

Sequencing Jobs with One Common and Multiple Individual Resources with Multivalued Decision Diagrams Dissertantenseminar

Johannes Maschler, Günther R. Raidl, and Elina Rönnberg January 8, 2017







### Problem Definition: PC-JSOCMSR



We consider the Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources (PC-JSOCMSR) problem.

#### We are given

- jobs  $J = \{1, ..., n\}$ , and
- resources  $R_0 = \{0\} \cup R$  with  $R = \{1, \dots, m\}$

### Problem Definition: PC-JSOCMSR



We consider the Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources (PC-JSOCMSR) problem.

#### We are given

- jobs  $J = \{1, ..., n\}$ , and
- resources  $R_0 = \{0\} \cup R$  with  $R = \{1, \dots, m\}$

#### Each job $j \in J$ has

- a processing time  $p_i > 0$ 
  - during which it fully requires resource  $q_i \in R$  and
  - the common resource 0 for a part of its execution
    - for  $p_j^0$  time beginning at  $p_j^{\text{pre}}$  after the jobs' start
- a set of time windows  $W_j = \bigcup_{w=0,...,\omega_i} W_{j,w}$ 
  - with  $W_{j,w} = [W_{j,w}^{\text{start}}, W_{j,w}^{\text{end}}]$
- a prize  $z_j > 0$ .

### Problem Definition: PC-JSOCMSR



We consider the Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources (PC-JSOCMSR) problem.

#### We are given

- jobs  $J = \{1, ..., n\}$ , and
- resources  $R_0 = \{0\} \cup R$  with  $R = \{1, \dots, m\}$

#### Each job $j \in J$ has

- a processing time  $p_j > 0$ 
  - during which it fully requires resource  $q_i \in R$  and
  - the common resource 0 for a part of its execution
    - ullet for  $p_j^0$  time beginning at  $p_j^{
      m pre}$  after the jobs' start
- a set of time windows  $W_j = \bigcup_{w=0,...,\omega_i} W_{j,w}$ 
  - with  $W_{j,w} = [W_{j,w}^{\text{start}}, W_{j,w}^{\text{end}}]$
- a prize  $z_j > 0$ .

We are looking for a subset of jobs  $S \subseteq J$ 

- that can be feasibly scheduled and
- maximizes the total prize, i.e.,  $\sum_{i \in S} z_i$ .

## Solution Representation



Observe that each job requires resource 0.

• Hence, a schedule of the jobs S implies a total ordering of the jobs.

We represent a solution by a permutation  $\pi = (\pi_i)_{i=1,...,|S|}$ .

A normalized schedule is obtained by scheduling each job from S in the order given by  $\pi$  at the earliest feasible time.

Obviously, any optimal solution either is

- a normalized schedule, or
- there exists a corresponding normalized schedule.

## Closely Related Literature



Andre A. Cire and Willem-Jan Van Hoeve.

Multivalued decision diagrams for sequencing problems.

Operations Research, 61(6):1411-1428, 2013.

David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and J. N. Hooker.

Discrete optimization with decision diagrams.

INFORMS Journal on Computing, 28(1):47–66, 2016.

David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John N. Hooker.

Decision Diagrams for Optimization.

Artificial Intelligence: Foundations, Theory, and Algorithms. Springer, 2016.

### Recursive Model for PC-JSOCMSR



The control variables of the model are  $\pi_1, \ldots, \pi_n \in J$ .

A state (P, t) consists of

- the set  $P \subseteq J$  of jobs that still can be scheduled, and
- the vector  $t = (t_r)_{r \in R_0}$  of the times from which on each resource r is available for performing a next job.

The initial state is  $\mathbf{r} = (J, (T^{\min}, \dots, T^{\min}))$ .

## Recursive Model for PC-JSOCMSR (cont.)



The earliest feasible time for job  $j \in J$  not smaller than t is given by

$$\operatorname{eft}(j,t) = \min\{\infty, \ t' \ge t \mid [t',t'+p_j] \subseteq W_j\}. \tag{1}$$

Let the starting time of a next job  $j \in J$  w.r.t. a state (P, t) be

$$s((P,t),j) = \begin{cases} eft(j, \max(t_0 - p_j^{pre}, t_{q_j})) & \text{if } j \in P \\ \infty & \text{else.} \end{cases}$$
 (2)

# Recursive Model for PC-JSOCMSR (cont.)



The transition function to obtain the successor (P', t') of state (P, t) when scheduling job  $j \in J$  next is

$$\tau((P,t),j) = \begin{cases} (P \setminus \{j\}, t') & \text{if } s((P,t),j) \neq \infty \\ \hat{0} & \text{else,} \end{cases}$$
 (3)

with

$$t'_0 = s((P, t), j) + p_j^{\text{pre}} + p_j^0$$
 (4)

$$t'_r = s((P, t), j) + p_j \qquad \text{for } r = q_j \qquad (5)$$

$$t'_r = t_r$$
 for  $r \in R \setminus \{q_j\}$  (6)

and  $\hat{0}$  representing the infeasible state.

## Recursive Model for PC-JSOCMSR (cont.)



All states except the infeasible state  $\hat{0}$  are terminal states.

Any sequence of state transitions  $\tau(\dots \tau(\mathbf{r}, \pi_1) \dots, \pi_i)$  yielding a terminal state represents a solution  $(\pi_1, \dots, \pi_i)$ .

The cost associated with a state transition are  $h((P, t), j) = z_j$ .

PC-JSOCMSR can be solved by calling the following function with  $Z^*(\mathbf{r})$ :

$$Z^*(P,t) = \max\{0, z_j + Z^*(\tau((P,t),j)) \mid j \in P \land \tau((P,t),j) \neq \hat{0}\}.$$
 (7)

# Multivalued Decision Diagrams for PC-JSOCMSR



An MDD is a directed acyclic multi-graph G = (V, A).

MDD G = (V, A) is obtained from the recursive model by creating

- nodes for the terminal (feasible) states,
- arcs for all state transitions between terminal states
  - of length  $h((P, t), j) = z_i$ ,

Paths from **r** to some node  $v \in V$  correspond to solutions.

An optimal solution corresponds to a longest path in the MDD.

Such an MDD is called exact because we have

$$Sol(\mathcal{P}) = Sol(G), \tag{8}$$

$$Z(\pi) = Z^{lp}. (9)$$

## Multivalued Decision Diagrams for PC-JSOCMSR





### Relaxed MDDs for PC-JSOCMSR



A simple relaxation scheme merges a subset M of feasible states to obtain the state

$$\oplus(M) = \left(\bigcup_{(P,t)\in M} P, \left(\min_{(P,t)\in M} t_r\right)_{r\in R_0}\right). \tag{10}$$

For a relaxed MDD we have

$$Sol(\mathcal{P}) \subseteq Sol(\mathcal{G}),$$
 (11)

$$Z(\pi) \le Z^{\text{lp}}.\tag{12}$$

### Relaxed MDDs for PC-JSOCMSR





#### Relaxed MDDs of Width One



A relaxed MDD of width one can be obtained by

- adding  $\{0, \ldots, n+1\}$  nodes
  - where node 0 is associated with the initial state
- connect node i = 0, ..., n with node i + 1
  - by n arcs representing transitions for each job  $j \in J$



## An Incremental Refinement Algorithm for MDDs



```
Input: relaxed MDD G = (V, A) with source node \mathbf{r} Let p = (a^{(1)}, \dots, a^{(n)}) be the longest path in G; while p is infeasible do

if p contains a repetition of job j then

refine reptition of job j;

else

refine time window violation;

end

update longest path p;
```

## An Incremental Refinement Algorithm for MDDs

ac<sup>ı|ıı</sup>

Let  $\mathrm{All}_u^\downarrow \subseteq J$  be the jobs on all paths from  $\mathbf{r}$  to  $u \in V$ , i.e.,

$$\operatorname{All}_{u}^{\downarrow} = \bigcap_{a=(v,u)\in A^{+}(u)} \left( \operatorname{All}_{v}^{\downarrow} \cup \{\operatorname{job}(a)\} \right) \tag{13}$$

Let  $\operatorname{Some}_{u}^{\downarrow} \subseteq J$  be the jobs on some path from **r** to  $u \in V$ , i.e.,

$$\operatorname{Some}_{u}^{\downarrow} = \bigcup_{a = (v, u) \in A^{+}(u)} \left( \operatorname{Some}_{v}^{\downarrow} \cup \{ \operatorname{job}(a) \} \right) \tag{14}$$

Let  $\mathrm{Some}_u^{\uparrow} \subseteq J$  be the jobs on some path from  $u \in V$  to any reachable node, i.e.,

$$\operatorname{Some}_{u}^{\uparrow} = \bigcup_{a = (v, u) \in A^{-}(u)} \left( \operatorname{Some}_{v}^{\uparrow} \cup \{ \operatorname{job}(a) \} \right) \tag{15}$$

## Filtering a Relaxed MDD



We remove arcs for which all paths that cross them violate a constraint.

We can remove any arc a = (u, v) if

- $s(u, job(a)) = \infty$
- $job(a) \in All_{\mu}^{\downarrow}$
- $|\mathrm{Some}_{u}^{\downarrow}| = \mathrm{Hops}_{u}^{\min} \text{ and } \mathrm{job}(a) \in \mathrm{Some}_{u}^{\downarrow}$
- $Z^{\mathrm{lp}}(v) + Z^{\mathrm{ub}}(v) < Z^{\mathrm{lb}}$

Nodes without an ingoing arc except  ${\bf r}$  can be removed together with all its outgoing arcs.

## Refinement of Job Repetitions



#### Lemma

A job j is assigned on each path starting from  $\mathbf{r}$  at most once if and only if  $j \notin \mathrm{Some}_u^{\downarrow} \cap \mathrm{Some}_u^{\uparrow} \setminus \mathrm{All}_u^{\downarrow}$  for all nodes  $u \in V$ .

Given job j. For all nodes  $u \in V$  with  $j \in \mathrm{Some}_u^{\downarrow} \cap \mathrm{Some}_u^{\uparrow} \setminus \mathrm{All}_u^{\downarrow}$ :

- Replace u by two nodes  $u_1$  and  $u_2$ 
  - ullet redirect all incoming arcs a=(v,u) to  $u_1$  if  $j\in \mathrm{All}_v^\downarrow\cup\{\mathrm{job}(a)\}$  and
  - to  $u_2$  otherwise,
  - replicate all outgoing arcs for both nodes.

### Refinement of Time Window Violations



Let  $(a^{(1)}, \ldots, a^{(k)})$  be a path in our MDD starting at root  $\mathbf{r}$ , where

- $(a^{(1)}, \ldots, a^{(k-1)})$  is a feasible solution and
- the last job violates its time windows.

Let  $(a^{(i)}, \ldots, a^{(k)})$  be the smallest subpath s.t.  $\tau(\ldots, \tau(P^{(i)}, t^{(i)}), j^{(i)}) \ldots, j^{(k)})$  violates the last job's time window.

For node  $(P^{(i)}, t^{(i)})$  to  $(P^{(k)}, t^{(k)})$  do:

- replace current node  $u = (P^{(I)}, t^{(I)})$  by nodes  $u_1$  and  $u_2$ .
- Let  $(P', t') = \tau((P^{(l-1)}, t^{(l-1)}), j^{(l-1)}).$
- Redirect all incoming arcs a = (v, u) to  $u_1$  if  $(P'', t'') = \tau(v, job(a))$  and  $t''_r \ge t'_r$  for all  $r \in R$ .
- All other incoming arcs are redirected to  $u_2$ .
- The outgoing arcs are replicated for  $u_1$  and  $u_2$ .

### Next Steps



- Implementation of the algorithm
- Alternative initial (relaxed) MDDs
- Preprocessing of initial (relaxed) MDDs
- Identifying supplementary filtering rules
- Combination with A\* approach