Finding Sup-Transition-Minors with SAT

Benedikt Klocker

Algorithms and Complexity Group Institute of Logic and Computation TU Wien

PHD Seminar, 5 November 2018

A Model for EBSTM

Given transitioned graphs (G, \mathcal{T}) and (H, \mathcal{S}) . The model consists of

- 1. a partial surjective function $\varphi: V(G) \nrightarrow V(H)$,
- 2. a partial injective and surjective function $\kappa : E(G) \nrightarrow E(H)$,
- 3. a partial injective function $\theta : E(G) \nrightarrow V(H)$,
- 4. for each $w \in V(H)$ a pair (T_w, S_w) of transitions with $T_w \in \mathcal{T}$ and $S_w \in \mathcal{S}(w)$.
- 5. for each $w \in V(H)$ two simple trees C_w^1 and C_w^2 with $V(C_w^i) \subseteq V(G)$ for i = 1, 2.

acılı

$$\begin{split} E(C_w^i) &\subseteq r_G[E(G)] & \forall w \in V(H), \forall i = 1, 2 \\ \kappa(e) &= f \Rightarrow \varphi[r_G(e)] &= r_H(f) & \forall e \in E(G), \forall f \in E(H) \\ V(C_w^1) \cup V(C_w^2) &= \varphi^{-1}(w) & \forall w \in V(H) \\ \{\pi_1(T_w)\} &= V(C_w^1) \cap V(C_w^2) & \forall w \in V(H) \\ \pi_2(T_w) &\subseteq \kappa^{-1}[\pi_2(S_w)] \cup \theta^{-1}[w] \cup E_w^1 & \forall w \in V(H) \\ (\kappa^{-1}[\pi_2(S_w)] \cap E(\pi_1(T_w))) \cup \theta^{-1}[w] \subseteq \pi_2(T_w) & \forall w \in V(H) \\ e \in \operatorname{dom}(\kappa) \wedge \kappa(e) \in \pi_2(S_w) \Rightarrow r_G(e) \cap V(C_w^1) \neq \emptyset & \forall w \in V(H), \forall e \in E(G) \\ e \in \operatorname{dom}(\kappa) \wedge \kappa(e) \in E(w) \setminus \pi_2(S_w) \Rightarrow r_G(e) \cap V(C_w^2) \neq \emptyset & \forall w \in V(H), \forall e \in E(G) \\ v \in V(C_w^1) \setminus \{\pi_1(T_w)\} \wedge \operatorname{deg}_{C_w^1}(v) = 1 \wedge v \notin \bigcup r_G[\theta^{-1}[w]] \\ \Rightarrow E(v) \cap \kappa^{-1}[\pi_2(S_w)] \neq \emptyset & \forall w \in V(H), \forall v \in V(G) \\ E_{C_w^1}(\pi_1(T_w)) \subseteq r_G[\pi_2(T_w)] & \forall w \in V(H) \\ \theta(e) &= w \Rightarrow r_G(e) \notin E(C_w^1) & \forall e \in E(G), \forall w \in V(H) \end{split}$$

acılı

SAT - Modelling (Partial Functions)

Let $f : A \rightarrow B$ be a partial function. Use binary variables $x_{a,b}$ for $a \in A$ and $b \in B$: $x_{a,b}$ is true if and only if f(a) = b. Assuring that x represents a partial function:

$$\textit{partial}(x) :=
eg(x_{a,b_1} \land
eg x_{a,b_2}) \quad \forall a \in A, \{b_1, b_2\} \subseteq B$$

Number of clauses:

$$|partial(x)| := |A| \cdot {|B| \choose 2}$$

Assuring that x represents a function:

$$\mathit{function}(x) := \mathit{partial}(x) \land (\bigvee_{b \in B} x_{a,b} \quad orall a \in A)$$

 $|\mathit{function}(x)| = |A| \cdot {|B| \choose 2} + |A|$

AC^{IIII} SAT - Modelling Function properties

Let x represent a (partial) function as described before.

$$\begin{aligned} \text{injective}(x) &:= \neg (x_{a_1,b} \land x_{a_2,b}) \quad \forall \{a_1, a_2\} \subseteq A, b \in B \\ &|\text{injective}(x)| = \binom{|A|}{2} |B| \\ &\text{surjective}(x) := \bigvee_{a \in A} x_{a,b} \quad \forall b \in B \\ &|\text{surjective}(x)| = |B| \end{aligned}$$

Let G be a *simple* undirected graph. To model a subtree of G we use the directed version of G by replacing each edge with two opposite arcs.

Variables:

- $(r_v)_{v \in V(G)}$ true iff v is the root vertex of the out-tree
- $(x_v)_{v \in V(G)}$ decides if the vertex v is in the subtree
- $(y_a)_{a \in A(G)}$ decides if the arc *a* is in the subtree
- ▶ $(t_{v_1,v_2})_{v_1,v_2 \in V(G)}$ the transitive closure of the arcs in the tree

AT - Mo <i>tree</i> (r	delling Trees cont. r,x,y,t) :=	
	$\neg (r_{v_1} \wedge r_{v_2})$	$\forall \{v_1, v_2\} \subseteq V(G)$
\wedge	$r_{v} \rightarrow x_{v}$	$\forall v \in V(G)$
\wedge	$y_{(v_1,v_2)} \rightarrow (x_{v_1} \wedge x_{v_2})$	$\forall (v_1, v_2) \in A(G)$
\wedge	$\neg(y_{(v_1,v)} \land y_{(v_2,v)})$	$\forall v \in V, \{v_1, v_2\} \subseteq N(v)$
\wedge	$x_{\nu} \to \left(\bigvee_{\nu_1 \in \mathcal{N}(\nu)} y_{(\nu_1,\nu)} \lor r_{\nu}\right)$	$\forall v \in V(G)$
\wedge	$y_{(v_1,v_2)} \rightarrow t_{v_1,v_2}$	$\forall (v_1, v_2) \in A(G)$
\wedge	$t_{v_1,v_2}\wedge t_{v_2,v_3} ightarrow t_{v_1,v_3}$	$\forall v_1, v_2, v_3 \in V(G)$
\wedge	$\neg t_{v,v}$	$\forall v \in V$

ac^{ılıı} The SAT Model - Variables

- $x_{v,w}$... partial surjective function $\varphi: V(G) \nrightarrow V(H)$.
- $y_{e,f}$... partial injective surjective function $\kappa : E(G) \rightarrow E(H)$.
- ► $z_{e,w}$... partial injective function $\theta : E(G) \nrightarrow V(H)$.
- $a_{w,T}$... injective function representing $T_w = T$.
- ▶ $b_{w,S}$... injective function representing $S_w = S$ with restriction $S \in S(w)$.
- $o_{v,w,i}$... vertex indicator for subtree C_w^i .
- $p_{a,w,i}$... arc indicator for subtree C_w^i .
- ► t_{v1,v2} ... transitive closure for arcs in all trees together. Number of variables:

```
|V(G)||V(H)| + |E(G)||E(H)| + |E(G)||V(H)| + |V(H)||\mathcal{T}| + |\mathcal{S}| + 2|V(G)||V(H)| + 4|E(G)||V(H)| + |V|^2
```

Base-Model:

$$\kappa(e) = f \Rightarrow \varphi[r_G(e)] = r_H(f) \quad \forall e \in E(G), \forall f \in E(H)$$

SAT-Model:

$$\forall e = v_1 v_2 \in E(G), \forall f = w_1 w_2 \in E(H)$$

 $y_{e,f} \rightarrow ((x_{v_1,w_1} \land y_{v_2,w_2}) \lor (x_{v_2,w_1} \land y_{v_1,w_2}))$

Number of clauses:

4|E(G)||E(H)|

Base-Model:

$$V(C_w^1) \cup V(C_w^2) = \varphi^{-1}(w) \quad \forall w \in V(H)$$

SAT-Model:

$$\forall v \in V(G), \forall w \in V(H)$$

 $(o_{v,w,1} \lor o_{v,w,2}) \leftrightarrow x_{v,w}$

Number of clauses:

3|V(G)||V(H)|

Base-Model:

$$\{\pi_1(T_w)\} = V(C^1_w) \cap V(C^2_w) \quad \forall w \in V(H)$$

SAT-Model:

$$orall v \in V(G), orall w \in V(H)$$
 $\left(igvee_{T \in \mathcal{T}(v)} a_{w,T}
ight) \leftrightarrow (o_{v,w,1} \wedge o_{v,w,2})$

Number of clauses:

 $\leq (1 + \Delta(G))|V(G)||V(H)|$

Base-Model:

$$\pi_2(T_w) \subseteq \kappa^{-1}[\pi_2(S_w)] \cup \theta^{-1}[w] \cup E^1_w \quad \forall w \in V(H)$$

SAT-Model:

$$\forall e = v_1 v_2 \in E(G), \forall w \in V(H)$$

$$\begin{pmatrix} \bigvee_{T \in \mathcal{T}: e \in \pi_2(T)} a_{w,T} \end{pmatrix} \rightarrow \bigvee_{S \in \mathcal{S}(w)} \begin{pmatrix} b_{w,S} \land \bigvee_{f \in \pi_2(S)} y_{e,f} \\ \lor z_{e,w} \lor p_{(v_1,v_2),w,1} \lor p_{(v_1,v_2),w,2} \end{pmatrix}$$

Number of clauses:

 $\leq 8|E(G)||V(H)|$

acılı

The SAT Model - Constraints 5

Base-Model:

$$\left(\kappa^{-1}[\pi_2(S_w)] \cap E(\pi_1(T_w))\right) \cup \theta^{-1}[w] \subseteq \pi_2(T_w) \quad \forall w \in V(H)$$

SAT-Model:

$$\forall w \in V(H), \forall S \in \mathcal{S}(w), \forall T \in \mathcal{T}, \forall e \in E(\pi_1(T)) \setminus \pi_2(T)$$

$$a_{w,T} \wedge b_{w,S} \rightarrow \neg \bigvee_{f \in \pi_2(S)} y_{e,f}$$

$$\forall w \in V(H), T \in \mathcal{T}, e \in E(G) \setminus \pi_2(T)$$

$$a_{w,T} \rightarrow \neg z_{e,w}$$

Number of clauses:

$$\leq 2|\mathcal{S}||\mathcal{T}|(\Delta(G)-2)+|V(H)||\mathcal{T}|(|E|-2)$$

Base-Model:

$$orall w \in V(H), orall e \in E(G)$$

 $e \in \operatorname{dom}(\kappa) \wedge \kappa(e) \in \pi_2(S_w) \Rightarrow r_G(e) \cap V(C_w^1) \neq \emptyset$

SAT-Model:

$$\forall w \in V(H), \forall S \in \mathcal{S}(w), \forall e = v_1 v_2 \in E(G)$$
$$\left(b_{w,S} \land \bigvee_{f \in \pi_2(S)} y_{e,f}\right) \rightarrow (o_{v_1,w,1} \lor o_{v_2,w,1})$$

Number of clauses:

 $2|\mathcal{S}||E(G)|$

Base-Model:

$$\forall w \in V(H), \forall e \in E(G)$$
$$e \in \operatorname{dom}(\kappa) \wedge \kappa(e) \in E(w) \setminus \pi_2(S_w) \Rightarrow r_G(e) \cap V(C_w^2) \neq \emptyset$$
SAT-Model:

$$\forall w \in V(H), \forall S \in \mathcal{S}(w), \forall e = v_1 v_2 \in E(G)$$
$$\left(b_{w,S} \land \bigvee_{f \in E(w) \setminus \pi_2(S)} y_{e,f}\right) \to (o_{v_1,w,2} \lor o_{v_2,w,2})$$

Number of clauses:

 $2|\mathcal{S}||E(G)|$

ac^{III} The SAT Model - Constraints 8 Base-Model:

$$\forall w \in V(H), \forall v \in V(G)$$

$$v \in V(C_w^1) \setminus \{\pi_1(T_w)\} \land \deg_{C_w^1}(v) = 1 \land v \notin \bigcup r_G[\theta^{-1}[w]]$$

$$\Rightarrow E(v) \cap \kappa^{-1}[\pi_2(S_w)] \neq \emptyset$$

SAT-Model:

$$\forall w \in V(H), \forall S \in S(w), \forall v \in V(G)$$

$$(b_{w,S} \land o_{v,w,1} \bigwedge_{v' \in \mathcal{N}(v)} \neg p_{(v,v'),w,1} \land \bigwedge_{e \in E(v)} \neg z_{e,w}) \rightarrow \\ \left(\bigvee_{e \in E(v), f \in \pi_2(S)} y_{e,f} \lor o_{v,w,2} \right)$$

Benedikt Klocker

Base-Model:

$$\mathsf{E}_{C^1_w}(\pi_1(T_w)) \subseteq \mathsf{r}_G[\pi_2(T_w)] \quad \forall w \in V(H)$$

SAT-Model:

$$\forall w \in V(H), \forall T \in T, \forall v \in N(\pi_1(T)) \setminus \bigcup r_G[\pi_2(T)]$$
$$a_{w,T} \to \neg p_{(\pi_1(T),v),w,1} \land \neg p_{(v,\pi_1(T)),w,1}$$

Number of clauses:

$$\leq 2|V(H)||\mathcal{T}||\Delta(G)-2|$$

Base-Model:

$$\begin{array}{l} \theta(e) = w \Rightarrow r_{G}(e) \subseteq V(C_{w}^{1}) \quad \forall e \in E(G), \forall w \in V(H) \\ \\ \text{SAT-Model:} \\ \\ \forall w \in V(H), \forall e = v_{1}v_{2} \in E(G) \\ \\ \\ z_{e,w} \rightarrow (o_{v_{1},w,1} \land o_{v_{2},w,1}) \end{array}$$

Number of clauses:

2|V(H)||E(G)|

Base-Model:

$$\theta(e) = w \Rightarrow r_{G}(e) \notin E(C_{w}^{1}) \quad \forall e \in E(G), \forall w \in V(H)$$

SAT-Model:
$$\forall w \in V(H), \forall e = v_{1}v_{2} \in E(G)$$
$$z_{e,w} \rightarrow (\neg p_{(v_{1},v_{2}),w,1} \land \neg p_{(v_{2},v_{1}),w,1})$$

Number of clauses:

2|V(H)||E(G)|

ac^{IIII} _____ Compare SAT with MIP approach

- Constructing the SAT model with Python to have a fair comparison with the MIP model
- Solving the SAT model with Glucose (a SAT solver written in C)
- Three instance sets
 - S1: contracting three random perfect matchings for all snarks with up to 26 vertices and 1000 snarks with 28 vertices
 - S2: contracting all perfect pseudo-matchings for all snarks with up to 22 vertices (removing duplicate instances by automorphism check)
 - ► G1: randomly generated 4-regular completely transitioned graphs (for G and H)

ac^{IIII} _____ Compare SAT with MIP approach - S1

			MIP				SAT			
V	instances	t[s]	inf	feas	tl	t[s]	inf	feas		
10	4	0.17	0	0 4 0		0.11	0	4		
18	8	6.45	0	8	0	0.20	0	8		
20	24	3.96	0	24	24 0 0		0	24		
22	124	12.34	2	121	1	0.31	3	121		
24	620	14.98	12	604	4	0.36	16	604		
26	5188	20.53	23	5124	41	0.41	64	5124		
28	4004	34.32	12	3973	19	0.46	31	3973		

ac^{IIII} _____ Compare SAT with MIP approach - S2

			MIP				SAT	
V	instances	t[s]	inf	feas	tl	t[s]	inf	feas
18	98	183.63	83	15	0	0.24	83	15
20	1116	251.36	700	416	0	0.31	700	416
22	10694	349.24	5813	4873	8	0.38	5821	4873

acılı

Compare SAT with MIP approach - G1

			MIP				SAT			
V(G)	V(H)	instances	t[s]	inf	feas	tl	t[s]	inf	feas	
09	5	30	227.53	15	15	0	0.48	15	15	
09	6	30	3387.63	26	4	0	0.54	26	4	
09	7	30	7959.24	30	0	0	0.60	30	0	
10	5	30	208.88	11	19	0	0.57	11	19	
10	6	30	7244.40	26	4	0	1.29	26	4	
10	7	30	32582.47	22	0	8	1.48	30	0	
11	5	30	146.22	5	25	0	0.41	5	25	
11	6	30	15001.70	14	9	7	3.16	21	9	
11	7	30	43200.00	6	1	23	3.14	29	1	
12	5	30	110.25	2	28	0	0.52	2	28	
12	6	30	1593.95	1	21	8	3.14	9	21	
12	7	30	43200.00	0	1	29	6.03	29	1	
13	5	30	114.56	0	28	2	0.58	2	28	
13	6	30	2189.21	0	20	10	4.10	10	20	
13	7	30	43200.00	0	3	27	14.38	23	7	
14	5	30	41.97	0	30	0	0.47	0	30	
14	6	30	748.52	0	27	3	2.37	2	28	
14	7	30	43200.00	0	5	25	26.56	22	8	
15	5	30	42.91	0	30	0	0.53	0	30	
15	6	30	655.60	0	28	2	1.93	1	29	
15	7	30	43200.00	0	14	16	19.10	12	18	

Circuit Double Cover Conjecture (CDCC)

Let G be a bridgeless undirected graph. Then, there exists a collection of circuits of G, such that each edge is contained in exactly two circuits.

Theorem (Jaeger(1985))

Every minimal counter example to the CDCC must be a snark.

Definition (Compatible Circuit Decomposition)

Let (G, \mathcal{T}) be a transitioned graph. A *compatible circuit* decomposition of G is a circuit decomposition \mathcal{C} of G such that for all transitions in \mathcal{T} there is no circuit in \mathcal{C} which contains both edges of the transition.

Theorem

If a snark G contains a perfect (pseudo-)matching such that its contraction leads to a transitioned graph for which there exists a CCD, then there exists a CDC for G.

ac^{IIII} A "real" world application ;)

Theorem (Fleischner(1980))

If a transitioned graph is planar it has a CCD.

Theorem (Fhan and Zhang(2000))

If a transitioned graph is K_5 -minor-free it has a CCD.

Theorem (Fleischner et al.(2018))

If a transitioned graph is bad- K_5 -minor-free it has a CCD.

acılıı

A "real" world application ;)

We want to check for a graph if it contains a planarizing/ K_5 -minor-free/bad- K_5 -minor-free/CCD-containing perfect pseudo-matching:

- 1. Given a snark G as input
- 2. Generate all perfect pseudo matchings and the corresponding contracted transitioned graphs
- 3. Check for all contracted graphs if they are planar, if we find one *stop*
- 4. Check for all contracted graphs if one of them is K_5 -minor-free, if we find one *stop*
- 5. Check for all contracted graphs if one of them is $bad-K_5$ -minor-free, if we find one *stop*
- 6. Check for all contracted graphs if one of them contains a CCD, if we find one *stop*

ac^{III} ______ Implementation Details

- ► Framework is implemented in C++ (due to better performance compared to Python)
- Planarity is checked with boosts implementation of the Boyer-Myrvold planarity test (linear time)
- ► K₅-minor-freeness is checked at the moment with a SAT-model (although it could be checked in linear time with a quite complex algorithm) using Glucose as SAT-solver
- ► bad-*K*₅-minor freeness is checked with the above presented SAT-model using Glucose as SAT solver
- CCD-containment is checked with a simple SAT-model using Glucose as SAT-solver

ac^{III} . Results

Could solve all snarks with up to 32 vertices. (1918812 graphs)

- 1 893 564 graphs contain a planarizing perfect pseudo-matching
- ▶ 6 118 graphs contain no planarizing perfect pseudo-matching but a K₅-minor-free perfect pseudo-matching
- ► 19130 graphs contain no K₅-minor-free perfect pseudo-matching but a bad-K₅-minor-free perfect pseudo matching

All snarks with up to 32 vertices contain a bad- K_5 -minor-free perfect pseudo matching.

Note: most runtime is used in checking K_5 -minor-freeness. Bad- K_5 -minor-freeness is proven almost always with the first tested perfect-pseudo-matching.

acılı

Results - Skipping K_5 -minor tests

Could solve all snarks with up to 34 vertices. (27 205 765 graphs)

- 26 298 275 graphs contain a planarizing perfect pseudo-matching
- ▶ 907 490 graphs contain no planarizing perfect pseudo-matching but a bad-K₅-minor-free perfect pseudo-matching

All snarks with up to 34 vertices contain a bad- K_5 -minor-free perfect pseudo matching.

acılı

Results - Checking all perfect pseudo-matchings

 Was able to check all perfect pseudo-matchings for all snarks with up to 26 vertices

ac^{ilii} _____ Future Work

- Check "all" known snarks with up to 40 vertices
- ▶ Implement an efficient K₅-minor-check
- Symmetry breaking in perfect pseudo-matching construction
- ► Symmetry breaking in bad-K₅-minor SAT
- Compare the SAT approach with a CP approach

