A Heuristic Approach for Solving the Longest Common Square Subsequence Problem
 EUROCAST 19, Las Palmas de Gran Canaria, Spain

Marko Djukanovic ${ }^{1}$, Günther Raidl ${ }^{1}$, and Christian Blum ${ }^{2}$

${ }^{1}$ Institute of Logic and Computation, TU Wien, Vienna, Austria,
${ }^{2}$ Artificial Intelligence Research Institute (IIIA-CSIC), Campus UAB, Bellaterra, Spain

February 20, 2019

Introduction

- A string is a finite sequence of characters over (finite) alphabet Σ.
- Strings are used as:
- data types: words, complete texts
- models for DNA molecules, proteins, RNA molecules.

String problems in bioinformatics:

- comparing molecules
- the detected similarities serve to better understand biological processes (diseases, developmental defects etc.)
- similarities between molecules: present combinatorial (optimization) problems

Longest Common Subsequence Problem (LCS)

- String \tilde{s} is a subsequence of a string s iff it is obtained from s by deleting zero or more characters.
- LCS:
- Input: A set of strings $S=\left\{s_{1}, \ldots, s_{m}\right\}, m \in \mathbb{N}$, and an alphabet Σ.
- Task: Find a subsequence of maximum length that is common for all the input strings.
- Example: $|S|=2, S=\{a b c a b c d a, a c c b c c a b a\}, \Sigma=\{a, b, c, d\}$

Longest Common Subsequence Problem (LCS)

- String \tilde{s} is a subsequence of a string s iff it is obtained from s by deleting zero or more characters from s.
- LCS:
- Input: A set of strings $S=\left\{s_{1}, \ldots, s_{m}\right\}, m \in \mathbb{N}$, and an alphabet Σ.
- Task: Find a subsequence of maximum length that is common for all strings from S.
- Example: $|S|=2, S=\{a b c a b c d a, a c c b c c a b a\}, \Sigma=\{a, b, c, d\}$ LCS: abcaa.

Longest Common Subsequence Problem (LCS)

- String \tilde{s} is a subsequence of a string s iff it is obtained from s by deleting zero or more characters from s.
- LCS:
- Input: A set of strings $S=\left\{s_{1}, \ldots, s_{m}\right\}, m \in \mathbb{N}$, and an alphabet Σ.
- Task: Find a subsequence of maximum length that is common for all strings from S.
- Example: $|S|=2, S=\{a b c a b c d a, a c c b c c a b a\}, \Sigma=\{a, b, c, d\}$ LCS: abcaa.
- solvable in polynomial time if m fixed (Dynamic Programming (DP) in $\left.O\left(n^{m}\right), n=\max \left\{\left|s_{i}\right| \mid i=1, \ldots, m\right\}\right)$
- $\mathcal{N} \mathcal{P}$-hard if S arbitrary
- A string s is a square iff $\left(\exists s^{\prime} \in \Sigma^{*}\right) s=s^{\prime} \cdot s^{\prime}=s^{\prime 2}$
- LCSqS:
- LCS + sequence is a square
- Example: $s_{1}=$ dabcbacbabc, $s_{2}=a b b c b a d c ;$ LCSqS: bcbc.
- A string s is a square iff $\left(\exists s^{\prime} \in \Sigma^{*}\right) s=s^{\prime} \cdot s^{\prime}=s^{\prime 2}$
- LCSqS:
- LCS + sequence is a square
- Example: $s_{1}=$ dabcbacbabc, $s_{2}=a b b c b a d c ;$ LCSqS: bcbc.
- Applications:
- LCS: a general measure of comparison (diff command, Git)
- LCSqS: includes "internal" similarity between molecules
* similarity between the parts of the compared molecules measured by LCSqS

Solving LCS and LCSqS

- LCS:
- Beam Search (BS) (Blum et al., 2009)
- BS + spec. branching (Mousavi and Tabataba, 2012)
- Chemical Reaction Optimization (Islam et al., 2018)
- LCSqS:
- introduced by Inoue et al. (2018)
- the case for $m=2$ solved by
\star DP in $O\left(n^{6}\right)$
* sparse DP approach: by 3D-range search tree (in $O\left(|M|^{3} \log ^{2} n \log \log n+n\right)$-time, $|M|=\#$ matchings between strings)

Solving LCS and LCSqS

- LCS:
- Beam Search (BS) (Blum et al., 2009)
- BS + spec. branching (Mousavi and Tabataba, 2012)
- Chemical Reaction Optimization (Islam et al., 2018)
- LCSqS:
- introduced by Inoue et al. (2018)
- the case for $m=2$ solved by
$\star \mathrm{DP}$ in $O\left(n^{6}\right)$
* sparse DP approach: by 3D-range search tree
(in $O\left(|M|^{3} \log ^{2} n \log \log n+n\right)$-time, $|M|=\#$ matchings between strings)
- no algorithm proposed for $m>2$

LCS: solution approaches

- Best-Next heuristic (BNH) for LCS:
- Huang et al. (2004)
- at each iteration feasibly extend current partial sol. s^{p} by single letter
- decision which letter to choose: greedy function g

LCS: solution approaches

- Best-Next heuristic (BNH) for LCS:
- Huang et al. (2004)
- at each iteration feasibly extend current partial sol. s^{p} by single letter
- decision which letter to choose: greedy function g
- $S=\left\{s_{1}, s_{2}\right\}$

$s_{1}:$	a	c	c	b	c	b	d	c	d
$s_{2}:$	b	a	c	c	b	b	c	d	b

LCS: solution approaches

- Best-Next heuristic (BNH) for LCS:
- Huang et al. (2004)
- at each iteration feasibly extend current partial sol. s^{p} by single letter
- decision which letter to choose: greedy function g
- $S=\left\{s_{1}, s_{2}\right\}$

LCS: solution approaches

- Best-Next heuristic (BNH) for LCS:
- Huang et al. (2004)
- at each iteration feasibly extend current partial sol. s^{p} by single letter
- decision which letter to choose: greedy function g
- $S=\left\{s_{1}, s_{2}\right\}$

$s_{1}:$	a c c b c b d c	d							
$s_{2}:$	p_{1}^{L}								
	$\prod_{p_{2}^{\mathrm{L}}}$	a	c	c	b	b	c	d	b
	$p_{1}^{\mathrm{L}}=p_{2}^{\mathrm{L}}=1, s^{p}=\varepsilon$								

LCS: solution approaches

- Best-Next heuristic (BNH) for LCS:
- Huang et al. (2004)
- at each iteration feasibly extend current partial sol. s^{p} by single letter
- decision which letter to choose: greedy function g
- $S=\left\{s_{1}, s_{2}\right\}$

$s_{1}:$	a c c b c b d c	d							
$s_{2}:$		b	a	c	c	b	b	c	d

$g(x):$ min. \# of letters we skip from search when extending s^{p} by letter x

LCS: solution approaches

- Best-Next heuristic (BNH) for LCS:
- Huang et al. (2004)
- at each iteration feasibly extend current partial sol. s^{p} by single letter
- decision which letter to choose: greedy function g
- $S=\left\{s_{1}, s_{2}\right\}$

$s_{1}:$	a	c	c	b	c	b	d	c	d
$s_{2}:$	b	a	c	c	b	b	c	d	b

LCS: solution approaches

- Best-Next heuristic (BNH) for LCS:
- Huang et al. (2004)
- at each iteration feasibly extend current partial sol. s^{p} by single letter
- decision which letter to choose: greedy function g
- $S=\left\{s_{1}, s_{2}\right\}$

s_{1} :	a	$\underset{c}{ }{\underset{c}{1}}^{p_{1}^{I}}$	c	b	c	b	d	c
s_{2} :	b	a	$\stackrel{c}{\uparrow p_{2}^{L}}$	c	b	b	c	d

$S\left[p^{\mathrm{L}}\right]$: remaining strings w.r.t. position p^{L} (relevant for extension)

- BS: one of the most simple and effective approaches for the LCS
- a heuristic search-tree algorithm: principle of a limited BFS
- expand the most promising nodes of the same level: extensions
- the best β nodes among extensions further pursued for a beam of the next level
- BS for the LCS: Blum et al., 2009

BS for the LCS

- Each node v stores:
- $\mathrm{S}\left[p^{\mathrm{L}, v}\right]$: the remaining strings to extend partial solution
- I^{V} : length of the corresp. partial solution
- Expansions of node v :
- calculate non-dominated feasible letters for $S\left[p^{\mathrm{L}, v}\right]$
- extend the partial solution in all possible ways by updating left pos. vectors and I^{v} (by adding 1) accordingly
- Evaluation of node v :
- Upper bound: $\mathrm{UB}(v)=\sum_{a \in \Sigma} c_{a}, c_{a}:=\min _{i=1, \ldots, m}\left|s_{i}\left[p_{i}^{\mathrm{L}, v},\left|s_{i}\right|\right]\right|_{a}$
- Expected length for a LCS: EX(v) (the palindromic LCS (Djukanovic et al., 2018: submitted))

Derivation of EX for the LCS

- $\mathcal{P}(s, t)$: the probability that a string s is a subsequence of a uniform random string t (Mousavi and Tabataba, 2012):
- $\mathcal{P}(i, j)=\mathcal{P}(|s|,|t|)$ has a matrix presentation
- Some research about the expected length of a LCS:
- Dixon (2013), Ning and Choi (2013), Znamenskij (2016)
- Derivation based on the assumptions:
- strings in S are mutually independent
- an event that a sequence s of length k (over Σ) appears as a subsequence in S is independent of any other such events
- $\Rightarrow \operatorname{EX}(v)=\sum_{k=1}^{l_{\text {max }}}\left(1-\left(1-\prod_{k=1}^{m} \mathcal{P}\left(k,\left|s_{i}\right|-p_{i}^{\mathrm{L}, v}+1\right)\right)^{|\Sigma|^{k}}\right)$,
where $I_{\text {max }}=\min _{i=1, \ldots, m}\left|s_{i}\right|-p_{i}^{\mathrm{L}, v}+1$.

The LCSqS problem: transformation

- $\mathbb{P}:=\left\{q \in \mathbb{N}^{m}\left|1 \leq q_{i} \leq\left|s_{i}\right|\right\}\right.$: the space of partitionings
- Each vector $q \in \mathbb{P}$ divides input set S into the non-empty sets:
- $S^{\mathrm{L}, q}=\left\{s_{i}\left[1, q_{i}\right] \mid i=1, \ldots, m\right\}$ and
- $S^{\mathrm{R}, q}=\left\{s_{i}\left[q_{i}+1,\left|s_{i}\right|\right] \mid i=1, \ldots, m\right\}$.

The LCSqS problem: transformation

- $\mathbb{P}:=\left\{q \in \mathbb{N}^{m}\left|1 \leq q_{i} \leq\left|s_{i}\right|\right\}\right.$: the space of partitionings
- Each vector $q \in \mathbb{P}$ divides input set S into the non-empty sets:
- $S^{\mathrm{L}, q}=\left\{s_{i}\left[1, q_{i}\right] \mid i=1, \ldots, m\right\}$ and
- $S^{\mathrm{R}, q}=\left\{s_{i}\left[q_{i}+1,\left|s_{i}\right|\right] \mid i=1, \ldots, m\right\}$.
- Example: $s_{1}=a b c b a c b a b c, s_{2}=a b b b a b a c c b c c, s_{3}=a c c b c b a c b b a$ and $q=(3,3,4)$:
$s_{1}=\underbrace{a b c}_{\in S^{\mathrm{L}, q}} \| \underbrace{\text { bacbabc }}_{\in S^{\mathrm{R}, q}}$,
$s_{2}=\underbrace{a b b}_{\in S^{\mathrm{L}, q}} \| \underbrace{\text { babaccbcc }}_{\in S^{\mathrm{R}, q}}$,
$s_{3}=\underbrace{\operatorname{accb}}_{\in S^{\mathrm{L}, q}} \| \underbrace{\text { cbacbba }}_{\in S^{\mathrm{R}, q}}$.

The LCSqS problem: transformation

- $\mathbb{P}:=\left\{q \in \mathbb{N}^{m}\left|1 \leq q_{i} \leq\left|s_{i}\right|\right\}\right.$: the space of partitionings
- Each vector $q \in \mathbb{P}$ divides input set S into the non-empty sets:
- $S^{\mathrm{L}, q}=\left\{s_{i}\left[1, q_{i}\right] \mid i=1, \ldots, m\right\}$ and
- $S^{\mathrm{R}, q}=\left\{s_{i}\left[q_{i}+1,\left|s_{i}\right|\right] \mid i=1, \ldots, m\right\}$.
- Example: $s_{1}=a b c b a c b a b c, s_{2}=a b b b a b a c c b c c, s_{3}=a c c b c b a c b b a$ and $q=(3,3,4)$:
$s_{1}=\underbrace{a b c}_{\in S^{\mathrm{L}, q}} \| \underbrace{\text { bacbabc }}_{\in S^{\mathrm{R}, q}}$,
$s_{2}=\underbrace{a b b}_{\in S^{\mathrm{L}, q}} \| \underbrace{\text { babaccbcc }}_{\in \mathrm{S}^{\mathrm{R}, q}}$,
$s_{3}=\underbrace{\operatorname{accb}}_{\in S^{\mathrm{L}, q}} \| \underbrace{\text { cbacbba }}_{\in S^{\mathrm{R}, q}}$.
- If $s_{\mathrm{lcs}}=\operatorname{LCS}\left(S^{\mathrm{L}, q} \cup S^{\mathrm{R}, q}:=S^{q}\right) \Rightarrow s_{\mathrm{lcsqs}}:=s_{\mathrm{lcs}} \cdot s_{\mathrm{lcs}}$ is a feasible LCSqS solution on S.

Basic idea of the approach

- LCSqS as a map: $q \in \mathbb{P} \mapsto \operatorname{LCS}\left(S^{q}\right)$
- Solving LCSqS \Rightarrow solving a series of standard LCS instances
- $|\mathrm{LCSqS}|=2 \cdot \max _{q \in \mathbb{P}}\left|\operatorname{LCS}\left(S^{q}\right)\right|$:
- the overall number of partitionings exponential in problem size
- LCS is $\mathcal{N} \mathcal{P}$-hard

Iterated Greedy (IG) approach

- Destruct: randomly sample $S^{\prime} \subseteq S$ s.t. $\left|S^{\prime}\right| \approx\lfloor$ destr $\cdot|S|\rfloor$ where destr $\in(0,1)$ is the parameter of destruction
- $q^{\prime}=$ Construct (q) : generate q^{\prime} by mutating q as follows:
- $q_{i}^{\prime} \in \mathcal{D}_{i}\left(q_{i}, \sigma\right):=q_{i}+\left\lceil\mathcal{N}\left(0, \sigma^{2}\right)\right\rceil, s_{i} \in S^{\prime}, \sigma>0$ parameter
- if $q_{i}^{\prime} \notin\left\{1, \ldots,\left|s_{i}\right|\right\}$, sample again
- Second phase (construction of a LCSqS sol.): $q \xrightarrow{g_{\text {appx }}} \operatorname{BNH}\left(S^{q}\right)$
- Acceptance criterion: always better partitioning acc. to $\left|g_{\text {appx }}(q)\right|$-value

\mathcal{D}_{i} distribution, reduction of search space \mathbb{P}

- Properties of $\mathcal{D}_{i}\left(q_{i}, \sigma\right)$:
- similarity between q and q^{\prime} (generated by mutating q) are controlled by $\sigma>0$
- Search space reduction:
- assume that s_{lcsqs} is the best so far found LCSqS solution

\mathcal{D}_{i} distribution, reduction of search space \mathbb{P}

- Properties of $\mathcal{D}_{i}\left(q_{i}, \sigma\right)$:
- similarity between q and q^{\prime} (generated by mutating q) are controlled by $\sigma>0$
- Search space reduction:
- assume that $s_{\text {lcsqs }}$ is the best so far found LCSqS solution

$s_{1}:$	a	c	b	$b \mid$	a	a	d	d	c
$s_{2}:$	a	c	c	$b\|l\| c$	b	d	c	d	
$s_{3}:$	b	a	c	c	b	b	c	d	b

\mathcal{D}_{i} distribution, reduction of search space \mathbb{P}

- Properties of $\mathcal{D}_{i}\left(q_{i}, \sigma\right)$:
- similarity between q and q^{\prime} (generated by mutating q) are controlled by $\sigma>0$
- Search space reduction:
- assume that $s_{\text {lcsqs }}$ is the best so far found LCSqS solution

$s_{1}:$	a	c	b	$b \mid$	a	a	d	d	c
$s_{2}:$	a	c	c	$b\|l\| c$	b	d	c	d	
$s_{3}:$	b	a	c	c	b	b	c	d	b

\mathcal{D}_{i} distribution, reduction of search space \mathbb{P}

- Properties of $\mathcal{D}_{i}\left(q_{i}, \sigma\right)$:
- similarity between q and q^{\prime} (generated by mutating q) are controlled by $\sigma>0$
- Search space reduction:
- assume that $s_{\text {lcsqs }}$ is the best so far found LCSqS solution

| $s_{1}:$ | a | c | b | $b \mid$ | a | a | d | d | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $s_{2}:$ | a | c | c | b | $c\|l\| l$ | b | d | c | d |
| $s_{3}:$ | b | a | c | c | b | b | c | d | b |

\mathcal{D}_{i} distribution, reduction of search space \mathbb{P}

- Properties of $\mathcal{D}_{i}\left(q_{i}, \sigma\right)$:
- similarity between q and q^{\prime} (generated by mutating q) are controlled by $\sigma>0$
- Search space reduction:
- assume that $s_{\text {lcsqs }}$ is the best so far found LCSqS solution

$s_{1}:$	a	c	b	b	a	a	d	d	c
$s_{2}:$	a	c	c	b	c	b	d	c	d
$s_{3}:$	b	a	c	c	b	b	c	d	b

\mathcal{D}_{i} distribution, reduction of search space \mathbb{P}

- Properties of $\mathcal{D}_{i}\left(q_{i}, \sigma\right)$:
- similarity between q and q^{\prime} (generated by mutating q) are controlled by $\sigma>0$
- Search space reduction:
- assume that $s_{\text {lcsqs }}$ is the best so far found LCSqS solution

| $s_{1}:$ | a | c | b | b | a | a | d | d | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $s_{2}:$ | a | c | c | b | c | b | d | c | d |
| $s_{3}:$ | b | a | c | c | b | b | c | d | b |

\mathcal{D}_{i} distribution, reduction of search space \mathbb{P}

- Properties of $\mathcal{D}_{i}\left(q_{i}, \sigma\right)$:
- similarity between q and q^{\prime} (generated by mutating q) are controlled by $\sigma>0$
- Search space reduction:
- assume that $s_{\text {lcsqs }}$ is the best so far found LCSqS solution

\mathcal{D}_{i} distribution, reduction of search space \mathbb{P}

- Properties of $\mathcal{D}_{i}\left(q_{i}, \sigma\right)$:
- similarity between q and q^{\prime} (generated by mutating q) are controlled by $\sigma>0$
- Search space reduction:
- assume that $s_{\text {lcsqs }}$ is the best so far found LCSqS solution

| $s_{1}:$ | a | c | b | b | a | a | d | d | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $s_{2}:$ | a | c | c | b | c | b | d | c | d |
| $s_{3}:$ | b | a | c | c | b | b | c | d | b |

\mathcal{D}_{i} distribution, reduction of search space \mathbb{P}

- Properties of $\mathcal{D}_{i}\left(q_{i}, \sigma\right)$:
- similarity between q and q^{\prime} (generated by mutating q) are controlled by $\sigma>0$
- Search space reduction:
- assume that s_{lcsqs} is the best so far found LCSqS solution
$\Rightarrow \mathcal{D}_{i}$ defined on $I_{i}=\left\{\frac{\left|s_{\text {csqqs }}\right|}{2}+1, \ldots,\left|s_{i}\right|-\frac{\left|s_{\text {ccsqs }}\right|}{2}-1\right\}, i=1, \ldots, m$

IG algorithm

Data: an instance (S, Σ), $t_{\text {max }}>0$, destr $\in(0,1), \sigma>0$: std deviation
Result: a feasible LCSqS solution
$q \leftarrow\left(\left\lfloor\frac{\left|s_{i}\right|}{2}\right\rfloor\right)_{i=1}^{m} / /$ initialize;
$\mathrm{S}_{\text {lcsqs }} \leftarrow \varepsilon$;
while $t_{\text {max }}$ not exceeded do
$q^{\prime} \leftarrow$ Destruct-Construct $(q, \mathcal{D}$, destr $) ;$
$s_{q^{\prime}} \leftarrow \operatorname{BNH}\left(S^{q^{\prime}}\right)$;
if $2 \cdot\left|s_{q^{\prime}}\right|>\left|s_{\text {lcsqs }}\right|$ then
$s_{\text {lcsqs }} \leftarrow s_{q^{\prime}} \cdot s_{q^{\prime}} ;$
$q \leftarrow q^{\prime} ;$
end
end
return $s_{\text {lcsqs }}$;
IG algorithm for the LCSqS.

VNS \& BS approach

- VNS (Mladenovic, 1997):
- systematically change neighborhoods in search space \mathbb{P} :
\star for a fixed vector $q=\left(q_{1}, \ldots, q_{m}\right)$, the k-th neighborhood defined as

$$
N_{k}(q):=\left\{q^{\prime} \in \mathbb{P}: q \text { and } q^{\prime} \text { differ at } k \text { positions }\right\}, 1 \leq k \leq m
$$

$\star q^{\prime} \in N_{k}(q)$ gen. by mutating q w. r. t. $\mathcal{D}(q, \sigma)=\left(\mathcal{D}_{1}\left(q_{1}, \sigma\right), \ldots, \mathcal{D}_{m}\left(q_{m}, \sigma\right)\right)$

VNS \& BS approach

- VNS (Mladenovic, 1997):
- systematically change neighborhoods in search space \mathbb{P} :
\star for a fixed vector $q=\left(q_{1}, \ldots, q_{m}\right)$, the k-th neighborhood defined as

$$
N_{k}(q):=\left\{q^{\prime} \in \mathbb{P}: q \text { and } q^{\prime} \text { differ at } k \text { positions }\right\}, 1 \leq k \leq m
$$

$\star q^{\prime} \in N_{k}(q)$ gen. by mutating q w. r. t. $\mathcal{D}(q, \sigma)=\left(\mathcal{D}_{1}\left(q_{1}, \sigma\right), \ldots, \mathcal{D}_{m}\left(q_{m}, \sigma\right)\right)$

- Evaluating partitionings:
- LCS study:
\star BS gives solutions of better quality than BNH
\star BS too expensive to perform in each partitioning of \mathbb{P}
- \Rightarrow trade off found (next slide)...

VNS \& BS: details

- Evaluating partitionings: realization of $q \stackrel{\text { Eval }}{\longrightarrow} f_{q}$ by:

$$
\begin{aligned}
& u b_{\text {lcsqs }} \leftarrow 2 \cdot \mathrm{UB}\left(S^{q}\right) \text {; } \\
& \text { if } u b_{\text {lcsqs }}>\left|s_{\mathrm{lcsqs}}\right| \text { then } \\
& f_{q} \leftarrow 2 \cdot\left|\operatorname{BNH}\left(S^{q}\right)\right| ; \\
& \text { if } f_{q}>\alpha \cdot\left|s_{\text {csqs }}\right| \text { then } \\
& f_{\text {bs }} \leftarrow 2 \cdot\left|\mathrm{BS}\left(S^{q}\right)\right| ; \\
& \text { if } f_{b s}>f_{q} \text { then } \\
& f_{q} \leftarrow f_{\mathrm{bs}} \text {; } \\
& \text { end } \\
& \text { end } \\
& \text { //update } s_{\text {lcsqs }} \\
& \text { possibly; } \\
& \text { else } \\
& f_{q} \leftarrow 0 \quad / / \text { invalid; } \\
& \text { end } \\
& \text { Eval(q). }
\end{aligned}
$$

VNS \& BS: details

- Evaluating partitionings: realization of $q \stackrel{\text { Eval }}{\longmapsto} f_{q}$ by:

$$
\begin{aligned}
& u b_{\text {lcsqs }} \leftarrow 2 \cdot \mathrm{UB}\left(S^{q}\right) \text {; } \\
& \text { if } u b_{\text {lcsqs }}>\left|s_{\mathrm{lcsqs}}\right| \text { then } \\
& f_{q} \leftarrow 2 \cdot\left|\mathrm{BNH}\left(S^{q}\right)\right| ; \\
& \text { if } f_{q}>\alpha \cdot\left|s_{\mathrm{lcsqs}}\right| \text { then } \\
& \left\lvert\, \begin{array}{l}
f_{\mathrm{bs}} \leftarrow 2 \cdot\left|\mathrm{BS}\left(S^{q}\right)\right| ; \\
\text { if } f_{b s}>f_{q} \text { then } \\
\mid f_{q} \leftarrow f_{\mathrm{bs}} ; \\
\text { end } \\
\text { end } \\
/ / \text { update } \\
\text { possibly; } \\
\text { posqs }
\end{array}\right. \\
& \text { else } \\
& f_{q} \leftarrow 0 / / \text { invalid; } \\
& \text { end }
\end{aligned}
$$

- All partitionings evaluated by BS stored in a hash map (together with its f_{q}-val.)

Experiments

- Machine settings:
- Intel Xeon E5-2640 v4 CPU, 2.40GHz
- memory limit: 8GB
- Instances: LCS instances (Blum, 2016):
- for each combination of $|\Sigma| \in\{4,12,20\}, m \in\{10,50,100,150,200\}$ and $n \in\{100,500,1000\}, 10$ instances are generated $\Rightarrow 450$ instances, 10 independent runs per single instance
- the results are grouped by each combination presenting:
\star the avg. over solution lengths
* the avg. median times when best sol. has been found
- Fixed: $t_{\max }=600 \mathrm{~s}$ for all algorithms

Parameters' settings

- IG parameters:
- destr $=0.3$
- $n=100: \sigma=5$
- $n=500: \sigma=10$
- $n=1000: \sigma=20$
- VNS \& BS parameters:
- $\beta=200$
- heuristic guidance of BS: EX
- $\alpha=0.9$ for $n \in\{100,500\}$ and $\alpha=0.95$ for $n=1000$.
- σ-settings: the same like in the IG for corresponding n

Numerical results: $n=100$

m	$\|\Sigma\|$	VNS \& BS		IG \& BS		VNS \& Dive		IG			
		s\|	$\overline{t_{\text {best }}}[s]$	\|s		$\overline{t_{\text {best }}}[s]$	$\overline{\|s\|}$	$\overline{t_{\text {best }}}[s]$	\|s		$\overline{t_{\text {best }}}[s]$
10	4	27.04	40.62	26.54	44.94	26.96	51.20	26.58	40.10		
	12	8.40	16.97	8.04	13.59	8.28	19.27	7.98	22.56		
	20	3.96	0.34	4.00	1.66	3.96	0.05	4.00	3.15		
50	4	18.48	26.43	18.16	24.12	18.54	45.81	18.32	36.93		
	12	3.88	3.45	3.82	11.01	3.88	5.00	3.80	8.51		
	20	0.22	1.37	0.46	4.77	0.20	0.00	0.46	10.49		
100	4	16.20	29.51	16.02	17.95	16.14	8.44	16.02	14.76		
	12	1.58	0.00	2.00	0.10	1.64	6.19	2.00	0.07		
	20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
150	4	15.10	61.37	14.40	38.22	15.06	85.49	14.34	34.57		
	12	0.40	0.00	2.00	10.47	0.40	0.00	2.00	8.72		
	20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
200	4	14.04	3.71	14.00	8.68	14.00	1.36	13.92	21.14		
	12	0.00	0.00	1.58	33.89	0.00	0.00	1.58	42.54		
	20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		

Table: Results for $n=100$.

Numerical results: $n=500$

m	$\|\Sigma\|$	VNS \& BS		IG \& BS		VNS \& Dive		IG	
		\|s		$\overline{t_{\text {best }}}[s]$					
10	4	156.76	132.86	156.46	151.96	150.42	122.27	150.14	111.66
	12	58.88	94.19	58.40	115.06	56.58	101.47	56.48	60.93
	20	36.02	89.36	35.46	44.85	34.76	56.93	34.66	54.49
50	4	124.34	68.61	124.24	64.19	120.86	87.26	120.36	127.39
	12	38.82	79.30	38.56	58.59	38.18	32.68	38.12	19.71
	20	21.18	79.60	20.84	70.09	21.20	81.55	20.94	68.38
100	4	115.84	53.76	115.72	66.50	113.18	116.39	111.96	98.33
	12	34.00	48.61	33.92	53.06	33.16	86.84	33.20	49.58
	20	18.00	29.05	18.00	52.47	18.00	58.39	17.76	65.87
150	4	112.06	47.59	111.86	115.71	109.56	129.93	107.68	94.80
	12	31.94	111.87	31.84	94.16	31.06	123.15	30.86	59.42
	20	16.00	5.71	16.00	4.65	16.00	5.90	16.00	6.53
200	4	109.80	141.07	109.08	121.19	106.84	109.65	105.00	103.23
	12	30.00	29.76	30.00	17.43	28.44	79.77	29.84	72.14
	20	14.76	73.08	14.00	0.00	14.22	40.04	14.08	9.36

Table: Results for $n=500$.

Numerical results: $n=1000$

m	$\|\Sigma\|$	VNS \& BS		IG \& BS		VNS \& Dive		IG				
		\|s		$\overline{t_{\text {best }}}[s]$	\|s		$\overline{t_{\text {best }}}[s]$	\|s		$\overline{t_{\text {best }}}[s]$	$\bar{s} \mid$	$\overline{t_{\text {best }}}[s]$
10	4	320.44	143.22	321.04	185.80	304.48	186.65	304.34	161.08			
	12	124.12	143.59	124.16	158.39	117.86	151.51	117.88	134.88			
	20	77.02	123.92	76.68	122.87	73.80	118.86	73.72	76.98			
50	4	261.48	107.59	260.84	129.52	252.94	131.88	249.84	153.18			
	12	86.06	108.55	85.98	134.32	83.34	132.11	83.98	100.37			
	20	49.86	133.71	49.64	112.94	48.12	54.48	48.70	74.04			
100	4	247.24	165.80	246.28	141.55	240.24	109.11	234.36	145.40			
	12	77.60	199.63	77.70	197.42	75.44	137.65	75.28	118.57			
	20	43.66	176.18	43.56	169.68	42.02	17.65	42.28	30.80			
150	4	240.06	181.95	239.30	155.08	234.02	127.31	227.02	127.81			
	12	73.78	179.46	73.40	179.63	71.76	121.40	71.36	120.95			
	20	40.04	112.26	40.02	109.40	39.88	121.36	39.96	59.40			
200	4	235.54	185.20	234.94	163.46	230.10	135.37	222.66	145.99			
	12	70.80	195.07	70.32	190.15	69.10	144.78	68.30	44.32			
	20	38.06	122.44	38.02	115.88	38.00	59.74	38.02	24.07			

Table: Results for $n=1000$.

Plots: VNS \& BS vs. IG: sol. quality comparison:

$$
n=100
$$

$$
n=1000
$$

Heuristic guidance of BS component: EX vs. UB
$n=100 . \quad n=500$.

$$
n=1000
$$

Impact of different values for σ on VNS \& BS

Conclusion \& Future Work

- Conclusion:
- We introduced a reduction and approaches to solve the LCSqS for arbitrary sets of input strings
- We derived a heuristic guidance based on the approximated expected length for a LCS

Conclusion \& Future Work

- Conclusion:
- We introduced a reduction and approaches to solve the LCSqS for arbitrary sets of input strings
- We derived a heuristic guidance based on the approximated expected length for a LCS
- Future work:
- The LCSqS approaches \Rightarrow we get a BS for the LCS guided by EX (a new state-of-the-art for LCS possibly?)
- Exact ways of solving the LCSqS:
\star BS creates independently a BS-tree for each partitioning
\star Is there any connection between already created nodes?
\star Node's structure $v=(p^{\mathrm{L}}, I^{v}, \underbrace{X\left(q_{v}\right)}_{?}), q_{v} \in \mathbb{P}$: upper bounds...
^ Applying A^{*} (or some other exact algorithm)...

Thank you for your attention!

