acllll

Sequencing Jobs with One Common and Multiple
Individual Resources with Multivalued Decision Diagrams

Dissertantenseminar

Johannes Maschler, Giinther R. Raidl, and Elina Ronnberg
January 8, 2017

ac I I I [ALGORITHMS AND
COMPLEXITY GROUP

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Problem Definition: PC-JSOCMSR ac'l

We consider the Prize-Collecting Job Sequencing with One Common and
Multiple Secondary Resources (PC-JSOCMSR) problem.

We are given
e jobs J={1,...,n}, and
e resources Ry = {0} U R with R={1,..., m}

J. Maschler, G.R. Raidl, and E. Rénnberg

PC-JSOCMSR

January 8, 2017 2 /19

Problem Definition: PC-JSOCMSR ac!lt

We consider the Prize-Collecting Job Sequencing with One Common and
Multiple Secondary Resources (PC-JSOCMSR) problem.

We are given

e jobs J={1,...,n}, and

e resources Ry = {0} U R with R={1,..., m}
Each job j € J has

e a processing time p; > 0

o during which it fully requires resource g; € R and
e the common resource 0 for a part of its execution
e for p{ time beginning at p;" after the jobs’ start
e a set of time windows W; = J,,—q w; Wiw
o with W, = [V\/ﬁtvf”rt, V\/ﬁﬁ,d
e a prize z; > 0.

J. Maschler, G.R. Raidl, and E. Rénnberg

PC-JSOCMSR

Problem Definition: PC-JSOCMSR ac!lt

We consider the Prize-Collecting Job Sequencing with One Common and
Multiple Secondary Resources (PC-JSOCMSR) problem.

We are given
e jobs J={1,...,n}, and
e resources Ry = {0} U R with R={1,..., m}
Each job j € J has
e a processing time p; > 0
o during which it fully requires resource g; € R and
e the common resource 0 for a part of its execution
e for p{ time beginning at p;" after the jobs’ start
e a set of time windows W; = J,,—q w; Wiw
o with W, = Wi, W
e aprize z; > 0.

We are looking for a subset of jobs S C J
e that can be feasibly scheduled and
e maximizes the total prize, i.e., Zjeszj.

J. Maschler, G.R. Raidl, and E. Rénnberg

PC-JSOCMSR

: : 1
Solution Representation ac'l

Observe that each job requires resource 0.

e Hence, a schedule of the jobs S implies a total ordering of the jobs.

We represent a solution by a permutation m = (7;);—1,..|s|-

A normalized schedule is obtained by scheduling each job from S in the
order given by 7 at the earliest feasible time.

Obviously, any optimal solution either is
e a normalized schedule, or

e there exists a corresponding normalized schedule.

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Closely Related Literature ac'l

Andre A. Cire and Willem-Jan Van Hoeve.
Multivalued decision diagrams for sequencing problems.
Operations Research, 61(6):1411-1428, 2013.

David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and J. N.
Hooker.
Discrete optimization with decision diagrams.
INFORMS Journal on Computing, 28(1):47-66, 2016.

David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John N.
Hooker.
Decision Diagrams for Optimization.
Artificial Intelligence: Foundations, Theory, and Algorithms. Springer,
2016.

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR January 8, 2017 4/19

Recursive Model for PC-JSOCMSR ac'l

The control variables of the model are 7y,...,m, € J.

A state (P, t) consists of
o the set P C J of jobs that still can be scheduled, and

e the vector t = (t;),er, of the times from which on each resource r is
available for performing a next job.

The initial state is v = (J, (™, ..., T™in)),

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Recursive Model for PC-JSOCMSR (cont.) ac'l

The earliest feasible time for job j € J not smaller than t is given by

eft(j,t) = min{oo, t' >t |[t',t' + pj] C W;}. (1)

Let the starting time of a next job j € J w.r.t. a state (P, t) be

s((P, t),)) = {(:it(j, max(ty — pjpre7 tqj)) ifjeP)

else.

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Recursive Model for PC-JSOCMSR (cont.) ac'l"

The transition function to obtain the successor (P’, t’) of state (P, t)
when scheduling job j € J next is

H(P.0).J) = {éP\{j}, O AP Ay
else,
with
to =s((P,t),J) + Pme + PJQ (4)
tr = s((P,1),J) + pj for r = g (5)
F=t for r e R\ {q;} (6)

and 0 representing the infeasible state.

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Recursive Model for PC-JSOCMSR (cont.) ac'l"

All states except the infeasible state 0 are terminal states.

Any sequence of state transitions 7(...7(r,71)...,7;) yielding a terminal
state represents a solution (71,...,7;).

The cost associated with a state transition are h((P, t),)) = z;.

PC-JSOCMSR can be solved by calling the following function with Z*(r):

Z*(P,t) = max{0, 2 + Z*(7((P,t)./)) | j € PAT((P,t).j) # 0} (7)

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Multivalued Decision Diagrams for PC-JSOCMSR ac'lt
An MDD is a directed acyclic multi-graph G = (V, A).

MDD G = (V, A) is obtained from the recursive model by creating
e nodes for the terminal (feasible) states,

e arcs for all state transitions between terminal states
e of length h((P,t),)) = z,

Paths from r to some node v € V correspond to solutions.
An optimal solution corresponds to a longest path in the MDD.

Such an MDD is called exact because we have

Sol(P) = Sol(G), (8)
Z(x) = Z'". (9)

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Multivalued Decision Diagrams for PC-JSOCMSR ac'lt

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR January 8, 2017 10 / 19

Relaxed MDDs for PC-JSOCMSR ac'lt

A simple relaxation scheme merges a subset M of feasible states to obtain
the state

aMm=| J P (min t,)rERO : (10)

(P,t)eM (P.t)eM

For a relaxed MDD we have

Sol(P) C Sol(G), (11)
Z(m) < Z'P. (12)

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Relaxed MDDs for PC-JSOCMSR ac'l

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR January 8, 2017 12 /19

Relaxed MDDs of Width One

A relaxed MDD of width one can be obtained by
e adding {0,...,n+ 1} nodes

e where node 0 is associated with the initial state
e connect node / = 0,...,n with node / + 1
e by n arcs representing transitions for each job j € J

PC-JSOCMSR

J. Maschler, G.R. Raidl, and E. Rénnberg

ac'l"

An Incremental Refinement Algorithm for MDDs ac'lt

Input: relaxed MDD G = (V/, A) with source node r
Let p = (a®, ..., a(") be the longest path in G;
while p is infeasible do
if p contains a repetition of job j then

‘ refine reptition of job j;
else

‘ refine time window violation;
end

update longest path p;

end

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

An Incremental Refinement Algorithm for MDDs ac'lt

Let All¥ C J be the jobs on all paths from rto u € V, i.e.,

A= (Auﬁu{job(a)}) (13)

a=(v,u)eA*(u)

Let Somei C J be the jobs on some path fromrto u € V, i.e,

Some}, = U (Someﬁ U {job(a)}) (14)

a=(v,u)eA*(u)

Let Somez C J be the jobs on some path from u € V to any reachable
node, i.e.,

Some] = U (Some\T, U {job(a)}) (15)

a=(v,u)€EA—(u)

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Filtering a Relaxed MDD ac!l!

We remove arcs for which all paths that cross them violate a constraint.

We can remove any arc a = (u, v) if

s(u, job(a)) = oo

job(a) € All}

|Some};| = Hops™™® and job(a) € Some},
ZP(v) + Z%(v) < ZP

Nodes without an ingoing arc except r can be removed together with all
its outgoing arcs.

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Refinement of Job Repetitions ac'lt

A job j is assigned on each path starting from r at most once if and only if
Jj & Some}, N Some!, \ All¥ for all nodes u € V.

Given job j. For all nodes u € V with j € Some}, N Some], \ All}:
e Replace u by two nodes u; and wp
e redirect all incoming arcs a = (v, u) to uy if j € AllY U {job(a)} and
e to up otherwise,
o replicate all outgoing arcs for both nodes.

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Refinement of Time Window Violations ac'l!

Let (a, ..., a(k)) be a path in our MDD starting at root r, where
e (a®, ... alk=1)) is a feasible solution and

e the last job violates its time windows.

Let (a7, ..., a(k)) be the smallest subpath s.t.
(... T((P(0 (D), j0) ... j(K)Y violates the last job's time window.

For node (P(), (1) to (P, t(k)) do:
e replace current node u = (P"), t()) by nodes u; and us.
o Let (P, t') = r((PU=D), tU=1)) j=1)y,
¢ Redirect all incoming arcs a = (v, u) to vy if (P”,t") = 7(v,job(a))
and t/ >t/ forall r € R.
o All other incoming arcs are redirected to us.

e The outgoing arcs are replicated for u; and w,.

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

Next Steps

Implementation of the algorithm

Alternative initial (relaxed) MDDs

¢ Preprocessing of initial (relaxed) MDDs

Identifying supplementary filtering rules

Combination with A* approach

J. Maschler, G.R. Raidl, and E. Rénnberg PC-JSOCMSR

ac'l"

	Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources
	Problem Definition

