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Problem Definition: PC-JSOCMSR
We consider the Prize-Collecting Job Sequencing with One Common and
Multiple Secondary Resources (PC-JSOCMSR) problem.

We are given

• jobs J = {1, . . . , n}, and
• resources R0 = {0} ∪ R with R = {1, . . . ,m}

Each job j ∈ J has
• a processing time pj > 0

• during which it fully requires resource qj ∈ R and
• the common resource 0 for a part of its execution

• for p0
j time beginning at ppre

j after the jobs’ start

• a set of time windows Wj =
⋃

w=0,...,ωj
Wj ,w

• with Wj,w = [W start
j,w ,W end

j,w ]

• a prize zj > 0.

We are looking for a subset of jobs S ⊆ J

• that can be feasibly scheduled and
• maximizes the total prize, i.e.,

∑
j∈S zj .
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Solution Representation

Observe that each job requires resource 0.

• Hence, a schedule of the jobs S implies a total ordering of the jobs.

We represent a solution by a permutation π = (πi )i=1,...,|S|.

A normalized schedule is obtained by scheduling each job from S in the
order given by π at the earliest feasible time.

Obviously, any optimal solution either is

• a normalized schedule, or

• there exists a corresponding normalized schedule.
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Recursive Model for PC-JSOCMSR

The control variables of the model are π1, . . . , πn ∈ J.

A state (P, t) consists of

• the set P ⊆ J of jobs that still can be scheduled, and

• the vector t = (tr )r∈R0 of the times from which on each resource r is
available for performing a next job.

The initial state is r = (J, (Tmin, . . . ,Tmin)).
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Recursive Model for PC-JSOCMSR (cont.)

The earliest feasible time for job j ∈ J not smaller than t is given by

eft(j , t) = min{∞, t ′ ≥ t | [t ′, t ′ + pj ] ⊆Wj}. (1)

Let the starting time of a next job j ∈ J w.r.t. a state (P, t) be

s((P, t), j) =

{
eft(j ,max(t0 − pprej , tqj )) if j ∈ P

∞ else.
(2)
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Recursive Model for PC-JSOCMSR (cont.)

The transition function to obtain the successor (P ′, t ′) of state (P, t)
when scheduling job j ∈ J next is

τ((P, t), j) =

{
(P \ {j}, t ′) if s((P, t), j) 6=∞
0̂ else,

(3)

with

t ′0 = s((P, t), j) + pprej + p0j (4)

t ′r = s((P, t), j) + pj for r = qj (5)

t ′r = tr for r ∈ R \ {qj} (6)

and 0̂ representing the infeasible state.
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Recursive Model for PC-JSOCMSR (cont.)

All states except the infeasible state 0̂ are terminal states.

Any sequence of state transitions τ(. . . τ(r, π1) . . . , πi ) yielding a terminal
state represents a solution (π1, . . . , πi ).

The cost associated with a state transition are h((P, t), j) = zj .

PC-JSOCMSR can be solved by calling the following function with Z ∗(r):

Z ∗(P, t) = max{0, zj + Z ∗(τ((P, t), j)) | j ∈ P ∧ τ((P, t), j) 6= 0̂}. (7)
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Multivalued Decision Diagrams for PC-JSOCMSR

An MDD is a directed acyclic multi-graph G = (V ,A).

MDD G = (V ,A) is obtained from the recursive model by creating

• nodes for the terminal (feasible) states,

• arcs for all state transitions between terminal states
• of length h((P, t), j) = zj ,

Paths from r to some node v ∈ V correspond to solutions.

An optimal solution corresponds to a longest path in the MDD.

Such an MDD is called exact because we have

Sol(P) = Sol(G ), (8)

Z (π) = Z lp. (9)
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Multivalued Decision Diagrams for PC-JSOCMSR
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Relaxed MDDs for PC-JSOCMSR

A simple relaxation scheme merges a subset M of feasible states to obtain
the state

⊕(M) =

 ⋃
(P,t)∈M

P,

(
min

(P,t)∈M
tr

)
r∈R0

 . (10)

For a relaxed MDD we have

Sol(P) ⊆ Sol(G ), (11)

Z (π) ≤ Z lp. (12)
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Relaxed MDDs for PC-JSOCMSR
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Relaxed MDDs of Width One

A relaxed MDD of width one can be obtained by

• adding {0, . . . , n + 1} nodes
• where node 0 is associated with the initial state

• connect node i = 0, . . . , n with node i + 1
• by n arcs representing transitions for each job j ∈ J
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An Incremental Refinement Algorithm for MDDs

Input: relaxed MDD G = (V ,A) with source node r
Let p = (a(1), . . . , a(n)) be the longest path in G ;
while p is infeasible do

if p contains a repetition of job j then
refine reptition of job j ;

else
refine time window violation;

end
update longest path p;

end
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An Incremental Refinement Algorithm for MDDs

Let All↓u ⊆ J be the jobs on all paths from r to u ∈ V , i.e.,

All↓u =
⋂

a=(v ,u)∈A+(u)

(
All↓v ∪ {job(a)}

)
(13)

Let Some↓u ⊆ J be the jobs on some path from r to u ∈ V , i.e.,

Some↓u =
⋃

a=(v ,u)∈A+(u)

(
Some↓v ∪ {job(a)}

)
(14)

Let Some↑u ⊆ J be the jobs on some path from u ∈ V to any reachable
node, i.e.,

Some↑u =
⋃

a=(v ,u)∈A−(u)

(
Some↑v ∪ {job(a)}

)
(15)
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Filtering a Relaxed MDD

We remove arcs for which all paths that cross them violate a constraint.

We can remove any arc a = (u, v) if

• s(u, job(a)) =∞
• job(a) ∈ All↓u
• |Some↓u| = Hopsmin

u and job(a) ∈ Some↓u
• Z lp(v) + Zub(v) < Z lb

Nodes without an ingoing arc except r can be removed together with all
its outgoing arcs.
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Refinement of Job Repetitions

Lemma

A job j is assigned on each path starting from r at most once if and only if
j 6∈ Some↓u ∩ Some↑u \All↓u for all nodes u ∈ V .

Given job j . For all nodes u ∈ V with j ∈ Some↓u ∩ Some↑u \All↓u:

• Replace u by two nodes u1 and u2
• redirect all incoming arcs a = (v , u) to u1 if j ∈ All↓v ∪ {job(a)} and
• to u2 otherwise,
• replicate all outgoing arcs for both nodes.
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Refinement of Time Window Violations

Let (a(1), . . . , a(k)) be a path in our MDD starting at root r, where

• (a(1), . . . , a(k−1)) is a feasible solution and

• the last job violates its time windows.

Let (a(i), . . . , a(k)) be the smallest subpath s.t.
τ(. . . τ((P(i), t(i)), j (i)) . . . , j (k)) violates the last job’s time window.

For node (P(i), t(i)) to (P(k), t(k)) do:

• replace current node u = (P(l), t(l)) by nodes u1 and u2.

• Let (P ′, t ′) = τ((P(l−1), t(l−1)), j (l−1)).

• Redirect all incoming arcs a = (v , u) to u1 if (P ′′, t ′′) = τ(v , job(a))
and t ′′r ≥ t ′r for all r ∈ R.

• All other incoming arcs are redirected to u2.

• The outgoing arcs are replicated for u1 and u2.
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Next Steps

• Implementation of the algorithm

• Alternative initial (relaxed) MDDs

• Preprocessing of initial (relaxed) MDDs

• Identifying supplementary filtering rules

• Combination with A* approach
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