
Checking Unique Hamiltonicity

Benedikt Klocker
Algorithms and Complexity Group

Institute of Computer Graphics and Algorithms
TU Wien

PHD Seminar, 18 Dezember 2017

Introduction

Definition (UHG)
If a graph contains exactly one hamiltonian cycle it is called a
uniquely hamiltonian graph (UHG).

Conjecture by Bondy and Jackson
Every planar uniquely hamiltonian graph has at least two vertices
of degree two.

Goal
Find a simple planar uniquely hamiltonian graph with minimum
degree 3 and therefore disprove the conjecture of Bondy and
Jackson.

Checking Unique Hamiltonicity Benedikt Klocker 2

Removing unvisited vertices

e⇒G G ′

Removing unvisited vertices

Checking Unique Hamiltonicity Benedikt Klocker 3

b Let G be a graph. We call the pair (e,C), where C is a cycle
and e an edge occuring in C a fixed edge cycle, or short FE-cycle.
An FE-cycle (e,C) is called maximal if there is no other FE-cycle
(e,C ′) with V (C ′)) V (C).
An FE-cycle (e,C) is called unique if there is no other FE-cycle
(e,C ′) with V (C ′) = V (C) and C ′ 6= C .
=

Simplified Goal
Find a simple planar graph with minimum degree 3 which contains
a unique maximal dominating FE-cycle.

b at (0.8,0) U; [myedgestyle] (0.5,0) arc (360:0:0.5 and 0.5) node
(1,0) ; at ((w) + (−1.2, 1)) (tmp) [mynodestyle] edge (w) edge
[red] ((tmp) + (−0.4, 0.4)) edge [red] ((tmp) + (0.4, 0.4)) edge
((tmp) + (−0.2, 0.4)) edge ((tmp) + (0.2, 0.4)); at
((tmp) + (0, 0.4)) . . . ; at ((w) + (0, 1)) (tmp) [mynodestyle] edge
(w) edge [red] ((tmp) + (−0.4, 0.4)) edge [red]
((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (1.2, 1))Checking Unique Hamiltonicity Benedikt Klocker 4

(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; ((w) + (−1.2, 1))
– (w.160); ((w) + (−1.2,−1)) – (w.200); at ((w) + (−1.2,−1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4))
edge [red] ((tmp) + (0.4,−0.4)); at ((w) + (0,−1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4)) edge
[red] ((tmp) + (0.4,−0.4)); at ((w) + (1.2,−1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4)) edge
[red] ((tmp) + (0.4,−0.4)); at (5,0) (w) [mynodestyle] ; at
((w) + (0.3, 0)) u; at ((w) + (−1.2, 1)) (tmp) [mynodestyle] edge
(w) edge [red] ((tmp) + (−0.4, 0.4)) edge [red]
((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (0, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (1.2, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
Checking Unique Hamiltonicity Benedikt Klocker 4

((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at
((w) + (−1.2,−1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
((w) + (0,−1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
((w) + (1.2,−1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
(2.5,0) ⇒; b at (0.8,0) U; [myedgestyle] (0.5,0) arc (360:0:0.5
and 0.5) node (1,0) ; at ((w) + (−1.2, 1)) (tmp) [mynodestyle]
edge (w) edge [red] ((tmp) + (−0.4, 0.4)) edge [red]
((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (0, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (1.2, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; ((w) + (−1.2, 1))
– (w.160); ((w) + (−1.2,−1)) – (w.200); at ((w) + (−1.2,−1))
Checking Unique Hamiltonicity Benedikt Klocker 4

(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4))
edge [red] ((tmp) + (0.4,−0.4)); at ((w) + (0,−1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4)) edge
[red] ((tmp) + (0.4,−0.4)); at ((w) + (1.2,−1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) + (−0.4,−0.4)) edge
[red] ((tmp) + (0.4,−0.4)); at (5,0) (w) [mynodestyle] ; at
((w) + (0.3, 0)) u; at ((w) + (−1.2, 1)) (tmp) [mynodestyle] edge
(w) edge [red] ((tmp) + (−0.4, 0.4)) edge [red]
((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (0, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at ((w) + (1.2, 1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (−0.4, 0.4))
edge [red] ((tmp) + (0.4, 0.4)) edge ((tmp) + (−0.2, 0.4)) edge
((tmp) + (0.2, 0.4)); at ((tmp) + (0, 0.4)) . . . ; at
((w) + (−1.2,−1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
((w) + (0,−1)) (tmp) [mynodestyle] edge (w) edge [red]
Checking Unique Hamiltonicity Benedikt Klocker 4

((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
((w) + (1.2,−1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (−0.4,−0.4)) edge [red] ((tmp) + (0.4,−0.4)); at
(2.5,0) ⇒;

Checking Unique Hamiltonicity Benedikt Klocker 4

Observation: If G is 2-vertex-connected, the new vertex u has
degree at least 2 and in this case we can still apply the previous
transformation.
First Approach=

New Goal
Find a simple planar graph with minimum degree 3 which contains
a unique maximal dominating FE-cycle.

benumerate
Generate (all) planar graphs (with a fixed number of vertices) with
minimum degree 3.
For each generated graph G , check if it contains a unique maximal
FE-cycle by doing the following:

1. For each edge e in G repeat the following steps until no new
maximal FE-cycle with e as the fixed edge could be found:
1.1 Find a new maximal FE-cycle with e as the fixed edge.

1.2 Check if the FE-cycle is unique. benumerate
Generate (all) planar graphs (with a fixed number of vertices) with
minimum degree 3.Checking Unique Hamiltonicity Benedikt Klocker 5

For each generated graph G , check if it contains a unique maximal
FE-cycle by doing the following:

1. For each edge e in G repeat the following steps until no new
maximal FE-cycle with e as the fixed edge could be found:

1.1 Find a new maximal FE-cycle with e as the fixed edge.

1.2 Check if the FE-cycle is unique.Checking Unique Hamiltonicity Benedikt Klocker 5

benumerate
2. Generate (all) planar graphs (with a fixed number of vertices) with

minimum degree 3.
3. For each generated graph G , check if it contains a unique maximal

FE-cycle by doing the following:
3.1 For each edge e in G repeat the following steps until no new

maximal FE-cycle with e as the fixed edge could be found:
3.1.1 Find a new maximal FE-cycle with e as the fixed edge.
3.1.2 Check if the FE-cycle is unique.

Checking Unique Hamiltonicity Benedikt Klocker 5

benumerate
Generate (all) planar graphs (with a fixed number of vertices) with
minimum degree 3.
For each generated graph G , check if it contains a unique maximal
FE-cycle by doing the following:

1. For each edge e in G repeat the following steps until no new
maximal FE-cycle with e as the fixed edge could be found:

1.1 Find a new maximal FE-cycle with e as the fixed edge.

1.2 Check if the FE-cycle is unique.

Checking Unique Hamiltonicity Benedikt Klocker 5

ILP model for Finding a Maximal FE-cycle

Input
A graph G = (V ,E), an edge e0 = i0j0 ∈ E and a set C of all
maximal FE-cycles with e as the fixed edge found until now.

Variables
I (xv)v∈V . . . xv = 1 iff v ∈ V is used in the cycle
I (ye)e∈E . . . ye = 1 iff e ∈ E is used in the cycle

Checking Unique Hamiltonicity Benedikt Klocker 6

ILP model for Finding a Maximal FE-cycle cont.
Objective:

max
∑
i∈V

xi

Constraints:∑
j∈N(i)

yij = 2xi ∀i ∈ V (1)

yi0j0 = 1 (2)∑
i∈V \C

xi ≥ 1 ∀C ∈ C (3)

∑
e∈δ(V ′)

ye ≥ 2xi ∀∅ 6= V ′ ⊆ V \ {i0} , i ∈ V ′ (4)

ye ∈ {0, 1} ∀e ∈ E (5)
xi ∈ {0, 1} ∀i ∈ V (6)

Checking Unique Hamiltonicity Benedikt Klocker 7

ILP model for Checking Uniqueness of FE-cycle

Input
A graph G = (V ,E) and a maximal FE-cycle (e,C).

Variables
I (ye)e∈EC

. . . ye = 1 iff e ∈ E is used in the cycle

Checking Unique Hamiltonicity Benedikt Klocker 8

ILP model for Checking Uniqueness of FE-cycle cont.

No objective (only feasibility interesting)

Constraints: ∑
j∈N(i)C

yij = 2 ∀i ∈ VC (7)

yi1i2 = 1 (8)∑
e∈δ(V ′)

ye ≥ 2 ∀∅ 6= V ′ ⊆ VC \ {i1} , k ∈ V ′ (9)

∑
ij∈EC \E(C)

yij ≥ 2 (10)

ye ∈ {0, 1} ∀e ∈ EC (11)

Checking Unique Hamiltonicity Benedikt Klocker 9

Reducing the number of ILPs to solve

I Store for each set of vertices V ′ and for each edge e a list of all
cycles found until now using the edge e and the vertices V ′.

I In the first phase only search cycles for new vertex sets or new
edges.

I In the second phase we do not have to check FE-cycles for which
there are already two cycles containing the fixed edge.

Checking Unique Hamiltonicity Benedikt Klocker 10

Reusing ILP-states
I Goal: Reuse ILP-tree after maximal cycle got found.

I Use callback to store every found cycle in C and add the
constraint (3) for every cycle.

I The found cycles don’t have to be maximal!

I The constraint (3) ensures that afterwards only larger cycles or not
comparable cycles get found

I If a larger cycle gets found remove all smaller cycles from the
datastructure C and the according constraints from the model, since they
get dominated from the new constraint.

I If no new cycle got found, all cycles in the datastructure are
maximal and no other maximal cycle exists

I The ILP terminates as infeasible, since all work happens in the
collection of the cycles during the callback.
Checking Unique Hamiltonicity Benedikt Klocker 11

Minimal Counter Example

Goal
Find properties for a minimal planar graph with minimum degree 3,
which contains a unique maximal FE-cycle. Reduce the number of
graphs to test drastically by only testing candidates for a minimal
counter example.

By minimal we mean minimal according to the following relation.

Definition
Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. Then we say
G1 ≤ G2 iff

|V1| < |V2| ∨ (|V1| = |V2| ∧ |E1| ≤ |E2|) .

Checking Unique Hamiltonicity Benedikt Klocker 12

Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a large vertex.

Let G = (V ,E) be a minimal counter example with the unique
FE-cycle (e,C):

I C is dominating

I G is 3-connected

I Every neighbor of a large vertex is in V (C)

Checking Unique Hamiltonicity Benedikt Klocker 13

Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a large vertex.

Let G = (V ,E) be a minimal counter example with the unique
FE-cycle (e,C):

I C is dominating

I G is 3-connected

I Every neighbor of a large vertex is in V (C)

Checking Unique Hamiltonicity Benedikt Klocker 13

Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a large vertex.

Let G = (V ,E) be a minimal counter example with the unique
FE-cycle (e,C):

I C is dominating

I G is 3-connected

I Every neighbor of a large vertex is in V (C)

Checking Unique Hamiltonicity Benedikt Klocker 13

Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a large vertex.

Let G = (V ,E) be a minimal counter example with the unique
FE-cycle (e,C):

I C is dominating

I G is 3-connected

I Every neighbor of a large vertex is in V (C)

Checking Unique Hamiltonicity Benedikt Klocker 13

Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a large vertex.

Let G = (V ,E) be a minimal counter example with the unique
FE-cycle (e,C):

I C is dominating

I G is 3-connected

I Every neighbor of a large vertex is in V (C)

Checking Unique Hamiltonicity Benedikt Klocker 13

Properties of a Minimal Counter Example cont.

Let G = (V ,E) be a minimal counter example with the unique
FE-cycle (e,C):

I Every arc between large vertices is in E (C)

I No vertex has 3 large neighbors

I There is no cycle consisting only of large vertices in G

I |E | ≤ |V |+ n3 − δ where n3 = |{v ∈ V : deg(v) = 3}| and δ is
the number of small vertices incident to e

I ��
���

�XXXXXX|E | ≤ 5
3 |V |

I G does not contain any triangles

I |E | ≤ 2|V | − 4

Checking Unique Hamiltonicity Benedikt Klocker 14

Properties of a Minimal Counter Example cont.

Let G = (V ,E) be a minimal counter example with the unique
FE-cycle (e,C):

I Every arc between large vertices is in E (C)

I No vertex has 3 large neighbors

I There is no cycle consisting only of large vertices in G

I |E | ≤ |V |+ n3 − δ where n3 = |{v ∈ V : deg(v) = 3}| and δ is
the number of small vertices incident to e

I ��
���

�XXXXXX|E | ≤ 5
3 |V |

I G does not contain any triangles

I |E | ≤ 2|V | − 4

Checking Unique Hamiltonicity Benedikt Klocker 14

Properties of a Minimal Counter Example cont.

Let G = (V ,E) be a minimal counter example with the unique
FE-cycle (e,C):

I Every arc between large vertices is in E (C)

I No vertex has 3 large neighbors

I There is no cycle consisting only of large vertices in G

I |E | ≤ |V |+ n3 − δ where n3 = |{v ∈ V : deg(v) = 3}| and δ is
the number of small vertices incident to e

I ��
���

�XXXXXX|E | ≤ 5
3 |V |

I G does not contain any triangles

I |E | ≤ 2|V | − 4

Checking Unique Hamiltonicity Benedikt Klocker 14

Properties of a Minimal Counter Example cont.

Let G = (V ,E) be a minimal counter example with the unique
FE-cycle (e,C):

I Every arc between large vertices is in E (C)

I No vertex has 3 large neighbors

I There is no cycle consisting only of large vertices in G

I |E | ≤ |V |+ n3 − δ where n3 = |{v ∈ V : deg(v) = 3}| and δ is
the number of small vertices incident to e

I ��
���

�XXXXXX|E | ≤ 5
3 |V |

I G does not contain any triangles

I |E | ≤ 2|V | − 4

Checking Unique Hamiltonicity Benedikt Klocker 14

Construction of Candidate Graphs

I We use plantri to construct planar graphs

I Plantri constructs only one graph per isomporphism-class

I We can fix a number of vertices and give an upper bound for the
number of edges (|E | ≤ 2n − 4). Then we can filter the results by
the other properties of a minimal counter example.

I Disadvantages:

I The upper bound for the edges is only a filter and therefore not efficient

I All filters together filter out most of the generated graphs, only a small
part is really interesting (especially the property that the graph has no
triangles)

Checking Unique Hamiltonicity Benedikt Klocker 15

Construction of Candidate Graphs through Dual Graphs

New idea: Generate dual graphs with plantri

I Use the edge upper bound to get an upper bound for the faces:

|F | = |E | − |V |+ 2 ≤ 2|V | − 4− |V |+ 2 ≤ |V | − 2

I The dual graph of a 3-connected graph is also 3-connected

I The dual graph has minimum degree 4 since the original graph
contained no triangles

To get all relevant graphs with at most n vertices we construct all
dual graphs with the above properties with at most n − 2 vertices
and build the dual graphs of them.

Checking Unique Hamiltonicity Benedikt Klocker 16

