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Introduction

Definition (UHG)
If a graph contains exactly one hamiltonian cycle it is called a
uniquely hamiltonian graph (UHG).

Conjecture by Bondy and Jackson
Every planar uniquely hamiltonian graph has at least two vertices
of degree two.

Goal
Find a simple planar uniquely hamiltonian graph with minimum
degree 3 and therefore disprove the conjecture of Bondy and
Jackson.
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Removing unvisited vertices

e⇒G G ′

Removing unvisited vertices
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b Let G be a graph. We call the pair (e,C), where C is a cycle
and e an edge occuring in C a fixed edge cycle, or short FE-cycle.
An FE-cycle (e,C) is called maximal if there is no other FE-cycle
(e,C ′) with V (C ′) ) V (C).
An FE-cycle (e,C) is called unique if there is no other FE-cycle
(e,C ′) with V (C ′) = V (C) and C ′ 6= C .
=

Simplified Goal
Find a simple planar graph with minimum degree 3 which contains
a unique maximal dominating FE-cycle.

b at (0.8,0) U; [myedgestyle] (0.5,0) arc (360:0:0.5 and 0.5) node
(1,0) ; at ((w) + (−1.2, 1)) (tmp) [mynodestyle] edge (w) edge
[red] ((tmp) + (−0.4, 0.4)) edge [red] ((tmp) + (0.4, 0.4)) edge
((tmp) + (−0.2, 0.4)) edge ((tmp) + (0.2, 0.4)); at
((tmp) + (0, 0.4)) . . . ; at ((w) + (0, 1)) (tmp) [mynodestyle] edge
(w) edge [red] ((tmp) + (−0.4, 0.4)) edge [red]
((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (1.2, 1))Checking Unique Hamiltonicity Benedikt Klocker 4



(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; ((w) + (−1.2, 1))
– (w.160); ((w) + (−1.2,−1)) – (w.200); at ((w) + (−1.2,−1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4))
edge [red] ((tmp) + (0.4,−0.4)); at ((w) + (0,−1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4)) edge
[red] ((tmp) + (0.4,−0.4)); at ((w) + (1.2,−1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4)) edge
[red] ((tmp) + (0.4,−0.4)); at (5,0) (w) [mynodestyle] ; at
((w) + (0.3, 0)) u; at ((w) + (−1.2, 1)) (tmp) [mynodestyle] edge
(w) edge [red] ((tmp) + (−0.4, 0.4)) edge [red]
((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (0, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (1.2, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
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((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at
((w) + (−1.2,−1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
((w) + (0,−1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
((w) + (1.2,−1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
(2.5,0) ⇒; b at (0.8,0) U; [myedgestyle] (0.5,0) arc (360:0:0.5
and 0.5) node (1,0) ; at ((w) + (−1.2, 1)) (tmp) [mynodestyle]
edge (w) edge [red] ((tmp) + (−0.4, 0.4)) edge [red]
((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (0, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (1.2, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; ((w) + (−1.2, 1))
– (w.160); ((w) + (−1.2,−1)) – (w.200); at ((w) + (−1.2,−1))
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(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4))
edge [red] ((tmp) + (0.4,−0.4)); at ((w) + (0,−1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4)) edge
[red] ((tmp) + (0.4,−0.4)); at ((w) + (1.2,−1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4)) edge
[red] ((tmp) + (0.4,−0.4)); at (5,0) (w) [mynodestyle] ; at
((w) + (0.3, 0)) u; at ((w) + (−1.2, 1)) (tmp) [mynodestyle] edge
(w) edge [red] ((tmp) + (−0.4, 0.4)) edge [red]
((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (0, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (1.2, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at
((w) + (−1.2,−1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
((w) + (0,−1)) (tmp) [mynodestyle] edge (w) edge [red]
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((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
((w) + (1.2,−1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
(2.5,0) ⇒;
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Observation: If G is 2-vertex-connected, the new vertex u has
degree at least 2 and in this case we can still apply the previous
transformation.
First Approach=

New Goal
Find a simple planar graph with minimum degree 3 which contains
a unique maximal dominating FE-cycle.

benumerate
Generate (all) planar graphs (with a fixed number of vertices) with
minimum degree 3.
For each generated graph G , check if it contains a unique maximal
FE-cycle by doing the following:

1. For each edge e in G repeat the following steps until no new
maximal FE-cycle with e as the fixed edge could be found:
1.1 Find a new maximal FE-cycle with e as the fixed edge.

1.2 Check if the FE-cycle is unique. benumerate
Generate (all) planar graphs (with a fixed number of vertices) with
minimum degree 3.Checking Unique Hamiltonicity Benedikt Klocker 5



For each generated graph G , check if it contains a unique maximal
FE-cycle by doing the following:

1. For each edge e in G repeat the following steps until no new
maximal FE-cycle with e as the fixed edge could be found:

1.1 Find a new maximal FE-cycle with e as the fixed edge.

1.2 Check if the FE-cycle is unique.Checking Unique Hamiltonicity Benedikt Klocker 5



benumerate
2. Generate (all) planar graphs (with a fixed number of vertices) with

minimum degree 3.
3. For each generated graph G , check if it contains a unique maximal

FE-cycle by doing the following:
3.1 For each edge e in G repeat the following steps until no new

maximal FE-cycle with e as the fixed edge could be found:
3.1.1 Find a new maximal FE-cycle with e as the fixed edge.
3.1.2 Check if the FE-cycle is unique.
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benumerate
Generate (all) planar graphs (with a fixed number of vertices) with
minimum degree 3.
For each generated graph G , check if it contains a unique maximal
FE-cycle by doing the following:

1. For each edge e in G repeat the following steps until no new
maximal FE-cycle with e as the fixed edge could be found:

1.1 Find a new maximal FE-cycle with e as the fixed edge.

1.2 Check if the FE-cycle is unique.
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ILP model for Finding a Maximal FE-cycle

Input
A graph G = (V ,E ), an edge e0 = i0j0 ∈ E and a set C of all
maximal FE-cycles with e as the fixed edge found until now.

Variables
I (xv )v∈V . . . xv = 1 iff v ∈ V is used in the cycle
I (ye)e∈E . . . ye = 1 iff e ∈ E is used in the cycle
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ILP model for Finding a Maximal FE-cycle cont.
Objective:

max
∑
i∈V

xi

Constraints:∑
j∈N(i)

yij = 2xi ∀i ∈ V (1)

yi0j0 = 1 (2)∑
i∈V \C

xi ≥ 1 ∀C ∈ C (3)

∑
e∈δ(V ′)

ye ≥ 2xi ∀∅ 6= V ′ ⊆ V \ {i0} , i ∈ V ′ (4)

ye ∈ {0, 1} ∀e ∈ E (5)
xi ∈ {0, 1} ∀i ∈ V (6)
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ILP model for Checking Uniqueness of FE-cycle

Input
A graph G = (V ,E ) and a maximal FE-cycle (e,C).

Variables
I (ye)e∈EC

. . . ye = 1 iff e ∈ E is used in the cycle
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ILP model for Checking Uniqueness of FE-cycle cont.

No objective (only feasibility interesting)

Constraints: ∑
j∈N(i)C

yij = 2 ∀i ∈ VC (7)

yi1i2 = 1 (8)∑
e∈δ(V ′)

ye ≥ 2 ∀∅ 6= V ′ ⊆ VC \ {i1} , k ∈ V ′ (9)

∑
ij∈EC \E(C)

yij ≥ 2 (10)

ye ∈ {0, 1} ∀e ∈ EC (11)
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Reducing the number of ILPs to solve

I Store for each set of vertices V ′ and for each edge e a list of all
cycles found until now using the edge e and the vertices V ′.

I In the first phase only search cycles for new vertex sets or new
edges.

I In the second phase we do not have to check FE-cycles for which
there are already two cycles containing the fixed edge.
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Reusing ILP-states
I Goal: Reuse ILP-tree after maximal cycle got found.

I Use callback to store every found cycle in C and add the
constraint (3) for every cycle.

I The found cycles don’t have to be maximal!

I The constraint (3) ensures that afterwards only larger cycles or not
comparable cycles get found

I If a larger cycle gets found remove all smaller cycles from the
datastructure C and the according constraints from the model, since they
get dominated from the new constraint.

I If no new cycle got found, all cycles in the datastructure are
maximal and no other maximal cycle exists

I The ILP terminates as infeasible, since all work happens in the
collection of the cycles during the callback.
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Minimal Counter Example

Goal
Find properties for a minimal planar graph with minimum degree 3,
which contains a unique maximal FE-cycle. Reduce the number of
graphs to test drastically by only testing candidates for a minimal
counter example.

By minimal we mean minimal according to the following relation.

Definition
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. Then we say
G1 ≤ G2 iff

|V1| < |V2| ∨ (|V1| = |V2| ∧ |E1| ≤ |E2|) .
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Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a large vertex.

Let G = (V ,E ) be a minimal counter example with the unique
FE-cycle (e,C):

I C is dominating

I G is 3-connected

I Every neighbor of a large vertex is in V (C)
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Properties of a Minimal Counter Example cont.

Let G = (V ,E ) be a minimal counter example with the unique
FE-cycle (e,C):

I Every arc between large vertices is in E (C)

I No vertex has 3 large neighbors

I There is no cycle consisting only of large vertices in G

I |E | ≤ |V |+ n3 − δ where n3 = |{v ∈ V : deg(v) = 3}| and δ is
the number of small vertices incident to e

I ��
���

�XXXXXX|E | ≤ 5
3 |V |

I G does not contain any triangles

I |E | ≤ 2|V | − 4
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Construction of Candidate Graphs

I We use plantri to construct planar graphs

I Plantri constructs only one graph per isomporphism-class

I We can fix a number of vertices and give an upper bound for the
number of edges (|E | ≤ 2n − 4). Then we can filter the results by
the other properties of a minimal counter example.

I Disadvantages:

I The upper bound for the edges is only a filter and therefore not efficient

I All filters together filter out most of the generated graphs, only a small
part is really interesting (especially the property that the graph has no
triangles)
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Construction of Candidate Graphs through Dual Graphs

New idea: Generate dual graphs with plantri

I Use the edge upper bound to get an upper bound for the faces:

|F | = |E | − |V |+ 2 ≤ 2|V | − 4− |V |+ 2 ≤ |V | − 2

I The dual graph of a 3-connected graph is also 3-connected

I The dual graph has minimum degree 4 since the original graph
contained no triangles

To get all relevant graphs with at most n vertices we construct all
dual graphs with the above properties with at most n − 2 vertices
and build the dual graphs of them.
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