 3, 4, 5}, 0 {4, 5}, 1

{5}, 1 {3, 4, 5}, 0 {4, 5}, 1

{5}, 1 {4, 5}, 1

{5}, 1 ∅, 1

∅, 2

x1

x2

x3

x4

x5

r

t

relaxed BDD, β = 2

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {4, 5}

{3, 4, 5} {4, 5}

{5} {4, 5}

{5} ∅

∅

{1, 2, 3, 4, 5}, 0

{2, 3, 4, 5}, 0 {4, 5}, 1

{3, 4, 5}, 1 {4, 5}, 1

{5}, 2 {4, 5}, 1

{5}, 2 ∅, 2

∅, 3

node ranking: Zlp, decreasing

Zlp(v): longest path from r to node v

1

2

3

4

5

MISP instance:

Maximum Independent Set Problem (MISP)
BDD - Top Down Construction

r

t

exact BDD

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {4, 5}

{5} {3, 4, 5} {4, 5}

{5} {4, 5}

{5} ∅

∅

x1

x2

x3

x4

x5

Zero-suppressed BDD

I long arcs: skip layers

I skipped variables are implicitly
set to zero

I maintain open list of nodes

I current layer j: insert only
nodes that contain j

1

2

3

4

5

MISP instance:

Maximum Independent Set Problem (MISP)
BDD - Top Down Construction

r

t

exact BDD

{1, 2, 3, 4, 5}

{2, 3, 4, 5}

{4, 5}

{5}

{3, 4, 5}

{4, 5}

{5}

{4, 5}

{5}

∅

∅

x1

x2

x3

x4

x5

Zero-suppressed BDD

I long arcs: skip layers

I skipped variables are implicitly
set to zero

I maintain open list of nodes

I current layer j: insert only
nodes that contain j

1

2

3

4

5

MISP instance:

Maximum Independent Set Problem (MISP)
BDD - Top Down Construction

r

exact BDD

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {4, 5}

{1} {2, 3, 5} {5} ∅{5} {3, 4, 5} {4, 5}

x1

Ê

x4x2

.

.

.

Variable Ordering

I Size of DD depends on variable ordering!

I select variable for each layer at run-time

for each layer after merging:
select variable that belongs to the fewest num-
ber of states in current layer

1

2

3

4

5

MISP instance:

Maximum Independent Set Problem (MISP)
BDD - Top Down Construction

r

exact BDD

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {4, 5}

{1} {2, 3, 5} {5} ∅

{5} {3, 4, 5} {4, 5}

x1

Ê

x4

x2

.

.

.

Variable Ordering

I Size of DD depends on variable ordering!

I select variable for each layer at run-time

for each layer after merging:
select variable that belongs to the fewest num-
ber of states in current layer

1

2

3

4

5

MISP instance:

Maximum Independent Set Problem (MISP)
BDD - Top Down Construction

r

exact BDD

{1, 2, 3, 4, 5}

{2, 3, 4, 5} {4, 5}

{1} {2, 3, 5} {5} ∅

{5} {3, 4, 5} {4, 5}

x1

Êx4

x2

.

.

.

Variable Ordering

I Size of DD depends on variable ordering!

I select variable for each layer at run-time

for each layer after merging:
select variable that belongs to the fewest num-
ber of states in current layer

1

2

3

4

5

MISP instance:

Maximum Independent Set Problem (MISP)
BDD - A∗ Construction

Dynamic Programming Formulation

I decision variables:
xj ∈ {0, 1}, j = 1, . . . , n, if j is selected (=1) or not (=0)

I (partial) variable ordering: (li)
n
i=1

node li ∈ V is considered at i-th position

I state space:
s ∈ 2Vj for j = 2, . . . , n, r̂ = V , t̂ = ∅ and Vj = {j, . . . , n}

I next variable to consider for state s:
next(s) := arg minj∈s l

−1
j if any j is assigned, > otherwise

I transition functions:
t(s, 0) = s \ {next(s)}; t(s, 1) = s \N(next(s))

I cost functions: h(s, 0) = 0; h(s, 1) = 1;

I node merger: union

Maximum Independent Set Problem (MISP)
BDD - A∗ Construction - Details

I Merging strategies
I merge only nodes with same next(s) value
I L0(s) = (next(s))
I L1(s) = (next(s), Z lp(s))
I L2(s) = (next(s), Zub(s))

I Open list order for merging:
I sort Q according to Z lp, decreasing

I Variable ordering heuristic
I if state s is selected for expansion with next(s) = >
I select variable that belongs to the fewest number of not yet

expanded states in open list

Maximum Independent Set Problem (MISP)
BDD - A∗ Construction - Upper bounds

I Hansen Bound
I Zub

hansen(s) = b1/2 +
√

1/4 + n(s)2 − n(s)− 2e(s)c
I n(s) := number of induced nodes

I e(s) := number of induced edges

I Borg Bound
I Zub

borg(s) = b((∆(s)− 1)− n(s) + 1)/∆(s)c
I ∆(s) := max degree of nodes in s

I must be a connected graph

I Minimum Degree Bound
I Zub

δ (s) = n(s)− δ(s)
I δ(s) := minimum degree of nodes in s

Maximum Independent Set Problem (MISP)
BDD - A∗ Construction - Upper bounds

I Annihilation Number Bound
I Zub

a (s) = a(s). . . annihilation number

I Let d1 ≤ d2 ≤ . . . ≤ n(s) be the sequence of non-decreasing degrees
of nodes in s. Then the annihilation a(s) is the largest integer

0 ≤ k ≤ n(s) that satisfies
∑k
i=1 di ≤

∑n(s)
i=k+1 di.

I Cvetkovic Bound
I Zub

cvetkovic(s) = p0(s) + min{p−(s), p+(s)}
I p0(s) := number of eigenvalues equal to zero

I p−(s) := number of eigenvalues smaller than zero

I p+(s) := number of eigenvalues greater than zero

I Strongest Bound
I Zub(s) = min{Zub

hansen(s), Zub
borg(s), Zub

δ (s), Zub
a (s)}

Instances

I MISP
I random graphs with n ∈ {100, 250, 500, . . . , 1750} and density
p ∈ {0.1, 0.2, . . . , 0.9}

I 10 graphs per n,p configuration

A∗ Search
Upper Bound Comparison, n = 100

10 20 30 40 50 60 70 80 90
p

0.0

0.5

1.0

#s
tro

ng
es

t

Zub
hansen Zub Zub

borg Zub
a Zub

cvetkovic

10 20 30 40 50 60 70 80 90
p

0.0

0.5

1.0

op
tim

al
ity

 g
ap

10 20 30 40 50 60 70 80 90
p

103

105

107

#e
xp

an
sio

ns

A∗ Search
Upper Bound Comparison, n = 100

10 20 30 40 50 60 70 80 90
p

0.0

0.5

1.0

#s
tro

ng
es

t

Zub
hansen Zub Zub

borg Zub
a

10 20 30 40 50 60 70 80 90
p

0.0

0.5

1.0

op
tim

al
ity

 g
ap

10 20 30 40 50 60 70 80 90
p

103

105

107

#e
xp

an
sio

ns

A∗ Search
Variable Order, n = 100

10 20 30 40 50 60 70 80 90
p

102

103

104

105

106

107

#e
xp

an
sio

ns

dynamical, min #states
dynamical, max #states
static, increasing degrees
static, decreasing degrees

A∗C - Different values for φ
Variable order: dynamical+min #states, labeling function: L0(·)

10 20 30 40 50 60 70 80 90
p

0

10

20

30

40

50

60

n
=

10
0

#upper bound

10 20 30 40 50 60 70 80 90
p

0.0

0.2

0.4

0.6

0.8

compilation time [s]

10 20 30 40 50 60 70 80 90
p

103

104

#nodes

10 20 30 40 50 60 70 80 90
p

0

25

50

75

100

125

150

n
=

25
0

10 20 30 40 50 60 70 80 90
p

0

5

10

15

20

A * C: = 1 A * C: = 100 A * C: = 1000 TDC: = 1000

10 20 30 40 50 60 70 80 90
p

104

105

A∗C - Variable Order
φ = 1000, labeling function: L0(·)

10 20 30 40 50 60 70 80 90
p

0

10

20

30

40

50

60

n
=

10
0

#upper bound

10 20 30 40 50 60 70 80 90
p

0.0

0.5

1.0

1.5

2.0

compilation time [s]

10 20 30 40 50 60 70 80 90
p

103

104

#nodes

10 20 30 40 50 60 70 80 90
p

0

25

50

75

100

125

150

n
=

25
0

10 20 30 40 50 60 70 80 90
p

0

10

20

30

dynamical, min #states dynamical, max #states static, increasing degrees static, decreasing degrees

10 20 30 40 50 60 70 80 90
p

104

105

A∗C - Labeling Functions
φ = 1000, variable order: dynamical+min #states

10 20 30 40 50 60 70 80 90
p

0

10

20

30

40

50

60

n
=

10
0

#upper bound

10 20 30 40 50 60 70 80 90
p

0.0

0.2

0.4

0.6

0.8

1.0
compilation time [s]

10 20 30 40 50 60 70 80 90
p

103

104

#nodes

10 20 30 40 50 60 70 80 90
p

0

25

50

75

100

125

150

n
=

25
0

10 20 30 40 50 60 70 80 90
p

0

10

20

30

L0() L1() L2()

10 20 30 40 50 60 70 80 90
p

104

105

Issues

>Zero-arcs are preferred
I states expanded by zero-arcs do not change much
I such states seems promising according to priority function f
I leads to asymmetric expansion of nodes

r

Issues

>Zero-arcs are preferred
I states expanded by zero-arcs do not change much
I such states seems promising according to priority function f
I leads to asymmetric expansion of nodes

�Possible solutions:
I weighted priority function fw(·) = Z lp(·) + wZub(·), 0 ≤ w ≤ 1

I well known in A∗ search literature
I w = 0: expand always state with largest Z lp value

I switch to multi-valued decision diagrams
I no zero-arcs anymore
I high branching factor, layers are much larger

Issues

>Termination
I some rare incidents: A∗C does not terminate in reasonable time
I in particular the time between obtaining Zub

min and terminating can
be time consuming

10 20 30 40 50 60 70 80 90
p

0

250

500

750

1000

1250

tim
e

[s
]

total compilation time

10 20 30 40 50 60 70 80 90
p

0

200

400

600

tim
e

[s
]

time between Zub
min and termination

instance n = 250, A∗C: φ = 1000, L2(·), variable order: decreasing degrees

Issues

>Termination
I some rare incidents: A∗C does not terminate in reasonable time
I in particular the time between obtaining Zub

min and terminating can
be time consuming

�Possible solutions:

I switch to TDC after Zub
min has been obtained

I sliding window
I A∗C operates between layer Lmin and Lmax, Lmax − Lmin = k
I all nodes in layers < Lmin are already expanded
I if A∗C selects a node in layer Lmax + 1 than all nodes in Lmin are

expanded and the window is shifted by one

I falling curtain
I all nodes in layers < Lmin are already expanded
I after k A∗ iterations, expand all nodes in layer Lmin

I increment Lmin by one

Further Ideas

� Consider parent bounds
I upper bounds from parent nodes minus arc length

� Use hysteresis for limiting open list size
I start merging if |Q| > φmax until |Q| ≥ φmin

� Use TDC to compute upper bounds for A∗C
I Zub

min would be as least as strong as UB obtained by TDC

I A∗ search: compilation of restricted BDDs every k iteration
à similar to our anytime A∗ algorithm

Thank you for your attention

