
Sequencing Jobs with One Common and Multiple
Individual Resources with Multivalued Decision Diagrams
Dissertantenseminar

Johannes Maschler, Günther R. Raidl, and Elina Rönnberg
January 8, 2017

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 1 / 19

Problem Definition: PC-JSOCMSR
We consider the Prize-Collecting Job Sequencing with One Common and
Multiple Secondary Resources (PC-JSOCMSR) problem.

We are given

• jobs J = {1, . . . , n}, and
• resources R0 = {0} ∪ R with R = {1, . . . ,m}

Each job j ∈ J has
• a processing time pj > 0

• during which it fully requires resource qj ∈ R and
• the common resource 0 for a part of its execution

• for p0
j time beginning at ppre

j after the jobs’ start

• a set of time windows Wj =
⋃

w=0,...,ωj
Wj ,w

• with Wj,w = [W start
j,w ,W end

j,w]

• a prize zj > 0.

We are looking for a subset of jobs S ⊆ J

• that can be feasibly scheduled and
• maximizes the total prize, i.e.,

∑
j∈S zj .

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 2 / 19

Problem Definition: PC-JSOCMSR
We consider the Prize-Collecting Job Sequencing with One Common and
Multiple Secondary Resources (PC-JSOCMSR) problem.

We are given

• jobs J = {1, . . . , n}, and
• resources R0 = {0} ∪ R with R = {1, . . . ,m}

Each job j ∈ J has
• a processing time pj > 0

• during which it fully requires resource qj ∈ R and
• the common resource 0 for a part of its execution

• for p0
j time beginning at ppre

j after the jobs’ start

• a set of time windows Wj =
⋃

w=0,...,ωj
Wj ,w

• with Wj,w = [W start
j,w ,W end

j,w]

• a prize zj > 0.

We are looking for a subset of jobs S ⊆ J

• that can be feasibly scheduled and
• maximizes the total prize, i.e.,

∑
j∈S zj .

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 2 / 19

Problem Definition: PC-JSOCMSR
We consider the Prize-Collecting Job Sequencing with One Common and
Multiple Secondary Resources (PC-JSOCMSR) problem.

We are given

• jobs J = {1, . . . , n}, and
• resources R0 = {0} ∪ R with R = {1, . . . ,m}

Each job j ∈ J has
• a processing time pj > 0

• during which it fully requires resource qj ∈ R and
• the common resource 0 for a part of its execution

• for p0
j time beginning at ppre

j after the jobs’ start

• a set of time windows Wj =
⋃

w=0,...,ωj
Wj ,w

• with Wj,w = [W start
j,w ,W end

j,w]

• a prize zj > 0.

We are looking for a subset of jobs S ⊆ J

• that can be feasibly scheduled and
• maximizes the total prize, i.e.,

∑
j∈S zj .

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 2 / 19

Solution Representation

Observe that each job requires resource 0.

• Hence, a schedule of the jobs S implies a total ordering of the jobs.

We represent a solution by a permutation π = (πi)i=1,...,|S|.

A normalized schedule is obtained by scheduling each job from S in the
order given by π at the earliest feasible time.

Obviously, any optimal solution either is

• a normalized schedule, or

• there exists a corresponding normalized schedule.

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 3 / 19

Closely Related Literature

Andre A. Cire and Willem-Jan Van Hoeve.
Multivalued decision diagrams for sequencing problems.
Operations Research, 61(6):1411–1428, 2013.

David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and J. N.
Hooker.
Discrete optimization with decision diagrams.
INFORMS Journal on Computing, 28(1):47–66, 2016.

David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John N.
Hooker.
Decision Diagrams for Optimization.
Artificial Intelligence: Foundations, Theory, and Algorithms. Springer,
2016.

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 4 / 19

Recursive Model for PC-JSOCMSR

The control variables of the model are π1, . . . , πn ∈ J.

A state (P, t) consists of

• the set P ⊆ J of jobs that still can be scheduled, and

• the vector t = (tr)r∈R0 of the times from which on each resource r is
available for performing a next job.

The initial state is r = (J, (Tmin, . . . ,Tmin)).

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 5 / 19

Recursive Model for PC-JSOCMSR (cont.)

The earliest feasible time for job j ∈ J not smaller than t is given by

eft(j , t) = min{∞, t ′ ≥ t | [t ′, t ′ + pj] ⊆Wj}. (1)

Let the starting time of a next job j ∈ J w.r.t. a state (P, t) be

s((P, t), j) =

{
eft(j ,max(t0 − pprej , tqj)) if j ∈ P

∞ else.
(2)

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 6 / 19

Recursive Model for PC-JSOCMSR (cont.)

The transition function to obtain the successor (P ′, t ′) of state (P, t)
when scheduling job j ∈ J next is

τ((P, t), j) =

{
(P \ {j}, t ′) if s((P, t), j) 6=∞
0̂ else,

(3)

with

t ′0 = s((P, t), j) + pprej + p0j (4)

t ′r = s((P, t), j) + pj for r = qj (5)

t ′r = tr for r ∈ R \ {qj} (6)

and 0̂ representing the infeasible state.

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 7 / 19

Recursive Model for PC-JSOCMSR (cont.)

All states except the infeasible state 0̂ are terminal states.

Any sequence of state transitions τ(. . . τ(r, π1) . . . , πi) yielding a terminal
state represents a solution (π1, . . . , πi).

The cost associated with a state transition are h((P, t), j) = zj .

PC-JSOCMSR can be solved by calling the following function with Z ∗(r):

Z ∗(P, t) = max{0, zj + Z ∗(τ((P, t), j)) | j ∈ P ∧ τ((P, t), j) 6= 0̂}. (7)

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 8 / 19

Multivalued Decision Diagrams for PC-JSOCMSR

An MDD is a directed acyclic multi-graph G = (V ,A).

MDD G = (V ,A) is obtained from the recursive model by creating

• nodes for the terminal (feasible) states,

• arcs for all state transitions between terminal states
• of length h((P, t), j) = zj ,

Paths from r to some node v ∈ V correspond to solutions.

An optimal solution corresponds to a longest path in the MDD.

Such an MDD is called exact because we have

Sol(P) = Sol(G), (8)

Z (π) = Z lp. (9)

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 9 / 19

Multivalued Decision Diagrams for PC-JSOCMSR

r

u2u1 u3

u6u5u4 u7 u8

u9

1
2

3

3
2

1
3 1

2

2
1

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 10 / 19

Relaxed MDDs for PC-JSOCMSR

A simple relaxation scheme merges a subset M of feasible states to obtain
the state

⊕(M) =

 ⋃
(P,t)∈M

P,

(
min

(P,t)∈M
tr

)
r∈R0

 . (10)

For a relaxed MDD we have

Sol(P) ⊆ Sol(G), (11)

Z (π) ≤ Z lp. (12)

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 11 / 19

Relaxed MDDs for PC-JSOCMSR

r

u′ u3

u6u5 u7 u8

u9

12
3

1
2 3 1

2

1 2

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 12 / 19

Relaxed MDDs of Width One

A relaxed MDD of width one can be obtained by

• adding {0, . . . , n + 1} nodes
• where node 0 is associated with the initial state

• connect node i = 0, . . . , n with node i + 1
• by n arcs representing transitions for each job j ∈ J

r

u1

u2

u3

1 2 3

1 2 3

1 2 3

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 13 / 19

An Incremental Refinement Algorithm for MDDs

Input: relaxed MDD G = (V ,A) with source node r
Let p = (a(1), . . . , a(n)) be the longest path in G ;
while p is infeasible do

if p contains a repetition of job j then
refine reptition of job j ;

else
refine time window violation;

end
update longest path p;

end

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 14 / 19

An Incremental Refinement Algorithm for MDDs

Let All↓u ⊆ J be the jobs on all paths from r to u ∈ V , i.e.,

All↓u =
⋂

a=(v ,u)∈A+(u)

(
All↓v ∪ {job(a)}

)
(13)

Let Some↓u ⊆ J be the jobs on some path from r to u ∈ V , i.e.,

Some↓u =
⋃

a=(v ,u)∈A+(u)

(
Some↓v ∪ {job(a)}

)
(14)

Let Some↑u ⊆ J be the jobs on some path from u ∈ V to any reachable
node, i.e.,

Some↑u =
⋃

a=(v ,u)∈A−(u)

(
Some↑v ∪ {job(a)}

)
(15)

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 15 / 19

Filtering a Relaxed MDD

We remove arcs for which all paths that cross them violate a constraint.

We can remove any arc a = (u, v) if

• s(u, job(a)) =∞
• job(a) ∈ All↓u
• |Some↓u| = Hopsmin

u and job(a) ∈ Some↓u
• Z lp(v) + Zub(v) < Z lb

Nodes without an ingoing arc except r can be removed together with all
its outgoing arcs.

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 16 / 19

Refinement of Job Repetitions

Lemma

A job j is assigned on each path starting from r at most once if and only if
j 6∈ Some↓u ∩ Some↑u \All↓u for all nodes u ∈ V .

Given job j . For all nodes u ∈ V with j ∈ Some↓u ∩ Some↑u \All↓u:

• Replace u by two nodes u1 and u2
• redirect all incoming arcs a = (v , u) to u1 if j ∈ All↓v ∪ {job(a)} and
• to u2 otherwise,
• replicate all outgoing arcs for both nodes.

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 17 / 19

Refinement of Time Window Violations

Let (a(1), . . . , a(k)) be a path in our MDD starting at root r, where

• (a(1), . . . , a(k−1)) is a feasible solution and

• the last job violates its time windows.

Let (a(i), . . . , a(k)) be the smallest subpath s.t.
τ(. . . τ((P(i), t(i)), j (i)) . . . , j (k)) violates the last job’s time window.

For node (P(i), t(i)) to (P(k), t(k)) do:

• replace current node u = (P(l), t(l)) by nodes u1 and u2.

• Let (P ′, t ′) = τ((P(l−1), t(l−1)), j (l−1)).

• Redirect all incoming arcs a = (v , u) to u1 if (P ′′, t ′′) = τ(v , job(a))
and t ′′r ≥ t ′r for all r ∈ R.

• All other incoming arcs are redirected to u2.

• The outgoing arcs are replicated for u1 and u2.

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 18 / 19

Next Steps

• Implementation of the algorithm

• Alternative initial (relaxed) MDDs

• Preprocessing of initial (relaxed) MDDs

• Identifying supplementary filtering rules

• Combination with A* approach

J.Maschler, G.R. Raidl, and E. Rönnberg PC-JSOCMSR January 8, 2017 19 / 19

	Prize-Collecting Job Sequencing with One Common and Multiple Secondary Resources
	Problem Definition

