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Overview

» Decision Diagrams 101

>

v

exact, relaxed and restricted decision diagrams
link to dynamic programming
compilation of decision diagrams

A* construction

» Maximum Independent Set Problem

>

>

>

definition
top-down construction + advanced techniques
applying A* construction method

results
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Decision Diagrams (DDs) 101

» well known in computer science for decades
» logic circuit design, formal verification, . ..

» get popular in combinatorial optimization in the last decade

» graphical representation of solutions
of a combinatorial optimization problem (COP)

» weighted directed acyclic multi-graph
with one root node r and one target node t

» each r-t path corresponds to a solution of the COP

> length of a path coincides with the solution's objective value

> state of the art results could be obtained on several problems
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Decision Diagrams (DDs) 101

Exact DD

172 '3 zo € {1,2,3}
T € X4
xn € Xp
Exact DDs

> represent precisely the set of feasible solutions of a COP
» longest path: corresponds to optimal solution

> tend to be exponential in size = approximate exact DD
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Decision Diagrams (DDs) 101

Exact DD Restricted DD
1" 2 3 z0 € {1,2,3} 1 2 z0
O
x1 € X1 x1
O O
@) OO
xn € Xp Tn

Restricted DDs

> represent subset of feasible solutions of a COP

» by removing nodes and edges

> length of longest path: corresponds to a primal bound
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Decision Diagrams (DDs) 101

Exact DD Restricted DD
1" 2 3 z0 € {1,2,3} 1 2 z0
@)
x1 € X1 x1
O O
O 00O
xn € Xp Tn
Relaxed DDs

> represent superset of feasible solutions of a COP

» by merging nodes

v

v

discrete relaxation of solution space

Relaxed DD

1

A

2

length of longest path: corresponds to an upper bound
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Relaxed DDs

» discrete relaxation of solution space

> usage

>

>

>

>

to obtain dual bounds
as constraint store in constraint propagation
derivation of cuts in mixed integer programming (MIP)

branch-and-bound: branching on merged nodes

> ..

> excellent results on e.g.

>

>

v

v

set covering (Bergman et al., 2011)
independent set (Bergman et al., 2014)
time dependent traveling salesman (Cire and Hoeve, 2013)

time dependent sequential ordering (Kinable et al. 2017)
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DDs - Construction Methods ac'le

» Top-Down Construction (TDC)

» compile relaxed DD layer by layer
> layer width is limited

» if current layer gets too large = merge nodes

» Incremental Refinement (IR)
» start with relaxed DD of width one

> iteratively refine by splitting nodes and filtering arcs

» A*-based Construction (A*C)
» accepted for publication in Computers & Operations Research

» construct a relaxed DD by a modified A* algorithm
> the size of the open list is limited by parameter ¢

» for PC-JSOCMSR: obtained smaller DDs with stronger bounds in
shorter time



DDs and Dynamic Programming ac'l'

» dynamic programming (DP)

>

>

>

| 4

controls x; € X, current state s;, stagesi=1,...,n
transitions: s;4+1 = ¢;(s;,x;), i=1,...,n
objective function: f(z) = >""", ci(si, x;)

can be solved recursively

gi(w:) = min {eilsizi) + giva(i(si i)}, i=1,...m

» exact DDs are strongly related to DP

>

>

>

J. N. Hooker, Decision Diagrams and Dynamic Programming, 2013.
each node of DD is associated to a DP state

root node s, target node s,41

arc (s;, ¢;(s;,x;)) with cost ¢;(s;, x;) for each control z; € X;
create a DD based on a DP formulation without solving it

provides recursive formulations of the COP



Relaxed DD - Top Down Construction ac'l

» compiled layer by layer
» the size of each layer is limited by width /3 (here § = 3)

> merge strategy: rank states of the current layer and merge the
worst states
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Relaxed DD - Top Down Construction ac'l

» compiled layer by layer
» the size of each layer is limited by width /3 (here § = 3)

> merge strategy: rank states of the current layer and merge the
worst states

T



Relaxed DD - A* Construction (A*C) ac'l'

» Disadvantages of TDC
» states can only be merged within layers

» nodes on different layers may correspond to the same state

» isomorphic substructures may appear
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Relaxed DD - A* Construction (A*C) ac'l'

» ldea: Switch from breadth-first search to best-first search!
» layers do not play a role anymore

» Construct a DD by using a modified A* algorithm:
> the size of the open list || is limited by parameter ¢

> if ¢ would be exceeded, worst ranked nodes are merged.

» Key characteristics:

» naturally avoids multiple nodes for identical states at different
substructures and

» consequently multiple copies of isomorphic substructures

» node expansions and selection of nodes to be merged are guided by
an auxiliary upper bound function



A* Search ac'l’

A*: classical informed search algorithm for path planning in possibly
huge graphs (Hart et al., 1968)

» uses a heuristic function, here an upper bound Z"", to guide the
search

» maintains an open list () of nodes sorted according to priorities
flu) = 2 (u) + 2" (u)

Initially: @ = {r}
Repeat:

» pop node u € @ with maximum f(u)
> if u =1t terminate

> expand u: determine successor nodes



Relaxed DD - A* Construction
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Relaxed DD - A* Construction ac'l"

At each iteration:
pop node u € @ with maximum f(u) and expand u
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Relaxed DD - A* Construction ac'l"

At each iteration:
pop node u € @ with maximum f(u) and expand u



Relaxed DD - A* Construction

if |Q| > ¢: merge nodes
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Relaxed DD - A* Construction

if |Q| > ¢: merge nodes
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Relaxed DD - A* Construction
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Relaxed DD - A* Construction

First time target state expanded:
= Zub

min

acllll

:= Z'P(t) is a feasible UB



Relaxed DD - A* Construction ac'l"

First time target state expanded:
= ZW = 7'P(t) is a feasible UB

min

To get complete relaxed DD:
continue until Q) is empty



Relaxed DD - A* Construction ac'l"

Merging Strategies

Q0000000000
¢
We cannot just merge all worst |Q)] — ¢ + 1 states into a single state:

A cycles can emerge
A there may be already expanded states in @

A merging different states may introduce a large relaxation loss



Relaxed DD - A* Construction ac'l"

Merging Strategies

Q:0 0 00 O 0 0O

¢

We cannot just merge all worst |Q)] — ¢ + 1 states into a single state:

A cycles can emerge
© must be taken into consideration when merging nodes

A there may be already expanded states in Q
© merge only not yet expanded states

A merging different states may introduce a large relaxation loss
© try to merge only similar states



Relaxed DD - A* Construction ac'l"

Merging Strategies

To efficiently reduce @ and identify similar states we maintain
» we apply labeling function L(u) and maintain
» a dictionary of collector nodes V' indexed by L(u).

» only ever merge nodes having the same label

While |Q| > ¢, iteratively consider not yet expanded states u € Q \ V°
in increasing priority order:

» if v € VC: L(v) = L(u) then merge u into v
» otherwise VC «+ VO U {u}



Maximum Independent Set Problem (MISP) ac'l'

» Definition
» given: graph G = (V,E), V ={1,2,...,n}

» find the maximum independent set I, s.t. I C V and
no two vertices in I are connected by an edge in

» let N(j)={j"| (4,5") € E}YU{j} be the neighborhood of j

» Example (from Bergman et al., 2016)
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» Definition
» given: graph G = (V,E), V ={1,2,...,n}

» find the maximum independent set I, s.t. I C V and
no two vertices in I are connected by an edge in

» let N(j)={j"| (4,5") € E}YU{j} be the neighborhood of j

» Example (from Bergman et al., 2016)

I={1,5}




Maximum Independent Set Problem (MISP)

Binary DDs (BDDs) for MISP
» well studied in literature
» BDD-based branch and bound algorithm

» branching on merged nodes

» uses TDC to created relaxed and restricted BDDs

» advanced techniques

» long arcs: zero-suppressed BDD
skip over variables whose values are represented implicitly

» dynamic variable ordering
select next decision variable during compilation of BDD

> we aim to compile relaxed BBDs with A*C

acllll



Maximum Independent Set Problem (MISP) ac'l'

BDD - Top Down Construction

Dynamic Programming Formulation

» decision variables:
xzj € {0,1}, j=1,...,n, if j is selected (=1) or not (=0)

» state space:
S;=2forj=2,...,n, 7=V, t=0and V; = {j,...,n}

» transition functions:

; i\ g ; I\ N(j), ifjesd;
ti(s?,0) =¢’ ;o ti(s?,1) =< . .
i ) ik t( ) {0, if j o 50
» cost functions: hj(s?,0) = 0; h;(s?,1) = 1;

» node merger: union



Maximum Independent Set Problem (MISP) ac'l'

BDD - Top Down Construction

exact BDD relaxed BDD, 8 = 2
{1,2,3,4,5} {1,2,3,4,5}
e e
x1 ,/ ,/
4 4
{2,3,4,5} {4,5} {2,3,4,5} {4,5}
Y Y |
zo AN AN 1 1
N N \
3,4,5) 1D {45} {3,4,5} Q {4,5}
<
N e ~
N v’ S 1
~
AN e S !
{4,5} {4,5}
-
0 0
4 e
7
4
4
0
node ranking: Z'P, decreasing

Z'P (v): longest path from r to node v




Maximum Independent Set Problem (MISP) ac'l'

BDD - Top Down Construction
exact BDD relaxed BDD, 8 = 2

{1,2,3,4,5} 0 {1,2,3,4,5},0

{3,4,5}, 1 <) (4,5}, 1

~ 1
~ 1
~
~

5.2 XD {4,5},1

1P decreasing

node ranking: Z
Z'P (v): longest path from r to node v



Maximum Independent Set Problem (MISP) ac'l'

BDD - Top Down Construction
exact BDD relaxed BDD, 8 = 2

{1,2,3,4,5} 0 {1,2,3,4,5},0

{3,4,5}, 1 <) (4,5}, 1

~ 1
~ 1
~
~

5.2 XD {4,5},1

1P decreasing

node ranking: Z
Z'P (v): longest path from r to node v



Maximum Independent Set Problem (MISP) ac'l'

BDD - Top Down Construction

exact BDD
{1,2,3,4,5}

o L Zero-suppressed BDD

e

’ .

{2,3,4,5} {4,5} > long arcs: skip layers

Y Y
2 T : » skipped variables are implicitly

N

Y
N
D {45} set to zero
/, . . .
> maintain open list of nodes

> current layer j: insert only
nodes that contain j




Maximum Independent Set Problem (MISP) ac'l'

BDD - Top Down Construction
exact BDD
{1,2,3,4,5}

{5}

x5

Zero-suppressed BDD

>

»

long arcs: skip layers

skipped variables are implicitly
set to zero

maintain open list of nodes

current layer j: insert only
nodes that contain j



Maximum Independent Set Problem (MISP) ac'l'

BDD - Top Down Construction
exact BDD
{1,2,3,4,5}

Variable Ordering
T {2.3,4,5} {4,5} > Size of DD depends on variable ordering!

(2] > select variable for each layer at run-time

MISP instance:




Maximum Independent Set Problem (MISP) ac'l'

BDD - Top Down Construction
exact BDD
{1,2,3,4,5}

z1 e Variable Ordering
7’
{2,3,4,5} {4,5} > Size of DD depends on variable ordering!
z4 Y ’ > select variable for each layer at run-time
AY 7

{1} {2,3,5} {5} 0

for each layer after merging:
select variable that belongs to the fewest num-

ber of states in current layer
MISP instance:




Maximum Independent Set Problem (MISP) ac'l'

BDD - Top Down Construction

exact BDD
{1,2,3,4,5}
z1 ,’, Variable Ordering
,{2,374,5} {4,5} > Size of DD depends on variable ordering!
=2 \\\ \\\ > select variable for each layer at run-time
0 O
{5} {3,4,5} {4,5}

for each layer after merging:
select variable that belongs to the fewest num-

ber of states in current layer
MISP instance:
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Maximum Independent Set Problem (MISP) ac'l
BDD - A* Construction

Dynamic Programming Formulation

>

decision variables:

xzj € {0,1}, j=1,...,n, if j is selected (=1) or not (=0)
(partial) variable ordering: (;)I"_;

node [; € V is considered at i-th position

state space:
se2Viforj=2,....n, 7=V, t=0and V; = {j,...,n}

next variable to consider for state s:

next(s) := arg min,., (- ! if any j is assigned, T otherwise

JjES V]

transition functions:
t(s,0) = s\ {next(s)}; t(s,1) = s\ N(next(s))

cost functions: h(s,0) =0; h(s,1) =1,

node merger: union



Maximum Independent Set Problem (MISP)

BDD - A* Construction - Details

» Merging strategies
» merge only nodes with same next(s) value
Lo(s) = (next(s))
Ly(s) = (next(s), Z'(s))
Ly(s) = (next(s), Z"°(s))

v vy

» Open list order for merging:
» sort Q according to Z'P, decreasing

» Variable ordering heuristic
» if state s is selected for expansion with next(s) = T

» select variable that belongs to the fewest number of not yet
expanded states in open list

ac'l'



Maximum Independent Set Problem (MISP) ac'l'

BDD - A* Construction - Upper bounds

» Hansen Bound
> Ziinsen(8) = [1/2 4+ \/1/4+n(5) — n(s) — 2¢(s)]
» n(s) := number of induced nodes

> e(s) := number of induced edges

» Borg Bound
> Ziog(s) = [((A(s) = 1) = n(s) + 1)/A(s)]
» A(s) := max degree of nodes in s

» must be a connected graph

» Minimum Degree Bound
> Z§P(s) = n(s) — d(s)

> §(s) := minimum degree of nodes in s



Maximum Independent Set Problem (MISP) ac'l'

BDD - A* Construction - Upper bounds

» Annihilation Number Bound
» ZU(s) = a(s)...annihilation number

> Let d; < ds <...< n(s) be the sequence of non-decreasing degrees
of nodes in s. Then the annihilation a(s) is the Iargest integer

0 < k < n(s) that satisfies Z 1di < ZZ i1 d

» Cvetkovic Bound
> Zietkovie(s) = po(s) +min{p_(s),p1(s)}
> po(s) := number of eigenvalues equal to zero
> p_(s) := number of eigenvalues smaller than zero

> py(s) := number of eigenvalues greater than zero

» Strongest Bound
> Z"(s) = min{ 2} gen (5): Zhorg (5), Z§°(s), Z3°(s)}

hansen borg



Instances

» MISP

» random graphs with n € {100, 250, 500,
pe{0.1,0.2,...,0.9}

» 10 graphs per n,p configuration

..., 1750} and density
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A* Search
Upper Bound Comparison, n = 100
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A* Search ac'l’

Upper Bound Comparison, n = 100
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A* Search ac'l
Variable Order, n = 100

107 Bl dynamical, min #states
W dynamical, max #states
B static, increasing degrees
10° Bl static, decreasing degrees
wn
-5 10°
wn
C
©
o
b}
% 10%

103

102




A*C - Different values for ¢ ac'l

Variable order: dynamical+min #states, labeling function: Lo(-)

#upper bound compilation time [s] #nodes
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A*C - Variable Order ac!ln

¢ = 1000, labeling function: Lg(-)

#upper bound compilation time [s] #nodes
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A*C - Labeling Functions

¢ = 1000, variable order: dynamical+min #states

n=100

n=250

ac'l'

#upper bound compilation time [s] #nodes
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Issues ac'l

A Zero-arcs are preferred
> states expanded by zero-arcs do not change much
» such states seems promising according to priority function f
» leads to asymmetric expansion of nodes



Issues ac'l

A Zero-arcs are preferred
> states expanded by zero-arcs do not change much
» such states seems promising according to priority function f
» leads to asymmetric expansion of nodes

@ Possible solutions:
» weighted priority function f,(-) = ZP(:) + wZ"™(-), 0 < w < 1
» well known in A* search literature
» w = 0: expand always state with largest 7' value

> switch to multi-valued decision diagrams

> no zero-arcs anymore
> high branching factor, layers are much larger



Issues

A Termination

» some rare incidents: A*C does not terminate in reasonable time
> in particular the time between obtaining Z%0 and terminating can
be time consuming

time [s]

total compilation time

acllll

time between Z4 and termination
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Issues ac'l

A Termination
» some rare incidents: A*C does not terminate in reasonable time
> in particular the time between obtaining Z%0 and terminating can
be time consuming

@ Possible solutions:
» switch to TDC after Z"P has been obtained

min
» sliding window
» A*C operates between layer Ly and Lyax, Limax — Lmin = k
> all nodes in layers < L., are already expanded

> if A*C selects a node in layer L. + 1 than all nodes in Ly, are
expanded and the window is shifted by one

» falling curtain
» all nodes in layers < Ly, are already expanded
» after k A* iterations, expand all nodes in layer Ly,
> increment L, by one



1
Further Ideas ac'l

@ Consider parent bounds
> upper bounds from parent nodes minus arc length

@ Use hysteresis for limiting open list size
> start merging if |Q] > dmax until |Q| > dmin

@ Use TDC to compute upper bounds for A*C
» ZU would be as least as strong as UB obtained by TDC
» A* search: compilation of restricted BDDs every k iteration
<> similar to our anytime A* algorithm



Thank you for your attention

ac'l'



