Checking Unique Hamiltonicity

B ac'

Benedikt Klocker

Algorithms and Complexity Group
Institute of Computer Graphics and Algorithms
TU Wien

PHD Seminar, 18 Dezember 2017

aclll'
Introduction

Definition (UHG)
If a graph contains exactly one hamiltonian cycle it is called a
uniquely hamiltonian graph (UHG).

Conjecture by Bondy and Jackson

Every planar uniquely hamiltonian graph has at least two vertices
of degree two.

Goal

Find a simple planar uniquely hamiltonian graph with minimum
degree 3 and therefore disprove the conjecture of Bondy and
Jackson.

m Checking Unique Hamiltonicity Benedikt Klocker

ac'l

Removing unvisited vertices

G |e= G’

Removing unvisited vertices

m Checking Unique Hamiltonicity Benedikt Klocker

ac'l Let G be a graph. We call the pair (e, C), where C is a cycle

and e an edge occuring in C a fixed edge cycle, or short FE-cycle.
An FE-cycle (e, C) is called maximal if there is no other FE-cycle

(e, C") with V(C") 2 V(C).

An FE-cycle (e, C) is called unique if there is no other FE-cycle
(e, C") with V(C') = V(C) and C' £ C.

Simplified Goal

Find a simple planar graph with minimum degree 3 which contains
a unique maximal dominating FE-cycle.

b at (0.8,0) U; [myedgestyle] (0.5,0) arc (360:0:0.5 and 0.5) node
(1,0) ; at ((w) + (—1.2,1)) (tmp) [mynodestyle] edge (w) edge
[red] ((tmp) + (—0.4,0.4)) edge [red] ((tmp) + (0.4,0.4)) edge
((tmp) + (—0.2,0.4)) edge ((tmp) + (0.2,0.4)); at

((tmp) +(0,0.4)) ...; at ((w) +(0,1)) (tmp) [mynodestyle] edge
(w) edge [red] ((tmp) + (—0.4,0.4)) edge [red]

((tmp) (0 4,0. 4)) edge ((tmp) + (—0.2,0.4)) edge

m Checking Unique Hamiltonicity Benedikt Klocker

ac!ltmp) [mynodestyle] edge (w) edge [red] ((tmp) + (—0.4,0.4))

edge [red] ((tmp) + (0.4,0.4)) edge ((tmp) + (—0.2,0.4)) edge
((tmp) +(0.2,0.4)); at ((tmp) +(0,0.4)) ...; ((w) +(—-1.2,1))
- (w.160); ((w) + (—1.2,-1)) - (w.200); at ((w) + (—1.2,-1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (—0.4, —0.4))
edge [red] ((tmp) + (0.4, —0.4)); at ((w) + (0, —1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) 4+ (—0.4, —0.4)) edge
[red] ((tmp) + (0.4,—-0.4)); at ((w) + (1.2, 1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) 4+ (—0.4, —0.4)) edge
[red] ((tmp) + (0.4,—0.4)); at (5,0) (w) [mynodestyle] ; at

((w) +(0.3,0)) u; at ((w) + (—1.2,1)) (tmp) [mynodestyle] edge
(w) edge [red] ((tmp) + (—0.4,0.4)) edge [red]

((tmp) + (0.4,0.4)) edge ((tmp) + (—0.2,0.4)) edge

((tmp) + (0.2,0.4)); at ((tmp) + (0,0.4)) ...; at ((w) + (0,1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (—0.4,0.4))
edge [red] ((tmp) + (0.4,0.4)) edge ((tmp) + (—0.2,0.4)) edge
((tmp) + (0.2,0.4)); at ((tmp) + (0,0.4)) ...; at ((w) + (1.2,1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (—0.4,0.4))
edge [red] ((tmp) 4 (0.4,0.4)) edge ((tmp) + (—0.2,0.4)) edge

m Checking Unique Hamiltonicity Benedikt Klocker

acli{tmp) + (0.2,0.4)); at ((tmp) + (0,0.4)) ...; at

((w) + (—1.2,—1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (—0.4, —0.4)) edge [red] ((tmp) + (0.4, —0.4)); at

((w) + (0, —1)) (tmp) [mynodestyle] edge (w) edge [red]

((tmp) 4+ (—0.4,—0.4)) edge [red] ((tmp) + (0.4,—0.4)); at

((w) + (1.2,—1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (—0.4,—0.4)) edge [red] ((tmp) + (0.4, —0.4)); at
(2.5,0) =; b at (0.8,0) U; [myedgestyle] (0.5,0) arc (360:0:0.5
and 0.5) node (1,0) ; at ((w) 4+ (—1.2,1)) (tmp) [mynodestyle]
edge (w) edge [red] ((tmp) + (—0.4,0.4)) edge [red]

((tmp) + (0.4,0.4)) edge ((tmp) + (—0.2,0.4)) edge

((tmp) + (0.2,0.4)); at ((tmp) + (0,0.4)) ...; at ((w) + (0,1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (—0.4,0.4))
edge [red] ((tmp) + (0.4,0.4)) edge ((tmp) + (—0.2,0.4)) edge
((tmp) + (0.2,0.4)); at ((tmp) + (0,0.4)) ...; at ((w) + (1.2,1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (—0.4,0.4))
edge [red] ((tmp) + (0.4,0.4)) edge ((tmp) + (—0.2,0.4)) edge
((tmp) + (0.2,0.4)); at ((tmp) + (0,0.4)) ...; ((w) + (-1.2,1))
- (w.160); ((w) 4+ (=1.2,-1)) — (w.200); at ((w) + (—1.2,—1))

m Checking Unique Hamiltonicity Benedikt Klocker

ac!ltmp) [mynodestyle] edge (w) edge [red] ((tmp) + (—0.4, —0.4))

edge [red] ((tmp) + (0.4, —0.4)); at ((w) + (0,—1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) 4+ (—0.4, —0.4)) edge
[red] ((tmp) + (0.4, —0.4)); at ((w) + (1.2, 1)) (tmp)
[mynodestyle] edge (w) edge [red] ((tmp) 4+ (—0.4, —0.4)) edge
[red] ((tmp) + (0.4,—0.4)); at (5,0) (w) [mynodestyle] ; at

((w) +(0.3,0)) u; at ((w) + (—1.2,1)) (tmp) [mynodestyle] edge
(w) edge [red] ((tmp) + (—0.4,0.4)) edge [red]

((tmp) + (0.4,0.4)) edge ((tmp) + (—0.2,0.4)) edge

(tmp) + (0.2,0.4)); at ((tmp) + (0,0.4)) _.; at (w) + (0,1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (—0.4,0.4))
edge [red] ((tmp) + (0.4,0.4)) edge ((tmp) + (—0.2,0.4)) edge
((tmp) + (0.2,0.4)); at ((tmp) + (0,0.4)) ...; at ((w) + (1.2,1))
(tmp) [mynodestyle] edge (w) edge [red] ((tmp) + (—0.4,0.4))
edge [red] ((tmp) + (0.4,0.4)) edge ((tmp) + (—0.2,0.4)) edge
((tmp) + (0.2,0.4)); at ((tmp) + (0,0.4)) ...; at

((w) + (=1.2,—1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) 4+ (—0.4,—0.4)) edge [red] ((tmp) + (0.4,—0.4)); at

((w) 4+ (0,—1)) (tmp) [mynodestyle] edge (w) edge [red]

m Checking Unique Hamiltonicity Benedikt Klocker

acl{tmp) + (—0.4, —0.4)) edge [red] ((tmp) + (0.4, —0.4)); at

((w) + (1.2, —-1)) (tmp) [mynodestyle] edge (w) edge [red]
((tmp) + (—0.4,—0.4)) edge [red] ((tmp) + (0.4, —0.4)); at
(2.5,0) =;

m Checking Unique Hamiltonicity Benedikt Klocker

ac!l®bservation: If G is 2-vertex-connected, the new vertex u has

degree at least 2 and in this case we can still apply the previous
transformation.
First Approach=,

New Goal

Find a simple planar graph with minimum degree 3 which contains

a unique maximal deminating FE-cycle.

benumerate

Generate (all) planar graphs (with a fixed number of vertices) with
minimum degree 3.

For each generated graph G, check if it contains a unique maximal
FE-cycle by doing the following:
1. For each edge e in G repeat the following steps until no new
maximal FE-cycle with e as the fixed edge could be found:
1.1 Find a new maximal FE-cycle with e as the fixed edge.
1.2 Check if the FE-cycle is unique. benumerate

Generate (all) planar graphs (with a fixed number of vertices) with

Checking Unique Hamiltonicity Benedikt Klocker

ac'lFor each generated graph G, check if it contains a unique maximal

FE-cycle by doing the following:

1. For each edge e in G repeat the following steps until no new
maximal FE-cycle with e as the fixed edge could be found:

1.1 Find a new maximal FE-cycle with e as the fixed edge.

m Checking Unique Hamiltonicity Benedikt Klocker

ac'l

benumerate
2. Generate (all) planar graphs (with a fixed number of vertices) with
minimum degree 3.
3. For each generated graph G, check if it contains a unique maximal
FE-cycle by doing the following:
3.1 For each edge e in G repeat the following steps until no new
maximal FE-cycle with e as the fixed edge could be found:

3.1.1 Find a new maximal FE-cycle with e as the fixed edge.
3.1.2 Check if the FE-cycle is unique.

m Checking Unique Hamiltonicity Benedikt Klocker

ac'lBenumerate

Generate (all) planar graphs (with a fixed number of vertices) with
minimum degree 3.

For each generated graph G, check if it contains a unique maximal
FE-cycle by doing the following:

1. For each edge e in G repeat the following steps until no new
maximal FE-cycle with e as the fixed edge could be found:

1.1 Find a new maximal FE-cycle with e as the fixed edge.

1.2 Check if the FE-cycle is unique.

m Checking Unique Hamiltonicity Benedikt Klocker

ac'l

ILP model for Finding a Maximal FE-cycle

A graph G = (V,E), an edge ey = igjo € E and a set C of all
maximal FE-cycles with e as the fixed edge found until now.

» (xv)yey ---xv = Liff v € V is used in the cycle

» (Ve)ecg ---Ye = Liff e € E is used in the cycle

m Checking Unique Hamiltonicity Benedikt Klocker

ac'l

ILP model for Finding a Maximal FE-cycle cont.

max E X;

ieV

Objective:

Constraints:

Z y,-j:2x,- VieVv
JEN(I)
Yijo =1
Z x;>1 VCelC
ieV\C
S vez2x4 YAV CV\{ig},ieV
ecé(V’)
ye € {0,1} VeeE
x;€{0,1} VieV

m Checking Unique Hamiltonicity Benedikt Klocker

ac'l

ILP model for Checking Uniqueness of FE-cycle

A graph G = (V, E) and a maximal FE-cycle (e, C).

Variables

> (Ve)ecg, ---Ye = Liff e € E is used in the cycle

m Checking Unique Hamiltonicity Benedikt Klocker

ac'l

ILP model for Checking Uniqueness of FE-cycle cont.

No objective (only feasibility interesting)

Constraints:

> yip=2 Vie Ve (7)
JEN(i) ¢
Vi, =1 (8)
S o ye>2 VO#V CVe\{a} ke V' (9)
ecé(V’)
S yp>2 (10)
JEEC\E(C)
ye €{0,1} Vee Ec (11)

m Checking Unique Hamiltonicity Benedikt Klocker

ac'l

Reducing the number of ILPs to solve

» Store for each set of vertices V/ and for each edge e a list of all
cycles found until now using the edge e and the vertices V.

> In the first phase only search cycles for new vertex sets or new
edges.

> In the second phase we do not have to check FE-cycles for which
there are already two cycles containing the fixed edge.

m Checking Unique Hamiltonicity Benedikt Klocker 10

ac'l

Reusing ILP-states

» Goal: Reuse ILP-tree after maximal cycle got found.

> Use callback to store every found cycle in C and add the
constraint (3) for every cycle.

» The found cycles don't have to be maximal!

» The constraint (3) ensures that afterwards only larger cycles or not
comparable cycles get found

» If a larger cycle gets found remove all smaller cycles from the
datastructure C and the according constraints from the model, since they
get dominated from the new constraint.

> If no new cycle got found, all cycles in the datastructure are
maximal and no other maximal cycle exists

» The ILP terminates as infeasible, since all work happens in the
collection of the cycles during the callback.

m Checking Unique Hamiltonicity Benedikt Klocker

11

ac'l
Minimal Counter Example

Goal

Find properties for a minimal planar graph with minimum degree 3,
which contains a unique maximal FE-cycle. Reduce the number of
graphs to test drastically by only testing candidates for a minimal
counter example.

By minimal we mean minimal according to the following relation.

Let G; = (W4, E1) and Gy = (V4, Ep) be two graphs. Then we say
G < Gy iff

Vil < [V2| V (|V1] = [V2| A |E1| < | B2]).

m Checking Unique Hamiltonicity Benedikt Klocker

12

aclll'

Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a /arge vertex.

Let G = (V, E) be a minimal counter example with the unique
FE-cycle (e, C):

m Checking Unique Hamiltonicity Benedikt Klocker

13

aclll'

Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a /arge vertex.

Let G = (V, E) be a minimal counter example with the unique
FE-cycle (e, C):

» C is dominating

m Checking Unique Hamiltonicity Benedikt Klocker

13

aclll'

Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a /arge vertex.

Let G = (V, E) be a minimal counter example with the unique
FE-cycle (e, C):

» C is dominating

» G is 3-connected

m Checking Unique Hamiltonicity Benedikt Klocker

13

ac'l

Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a /arge vertex.

Let G = (V, E) be a minimal counter example with the unique
FE-cycle (e, C):

» C is dominating
» G is 3-connected

» Every neighbor of a large vertex is in V(C)

m Checking Unique Hamiltonicity Benedikt Klocker

13

ac'l

Properties of a Minimal Counter Example

Definition
A vertex with degree 3 or less is called a small vertex and
otherwise a /arge vertex.

Let G = (V, E) be a minimal counter example with the unique
FE-cycle (e, C):

» C is dominating
» G is 3-connected

» Every neighbor of a large vertex is in V(C)

m Checking Unique Hamiltonicity Benedikt Klocker

13

ac'l

Properties of a Minimal Counter Example cont.

Let G = (V, E) be a minimal counter example with the unique
FE-cycle (e, C):

» Every arc between large vertices is in E(C)

» No vertex has 3 large neighbors

» There is no cycle consisting only of large vertices in G

m Checking Unique Hamiltonicity Benedikt Klocker

14

aclll'
Properties of a Minimal Counter Example cont.

Let G = (V, E) be a minimal counter example with the unique
FE-cycle (e, C):

» Every arc between large vertices is in E(C)
» No vertex has 3 large neighbors

» There is no cycle consisting only of large vertices in G

» |E| < |V|+ n3— ¢ where n3 = [{v eV :deg(v) =3} and J is
the number of small vertices incident to e

m Checking Unique Hamiltonicity Benedikt Klocker

14

ac'l

Properties of a Minimal Counter Example cont.

Let G = (V, E) be a minimal counter example with the unique
FE-cycle (e, C):

» Every arc between large vertices is in E(C)

» No vertex has 3 large neighbors

» There is no cycle consisting only of large vertices in G

» |E| < |V|+ n3— ¢ where n3 = [{v eV :deg(v) =3} and J is
the number of small vertices incident to e

> [E=5]

m Checking Unique Hamiltonicity Benedikt Klocker 14

ac'l

Properties of a Minimal Counter Example cont.

Let G = (V, E) be a minimal counter example with the unique
FE-cycle (e, C):

» Every arc between large vertices is in E(C)

» No vertex has 3 large neighbors

» There is no cycle consisting only of large vertices in G

» |E| < |V|+ n3— ¢ where n3 = [{v eV :deg(v) =3} and J is
the number of small vertices incident to e

> [ER=3v]
» G does not contain any triangles

» [E|<2|V|—-4

m Checking Unique Hamiltonicity Benedikt Klocker

14

ac'l
Construction of Candidate Graphs

» We use plantri to construct planar graphs
» Plantri constructs only one graph per isomporphism-class

» We can fix a number of vertices and give an upper bound for the
number of edges (|E| < 2n — 4). Then we can filter the results by
the other properties of a minimal counter example.

» Disadvantages:

» The upper bound for the edges is only a filter and therefore not efficient

» All filters together filter out most of the generated graphs, only a small

part is really interesting (especially the property that the graph has no
triangles)

m Checking Unique Hamiltonicity Benedikt Klocker 15

ac'l

Construction of Candidate Graphs through Dual Graphs

New idea: Generate dual graphs with plantri

» Use the edge upper bound to get an upper bound for the faces:

[FI=El=|V[+2<2lV[-4—|V[+2<|V|-2

» The dual graph of a 3-connected graph is also 3-connected

> The dual graph has minimum degree 4 since the original graph
contained no triangles

To get all relevant graphs with at most n vertices we construct all
dual graphs with the above properties with at most n — 2 vertices
and build the dual graphs of them.

m Checking Unique Hamiltonicity Benedikt Klocker

16

