# A*-based compilation of decision diagrams for the maximum independent set problem <br> Dissertantenseminar 

Matthias Horn ${ }^{1}$<br>${ }^{1}$ Institute of Logic and Computation, TU Wien, Vienna, Austria, horn@ac.tuwien.ac.at

Oct 19, 2020

## Overview

- Decision Diagrams 101
- exact, relaxed and restricted decision diagrams
- link to dynamic programming
- compilation of decision diagrams
- $\mathrm{A}^{*}$ construction
- Maximum Independent Set Problem
- definition
- top-down construction + advanced techniques
- applying $\mathrm{A}^{*}$ construction method
- results


## Decision Diagrams (DDs) 101

- well known in computer science for decades
- logic circuit design, formal verification, ...
- get popular in combinatorial optimization in the last decade
- graphical representation of solutions of a combinatorial optimization problem (COP)
- weighted directed acyclic multi-graph with one root node $\mathbf{r}$ and one target node $\mathbf{t}$
- each r-t path corresponds to a solution of the COP
- length of a path coincides with the solution's objective value
- state of the art results could be obtained on several problems


## Decision Diagrams (DDs) 101



## Exact DDs

- represent precisely the set of feasible solutions of a COP
- longest path: corresponds to optimal solution
- tend to be exponential in size $\Rightarrow$ approximate exact DD


## Decision Diagrams (DDs) 101



## Restricted DDs

- represent subset of feasible solutions of a COP
- by removing nodes and edges
- length of longest path: corresponds to a primal bound


## Decision Diagrams (DDs) 101



Relaxed DDs

- represent superset of feasible solutions of a COP
- by merging nodes
- length of longest path: corresponds to an upper bound
- discrete relaxation of solution space


## Decision Diagrams (DDs) 101

Exact DD


Restricted DD



Relaxed DDs

- represent superset of feasible solutions of a COP
- by merging nodes
- length of longest path: corresponds to an upper bound
- discrete relaxation of solution space


## Relaxed DDs

- discrete relaxation of solution space
- usage
- to obtain dual bounds
- as constraint store in constraint propagation
- derivation of cuts in mixed integer programming (MIP)
- branch-and-bound: branching on merged nodes
- ...
- excellent results on e.g.
- set covering (Bergman et al., 2011)
- independent set (Bergman et al., 2014)
- time dependent traveling salesman (Cire and Hoeve, 2013)
- time dependent sequential ordering (Kinable et al. 2017)


## DDs - Construction Methods

- Top-Down Construction (TDC)
- compile relaxed DD layer by layer
- layer width is limited
- if current layer gets too large $\Rightarrow$ merge nodes
- Incremental Refinement (IR)
- start with relaxed DD of width one
- iteratively refine by splitting nodes and filtering arcs
- $\mathrm{A}^{*}$-based Construction ( $\mathrm{A}^{*} \mathrm{C}$ )
- accepted for publication in Computers \& Operations Research
- construct a relaxed DD by a modified $\mathrm{A}^{*}$ algorithm
- the size of the open list is limited by parameter $\phi$
- for PC-JSOCMSR: obtained smaller DDs with stronger bounds in shorter time


## DDs and Dynamic Programming

- dynamic programming (DP)
- controls $x_{i} \in X_{i}$, current state $s_{i}$, stages $i=1, \ldots, n$
- transitions: $s_{i+1}=\phi_{i}\left(s_{i}, x_{i}\right), \quad i=1, \ldots, n$
- objective function: $f(x)=\sum_{i=1}^{n} c_{i}\left(s_{i}, x_{i}\right)$
- can be solved recursively

$$
g_{i}\left(x_{i}\right)=\min _{x_{i} \in X_{i}\left(s_{i}\right)}\left\{c_{i}\left(s_{i}, x_{i}\right)+g_{i+1}\left(\phi_{i}\left(s_{i}, x_{i}\right)\right)\right\}, \quad i=1, \ldots, n
$$

- exact DDs are strongly related to DP
- J. N. Hooker, Decision Diagrams and Dynamic Programming, 2013.
- each node of DD is associated to a DP state
- root node $s_{0}$, target node $s_{n+1}$
- $\operatorname{arc}\left(s_{i}, \phi_{i}\left(s_{i}, x_{i}\right)\right)$ with cost $c_{i}\left(s_{i}, x_{i}\right)$ for each control $x_{i} \in X_{i}$
- create a DD based on a DP formulation without solving it
- provides recursive formulations of the COP


## Relaxed DD - Top Down Construction

- compiled layer by layer
- the size of each layer is limited by width $\beta$ (here $\beta=3$ )
- merge strategy: rank states of the current layer and merge the worst states
$x_{0}$
(r)


## Relaxed DD - Top Down Construction

- compiled layer by layer
- the size of each layer is limited by width $\beta$ (here $\beta=3$ )
- merge strategy: rank states of the current layer and merge the worst states
$x_{0}$

$x_{1}$


## Relaxed DD - Top Down Construction

- compiled layer by layer
- the size of each layer is limited by width $\beta$ (here $\beta=3$ )
- merge strategy: rank states of the current layer and merge the worst states
$x_{0}$



## Relaxed DD - Top Down Construction

- compiled layer by layer
- the size of each layer is limited by width $\beta$ (here $\beta=3$ )
- merge strategy: rank states of the current layer and merge the worst states
$x_{0}$

$x_{1}$


## Relaxed DD - Top Down Construction

- compiled layer by layer
- the size of each layer is limited by width $\beta$ (here $\beta=3$ )
- merge strategy: rank states of the current layer and merge the worst states




## Relaxed DD - Top Down Construction

- compiled layer by layer
- the size of each layer is limited by width $\beta$ (here $\beta=3$ )
- merge strategy: rank states of the current layer and merge the worst states



## Relaxed DD - Top Down Construction

- compiled layer by layer
- the size of each layer is limited by width $\beta$ (here $\beta=3$ )
- merge strategy: rank states of the current layer and merge the worst states




## Relaxed DD - Top Down Construction

- compiled layer by layer
- the size of each layer is limited by width $\beta$ (here $\beta=3$ )
- merge strategy: rank states of the current layer and merge the worst states
$x_{0}$

$x_{1}$
$x_{2}$
$x_{n}$


## Relaxed DD - $\mathrm{A}^{*}$ Construction ( $\mathrm{A}^{*} \mathrm{C}$ )

- Disadvantages of TDC
- states can only be merged within layers
- nodes on different layers may correspond to the same state
- isomorphic substructures may appear



## Relaxed DD - $\mathrm{A}^{*}$ Construction ( $\mathrm{A}^{*} \mathrm{C}$ )

- Idea: Switch from breadth-first search to best-first search!
- layers do not play a role anymore
- Construct a DD by using a modified A* algorithm:
- the size of the open list $|Q|$ is limited by parameter $\phi$
- if $\phi$ would be exceeded, worst ranked nodes are merged.
- Key characteristics:
- naturally avoids multiple nodes for identical states at different substructures and
- consequently multiple copies of isomorphic substructures
- node expansions and selection of nodes to be merged are guided by an auxiliary upper bound function


## A* Search

A*: classical informed search algorithm for path planning in possibly huge graphs (Hart et al., 1968)

- uses a heuristic function, here an upper bound $Z^{\mathrm{ub}}$, to guide the search
- maintains an open list $Q$ of nodes sorted according to priorities

$$
f(u)=Z^{\mathrm{lp}}(u)+Z^{\mathrm{ub}}(u)
$$

Initially: $Q=\{\mathbf{r}\}$
Repeat:

- pop node $u \in Q$ with maximum $f(u)$
- if $u=\mathbf{t}$ terminate
- expand $u$ : determine successor nodes

Relaxed DD - A* Construction

## Relaxed DD - A* Construction

©

At each iteration:
pop node $u \in Q$ with maximum $f(u)$ and expand $u$

## Relaxed DD - A* Construction



At each iteration:
pop node $u \in Q$ with maximum $f(u)$ and expand $u$

## Relaxed DD - A* Construction



At each iteration:
pop node $u \in Q$ with maximum $f(u)$ and expand $u$

## Relaxed DD - A* Construction



At each iteration:
pop node $u \in Q$ with maximum $f(u)$ and expand $u$

## Relaxed DD - A* Construction



At each iteration:
pop node $u \in Q$ with maximum $f(u)$ and expand $u$

## Relaxed DD - A* Construction



## Relaxed DD - A* Construction



## Relaxed DD - A* Construction



## Relaxed DD - A* Construction

First time target state expanded:
$\Rightarrow Z_{\text {min }}^{\mathrm{ub}}:=Z^{\mathrm{lp}}(\mathbf{t})$ is a feasible UB

## Relaxed DD - A* Construction

First time target state expanded:
$\Rightarrow Z_{\min }^{\mathrm{ub}}:=Z^{\mathrm{lp}}(\mathbf{t})$ is a feasible UB

To get complete relaxed DD: continue until $Q$ is empty

## Relaxed DD - A* Construction

Merging Strategies


We cannot just merge all worst $|Q|-\phi+1$ states into a single state:
A cycles can emerge

A there may be already expanded states in $Q$

A merging different states may introduce a large relaxation loss

## Relaxed DD - A* Construction

$Q: \bigcirc 0$


We cannot just merge all worst $|Q|-\phi+1$ states into a single state:
A cycles can emerge
$\boldsymbol{\vartheta}$ must be taken into consideration when merging nodes
A there may be already expanded states in $Q$
$\Theta$ merge only not yet expanded states
A merging different states may introduce a large relaxation loss
$\boldsymbol{\Theta}$ try to merge only similar states

## Relaxed DD - A* Construction

## Merging Strategies

To efficiently reduce $Q$ and identify similar states we maintain

- we apply labeling function $L(u)$ and maintain
- a dictionary of collector nodes $V^{\mathrm{C}}$ indexed by $L(u)$.
- only ever merge nodes having the same label

While $|Q|>\phi$, iteratively consider not yet expanded states $u \in Q \backslash V^{\mathrm{C}}$ in increasing priority order:

- if $\exists v \in V^{\mathrm{C}}: L(v)=L(u)$ then merge $u$ into $v$
- otherwise $V^{\mathrm{C}} \leftarrow V^{\mathrm{C}} \cup\{u\}$


## Maximum Independent Set Problem (MISP)

- Definition
- given: graph $G=(V, E), V=\{1,2, \ldots, n\}$
- find the maximum independent set $I$, s.t. $I \subseteq V$ and no two vertices in $I$ are connected by an edge in $E$
- let $N(j)=\left\{j^{\prime} \mid\left(j, j^{\prime}\right) \in E\right\} \cup\{j\}$ be the neighborhood of $j$
- Example (from Bergman et al., 2016)



## Maximum Independent Set Problem (MISP)

- Definition
- given: graph $G=(V, E), V=\{1,2, \ldots, n\}$
- find the maximum independent set $I$, s.t. $I \subseteq V$ and no two vertices in $I$ are connected by an edge in $E$
- let $N(j)=\left\{j^{\prime} \mid\left(j, j^{\prime}\right) \in E\right\} \cup\{j\}$ be the neighborhood of $j$
- Example (from Bergman et al., 2016)


$$
I=\{1,5\}
$$

## Maximum Independent Set Problem (MISP)

Binary DDs (BDDs) for MISP

- well studied in literature
- BDD-based branch and bound algorithm
- branching on merged nodes
- uses TDC to created relaxed and restricted BDDs
- advanced techniques
- long arcs: zero-suppressed BDD skip over variables whose values are represented implicitly
- dynamic variable ordering select next decision variable during compilation of BDD
- we aim to compile relaxed BBDs with $\mathrm{A}^{*} \mathrm{C}$


## Maximum Independent Set Problem (MISP)

## BDD - Top Down Construction

Dynamic Programming Formulation

- decision variables:

$$
x_{j} \in\{0,1\}, j=1, \ldots, n, \text { if } j \text { is selected }(=1) \text { or } \operatorname{not}(=0)
$$

- state space:

$$
S_{j}=2^{V_{j}} \text { for } j=2, \ldots, n, \hat{r}=V, \hat{t}=\emptyset \text { and } V_{j}=\{j, \ldots, n\}
$$

- transition functions:

$$
t_{j}\left(s^{j}, 0\right)=s^{j} \backslash\{j\} ; \quad t_{j}\left(s^{j}, 1\right)= \begin{cases}s^{j} \backslash N(j), & \text { if } j \in s^{j} \\ \hat{0}, & \text { if } j \notin s^{j}\end{cases}
$$

- cost functions: $h_{j}\left(s^{j}, 0\right)=0 ; h_{j}\left(s^{j}, 1\right)=1$;
- node merger: union


## Maximum Independent Set Problem (MISP)

## BDD - Top Down Construction



MISP instance:

relaxed BDD, $\beta=2$

node ranking: $Z^{\mathrm{lp}}$, decreasing $Z^{\mathrm{lp}}(v)$ : longest path from $\mathbf{r}$ to node $v$

## Maximum Independent Set Problem (MISP)

## BDD - Top Down Construction



MISP instance:


## Maximum Independent Set Problem (MISP)

## BDD - Top Down Construction



MISP instance:


## Maximum Independent Set Problem (MISP)

## BDD - Top Down Construction

exact BDD


## Zero-suppressed BDD

- long arcs: skip layers
- skipped variables are implicitly set to zero
- maintain open list of nodes
- current layer $j$ : insert only nodes that contain $j$

MISP instance:


## Maximum Independent Set Problem (MISP)

## BDD - Top Down Construction

exact BDD
$x_{1}$
$x_{3}$
$x_{4}$
$x_{5}$


## Zero-suppressed BDD

- long arcs: skip layers
- skipped variables are implicitly set to zero
- maintain open list of nodes
- current layer $j$ : insert only nodes that contain $j$


## MISP instance:



## Maximum Independent Set Problem (MISP)

## BDD - Top Down Construction

exact BDD
$x_{1}$

©

Variable Ordering

- Size of DD depends on variable ordering!
- select variable for each layer at run-time



## Maximum Independent Set Problem (MISP)

## BDD - Top Down Construction



Variable Ordering

- Size of DD depends on variable ordering!
- select variable for each layer at run-time

> for each layer after merging: select variable that belongs to the fewest number of states in current layer

MISP instance:


## Maximum Independent Set Problem (MISP)

## BDD - Top Down Construction



Variable Ordering

- Size of DD depends on variable ordering!
- select variable for each layer at run-time
for each layer after merging: select variable that belongs to the fewest number of states in current layer
MISP instance:



## Maximum Independent Set Problem (MISP)

Dynamic Programming Formulation

- decision variables:
$x_{j} \in\{0,1\}, j=1, \ldots, n$, if $j$ is selected $(=1)$ or $\operatorname{not}(=0)$
- (partial) variable ordering: $\left(l_{i}\right)_{i=1}^{n}$
node $l_{i} \in V$ is considered at $i$-th position
- state space:

$$
s \in 2^{V_{j}} \text { for } j=2, \ldots, n, \hat{r}=V, \hat{t}=\emptyset \text { and } V_{j}=\{j, \ldots, n\}
$$

- next variable to consider for state $s$ : $\operatorname{next}(s):=\arg \min _{j \in s} l_{j}^{-1}$ if any $j$ is assigned, $T$ otherwise
- transition functions:

$$
t(s, 0)=s \backslash\{\operatorname{next}(s)\} ; t(s, 1)=s \backslash N(\operatorname{next}(s))
$$

- cost functions: $h(s, 0)=0 ; h(s, 1)=1$;
- node merger: union


## Maximum Independent Set Problem (MISP)

- Merging strategies
- merge only nodes with same next $(s)$ value
- $L_{0}(s)=(\operatorname{next}(s))$
- $L_{1}(s)=\left(\operatorname{next}(s), Z^{\mathrm{lp}}(s)\right)$
- $L_{2}(s)=\left(\operatorname{next}(s), Z^{\mathrm{ub}}(s)\right)$
- Open list order for merging:
- sort $Q$ according to $Z^{\text {lp }}$, decreasing
- Variable ordering heuristic
- if state $s$ is selected for expansion with next $(s)=T$
- select variable that belongs to the fewest number of not yet expanded states in open list


## Maximum Independent Set Problem (MISP)

- Hansen Bound
- $Z_{\text {hansen }}^{\mathrm{ub}}(s)=\left\lfloor 1 / 2+\sqrt{1 / 4+n(s)^{2}-n(s)-2 e(s)}\right\rfloor$
- $n(s):=$ number of induced nodes
- $e(s):=$ number of induced edges
- Borg Bound
- $Z_{\text {borg }}^{\mathrm{ub}}(s)=\lfloor((\Delta(s)-1)-n(s)+1) / \Delta(s)\rfloor$
- $\Delta(s):=$ max degree of nodes in $s$
- must be a connected graph
- Minimum Degree Bound
- $Z_{\delta}^{\mathrm{ub}}(s)=n(s)-\delta(s)$
- $\delta(s):=$ minimum degree of nodes in $s$


## Maximum Independent Set Problem (MISP)

ac ${ }^{\|}$
BDD - A* Construction - Upper bounds

- Annihilation Number Bound
- $Z_{a}^{\mathrm{ub}}(s)=a(s) \ldots$ annihilation number
- Let $d_{1} \leq d_{2} \leq \ldots \leq n(s)$ be the sequence of non-decreasing degrees of nodes in $s$. Then the annihilation $a(s)$ is the largest integer $0 \leq k \leq n(s)$ that satisfies $\sum_{i=1}^{k} d_{i} \leq \sum_{i=k+1}^{n(s)} d_{i}$.
- Cvetkovic Bound
- $Z_{\text {cvetkovic }}^{\text {ub }}(s)=p_{0}(s)+\min \left\{p_{-}(s), p_{+}(s)\right\}$
- $p_{0}(s):=$ number of eigenvalues equal to zero
- $p_{-}(s):=$ number of eigenvalues smaller than zero
- $p_{+}(s):=$ number of eigenvalues greater than zero
- Strongest Bound
- $Z^{\mathrm{ub}}(s)=\min \left\{Z_{\text {hansen }}^{\mathrm{ub}}(s), Z_{\text {borg }}^{\mathrm{ub}}(s), Z_{\delta}^{\mathrm{ub}}(s), Z_{a}^{\mathrm{ub}}(s)\right\}$


## Instances

- MISP
- random graphs with $n \in\{100,250,500, \ldots, 1750\}$ and density $p \in\{0.1,0.2, \ldots, 0.9\}$
- 10 graphs per $n, p$ configuration


## A* Search

Upper Bound Comparison, $n=100$


## A* Search

Upper Bound Comparison, $n=100$


## A* Search

Variable Order, $n=100$


## A*C - Different values for $\phi$


Variable order: dynamical+min \#states, labeling function: $L_{0}(\cdot)$


## A*C - Variable Order

$\phi=1000$, labeling function: $L_{0}(\cdot)$


## A*C - Labeling Functions


$\phi=1000$, variable order: dynamical + min \#states


## Issues

A Zero-arcs are preferred

- states expanded by zero-arcs do not change much
- such states seems promising according to priority function $f$
- leads to asymmetric expansion of nodes


A Zero-arcs are preferred

- states expanded by zero-arcs do not change much
- such states seems promising according to priority function $f$
- leads to asymmetric expansion of nodes

8 Possible solutions:

- weighted priority function $f_{w}(\cdot)=Z^{\operatorname{lp}}(\cdot)+w Z^{\mathrm{ub}}(\cdot), 0 \leq w \leq 1$
- well known in $\mathrm{A}^{*}$ search literature
- $w=0$ : expand always state with largest $Z^{\text {lp }}$ value
- switch to multi-valued decision diagrams
- no zero-arcs anymore
- high branching factor, layers are much larger

A Termination

- some rare incidents: $\mathrm{A}^{*} \mathrm{C}$ does not terminate in reasonable time
- in particular the time between obtaining $Z_{\min }^{\text {ub }}$ and terminating can be time consuming

instance $n=250, \mathrm{~A}^{*} \mathrm{C}: \phi=1000, L_{2}(\cdot)$, variable order: decreasing degrees

A Termination

- some rare incidents: $\mathrm{A}^{*} \mathrm{C}$ does not terminate in reasonable time
- in particular the time between obtaining $Z_{\min }^{\text {ub }}$ and terminating can be time consuming

8 Possible solutions:

- switch to TDC after $Z_{\text {min }}^{\text {ub }}$ has been obtained
- sliding window
- A*C operates between layer $L_{\text {min }}$ and $L_{\max }, L_{\text {max }}-L_{\text {min }}=k$
- all nodes in layers $<L_{\text {min }}$ are already expanded
- if $\mathrm{A}^{*} \mathrm{C}$ selects a node in layer $L_{\max }+1$ than all nodes in $L_{\text {min }}$ are expanded and the window is shifted by one
- falling curtain
- all nodes in layers $<L_{\text {min }}$ are already expanded
- after $k \mathrm{~A}^{*}$ iterations, expand all nodes in layer $L_{\text {min }}$
- increment $L_{\text {min }}$ by one


## Further Ideas

8 Consider parent bounds

- upper bounds from parent nodes minus arc length

8 Use hysteresis for limiting open list size

- start merging if $|Q|>\phi_{\max }$ until $|Q| \geq \phi_{\text {min }}$

8 Use TDC to compute upper bounds for $\mathrm{A}^{*} \mathrm{C}$

- $Z_{\text {min }}^{\text {ub }}$ would be as least as strong as UB obtained by TDC
- A* search: compilation of restricted BDDs every $k$ iteration $\rightarrow$ similar to our anytime A* algorithm

Thank you for your attention

