
This document is a preprint. The contribution was presented at the Optimization and Wildfire Conference
(O&W), Luso, Portugal, 3rd of October 2024.

The Graph Burning Problem under
Constrained Diffusion

Enrico Iurlano[0000−0001−7528−0834] and
Günther R. Raidl[0000−0002−3293−177𝑋] and
Marko Djukanović[0000−0003−1358−3789]

Abstract Relying on a simplified model of fire spread, the Graph Burning Problem
is an NP-hard combinatorial optimization problem that yields a social contagion
metric. It concerns a discrete-time process on a simple undirected graph, with a dif-
fusion phase of fire in each timestep towards the entire neighborhoods of “burned”
vertices and a phase in which a next not-yet-burned vertex is made burned. The aim
is to find the minimum number of timesteps so that the complete graph gets burned.
The applicability of the problem becomes more relevant in practice when one takes
into account the fact that in the context of wildfire, virus, or information spreading,
diffusion might realistically be prevented by implemented (local) countermeasures
or some given limitations/obstacles. Therefore, this paper proposes the Constrained
Diffusion Graph Burning Problem where thresholds per vertex are considered that
specify the maximum number of neighbors the vertex can ignite. Additionally, the
burned vertices are permitted to diffuse fire only immediately after their status
changed to burned, but not to a later timestep. Two mixed integer linear program-
ming formulations, both relying on a flow approach are proposed to tackle small to
medium-sized instances. In contrast, a greedy heuristic is proposed for solving large
problem instances.

Enrico Iurlano
Algorithms and Complexity Group, TU Wien, Favoritenstraße 9-11/192-01, Vienna, 1040, Austria
e-mail: eiurlano@ac.tuwien.ac.at

Günther R. Raidl
Algorithms and Complexity Group, TU Wien, Favoritenstraße 9-11/192-01, Vienna, 1040, Austria
e-mail: raidl@ac.tuwien.ac.at

Marko Djukanović
Faculty of Natural Sciences and Mathematics, University of Banja Luka, Mladena Stojanovića 2,
Banja Luka, 78000, Bosnia and Herzegovina e-mail: marko.djukanovic@pmf.unibl.org

1

eiurlano@ac.tuwien.ac.at
raidl@ac.tuwien.ac.at
marko.djukanovic@pmf.unibl.org

2 E. Iurlano, G. R. Raidl, and M. Djukanović

1 Introduction

In 2014, Bonato et al. [3] proposed the discrete-time process of graph burning as a
model of social contagion. This process relies on a highly simplified model of fire
spread and originally was used to provide insights into the achievability of rapid
information dissemination in social networks under certain temporal assumptions
on the release of information. Due to similarities, e.g., to the Target Set Selection
Problem [14] or the Least Cost Influence Maximization Problem (LCIMP) [12],
the Graph Burning Problem (GBP) additionally provides an interesting alternative
model for viral marketing or opinion-making. For a formal description of the graph
burning process, we consider a simple and undirected input graph 𝐺 = (𝑉, 𝐸) whose
vertices 𝑣 ∈ 𝑉 carry a time-dependent binary status indicating either unburned or
burned [3]. Assuming (discrete) timesteps indexed by 𝑡 ∈ N ∪ {0}, consider the
following process.
• Initially, all vertices are unburned.
• In timestep 𝑡 = 0 the status of a single vertex is changed to burned.
• In each timestep 𝑡 ≥ 1, the neighbors of all vertices that have the status burned

in timestep 𝑡 − 1 become burned as well. Note that some of them may already be
burned.

• Within the same timestep 𝑡, an unburned vertex is picked and made burned (if
such a one exists).

The process is iterated and stops when a timestep is reached after which all
the vertices of the graph are burned. Each such processes is called an admis-
sible burning process. The burning number 𝑏(𝐺) of 𝐺 is defined as the mini-
mum number of timesteps over all admissible burning processes, i.e., 𝑏(𝐺) :=
min{𝑇 +1 : there is an admissible burning process on 𝐺 terminating with index 𝑇}.
Returning to the perspective of a social contagion model, a burned vertex could
represent—within the setting of opinion-making or viral marketing—the scenario in
which an individual has been convinced to adopt a certain opinion either by a direct
influence of some external actor or by propagation from a neighboring individual
that is already affected by that opinion. A small burning number for a social network
reveals that it is possible to influence all individuals in a short amount of time.

Several combinatorial aspects of the graph burning number have been examined,
e.g., it is known that its calculation is NP-hard even on trees of maximum degree
three [1] or on caterpillars of maximum degree three [13, 16]; several other graph
classes are mentioned in the literature in this context, see [2] for a partial overview.
The central open problem in the field is stated in [3] claiming that for any graph
𝐺 = (𝑉, 𝐸) the bound 𝑏(𝐺) ≤

⌈
|𝑉 |1/2

⌉
holds; partial progress towards this so-called

burning number conjecture has been recently obtained; in [18] it is proved that this
conjecture holds asymptotically, and in [17] it is shown that the conjecture holds
for any tree without vertices of degree two. The survey of Bonato [2] describes
several further interesting computational findings on 𝑏(𝐺), in particular, established
𝑏(𝐺)-numbers respectively approximation algorithms [4]; for general graphs, a 3-
approximation algorithm is presented together with a 2-approximation algorithm

The Graph Burning Problem under Constrained Diffusion 3

specifically designed for trees. A randomized 2.314-approximation algorithm for
computing the burning number of a general graph is presented in [15]. In [9], an
approximation algorithm termed “burning farthest-first” is proposed with a tighter
approximation ratio of 3 − 2/𝑏(𝐺). It relies on the idea to iteratively incorporate
locally-best vertices into an initially empty set of candidate vertices. The chosen
vertex lies here among the distance maximizers to the set of burning vertices. A
similar approach has been designed earlier in [7] but from a purely heuristic per-
spective. Several further heuristics for this problem are proposed in [19, 11] based
on the eigencentrality as a measure for attractivity of a next vertex to be ignited.
More recently in [8], based on the relationship between the GBP and the so-called
Clustered Maximum Coverage Problem, the authors propose a greedy heuristic that
effectively solves instances with up to hundreds of thousands of vertices. An in-
teger linear programming formulation and a constraint programming approach are
proposed in [10]. Recently, in [5] considerable progress has been achieved towards
solving large solution instances optimally by a row generation approach.

The main contribution of this paper is the introduction and solution of a general-
ization of GBP where vertices can ignite a certain maximum number of neighbors
leading to an in general larger search space of feasible solutions. We come up with
two Mixed Integer Linear Program (MILP) formulations and evaluate their compu-
tational advantages and limitations by running experiments on instances from the
literature commonly used for the classical GBP. Moreover, we propose a degree- and
eigencentrality-based greedy-heuristic and compare it with the MILP.

Notation and preliminaries. If not stated otherwise, graph 𝐺 = (𝑉, 𝐸) is simple
and undirected; the order of a graph 𝐺 refers to |𝑉 |, the number of vertices. By 𝑁 (𝑣),
for 𝑣 ∈ 𝑉 , we denote the set of vertices that are adjacent to 𝑣, i.e., 𝑁 (𝑣) := {𝑤 ∈ 𝑉 :
{𝑣, 𝑤} ∈ 𝐸}. Moreover, let us denote by �̂� the digraph resulting from bidirecting
each edge of 𝐺, i.e., �̂� := (𝑉, �̂�) with �̂� := {(𝑢, 𝑣), (𝑣, 𝑢) ∈ 𝑉 × 𝑉 : {𝑢, 𝑣} ∈ 𝐸}.
In case some graph 𝐺 = (𝑉, 𝐸) is a directed graph (digraph), the in-degree and out-
degree of 𝑣 refer to the quantities |{𝑢 ∈ 𝑉 : (𝑢, 𝑣) ∈ 𝐸}| and |{𝑤 ∈ 𝑉 : (𝑣, 𝑤) ∈ 𝐸}|
respectively. The number of edges on a shortest path between 𝑣 and 𝑤 is denoted by
dist(𝑣, 𝑤). An arborescence is a directed acyclic graph 𝐴 = (𝑉, 𝐸) with at most one
vertex of in-degree zero—called the root—having in-degree one for all remaining
vertices. Denote by leaves(𝐴), the set of all leaves, i.e., vertices with out-degree
zero, by depth(𝑣) the number of edges on the unique directed path from the root of
𝐴 to a vertex 𝑣, and by height(𝑟) the maximum depth over all vertices contained
in the arborescence with root 𝑟. Sequences (or unions) of pairwise vertex-disjoint
arborescences are called forests of arborescences. Denote by ⌊·⌋ and ⌈·⌉ the Gaussian
floor and ceil function, respectively.

The remainder of the paper is organized as follows. In Section 2 we motivate our
generalization of graph burning. Section 3 provides two MILP formulation to solve
the introduced problem. Section 4 proposes a heuristic approach whose performance
is in Section 5 compared to the MILP approaches. Conclusions and open questions
are given in Section 6.

4 E. Iurlano, G. R. Raidl, and M. Djukanović

2 Constraints on the diffusion process

The classical GBP despite being practically motivated, assumes for its diffusion
process that all neighbors of burned vertices get also burned in the subsequent
timestep. For many scenarios this assumption may seem too unrealistic: In general,
people can successfully influence only a certain maximum number of other people
from their circle of contacts (e.g., due to individually different resources, skills, or
ambition for persuasion). Therefore, two constraints on the diffusion process shall
be imposed to make the model more realistic and more flexibly usable. We propose
to limit, by a vertex-dependent parameter threshold, the number of neighbors that
can be ignited by a burned vertex.

Moreover, we want to incorporate the assumption that people become active
in influencing other people just in the time period immediately after having been
influenced themselves; we motivate this by referring to [20] which affirms a reduction
of the spread of social contagion related to the decay of novelty. In the language of
fire diffusion, the latter model is explained as follows: Vertices represent regions
and a comparable behavior of the fire spread arises when fire can be contained to
spread to at most a certain maximum number of neighboring regions, e.g., by having
a specific resource of firefighter units locally available. Moreover, in this context, we
assume that an already burned region cannot propagate fire at a later time point.

For a formalization, let us consider the graph𝐺 = (𝑉, 𝐸) with imposed thresholds
𝜃𝑣 ∈ N∪{0}, 𝑣 ∈ 𝑉 . Apart from the aforementioned time-dependent status burned or
unburned for each vertex, we implicitly track a second time-dependent, irreversible
binary status of a vertex, called the expiration status, which prevents vertices having
this status activated from diffusing their status burned to their neighbors. Assume
that we are given a maximum time index 𝑇 ∈ N ∪ {0}. Initially, for 𝑡 = 0, burn a
single vertex. Afterwards, execute the following actions for 𝑡 = 1, . . . , 𝑇 :

(i) Constrained diffusion from unexpired vertices: For each vertex 𝑣 that has the
status burned in timestep 𝑡 − 1 but not in timestep 𝑡 − 2, burn at most 𝜃𝑣 of
its—according to the timestep 𝑡 − 1—unburned neighbors. (By convention, in
the (−1)-th timestep all vertices are unburned.)

(ii) Burn: Pick at most one currently unburned vertex and make it burned.

We call an execution of the latter procedure a 𝑇-terminating 𝜃-burning process
(with constrained diffusion) and denote the set of all such processes as B𝜃,𝑇 (𝐺).
For 𝑃 ∈ B𝜃,𝑇 (𝐺), the number of vertices with the status burned after termination
of both phases in the final timestep 𝑇 is called the penetration of 𝑃, adopting
the terminology of the LCIMP [12]. If 𝑇∗ is the minimum number that ensures
a process 𝑃 ∈ B𝜃,𝑇∗ (𝐺) of penetration |𝑉 | exists, we define b𝜃 (𝐺) := 𝑇∗ + 1
and call the latter (constrained diffusion) 𝜃-burning number of 𝐺. The problem
aiming for this optimal value 𝑇∗ is henceforth called the Constraint Diffusion Graph
Burning Problem (CDGBP, or 𝜃-GBP). If we want to provide more information on
the burning process, we denote it as B𝜃,𝑇 (𝐺, (𝑠0, . . . , 𝑠𝑇), 𝑦) where 𝑠𝑖 is the chosen

The Graph Burning Problem under Constrained Diffusion 5

vertex, henceforth called seed1 during the burn-phase in timestep 𝑖. Moreover, for
each directed edge (𝑢, 𝑣) ∈ �̂� we define

𝑦𝑢,𝑣 :=

{
1 if 𝑢 was responsible to burn 𝑣 in some timestep 𝑡 ∈ {1, . . . , 𝑇},
0 otherwise.

The subsequent Proposition 1, in particular, gives a preparatory viewpoint for the
later stated MILP (1)–(17) by directly lifting the considerations concerning 𝑏(·) in
the proof of [3, Theorem 5] to 𝜃-burning. Moreover, a straight-forward observation
is given in the subsequent Proposition 2.

Proposition 1 Let 𝑇 ∈ N ∪ {0} and 𝑋 ⊆ 𝑉 for a given graph 𝐺 = (𝑉, 𝐸) with
thresholds 𝜃. Then, the following assertions are equivalent.

(i) There is a 𝜃-burning process B𝜃,𝑇 (𝐺, (𝑠0, . . . , 𝑠𝑇), 𝑦) whose set of burned
vertices after termination is 𝑋 .

(ii) In 𝐺 there is a subforest consisting of arborescences 𝑇𝑠0 , 𝑇𝑠1 , . . . , 𝑇𝑠𝑇 with
respective roots 𝑠0, . . . , 𝑠𝑇 and heights ℎ0, . . . , ℎ𝑇 such that, firstly, the set
of all vertices contained in some arborescence corresponds to 𝑋; secondly,
ℎ𝑖 ≤ 𝑇 − 𝑖 for 𝑖 = 0, . . . , 𝑇; and thirdly, each 𝑣 ∈ 𝑋 is a member of a single
arborescence 𝑇𝑠 (𝑣) where the out-degree of 𝑣 inside 𝑇𝑠 (𝑣) is at most 𝜃𝑣.

Proof. (i) =⇒ (ii): Let 𝑃 ∈ B𝜃,𝑇 (𝐺, (𝑠0, . . . , 𝑠𝑇), 𝑦) and 𝑋 be the set of vertices
burned after termination of 𝑃. During the process, a vertex 𝑣 might have become
burned because one vertex (or even multiple vertices) “chose” to make their neighbor
𝑣 burned. In the following, consider the the digraph �̂� := (𝑉, �̂�), i.e., the bidirected
version of 𝐺. Note that if 𝑠 ∈ {𝑠0, . . . , 𝑠𝑇 } is a seed, we have 𝑦𝑢,𝑠 = 0 for each
𝑢 ∈ 𝑁 (𝑠), whereas 𝑦𝑠,𝑢 can in fact attain the value 1 for 𝑢 ∈ 𝑁 (𝑠). If �̂� |𝑦 :=
{(𝑢, 𝑣) ∈ �̂� : 𝑦𝑢,𝑣 = 1}, then �̂� |𝑦 := (𝑉, �̂� |𝑦) contains no directed cycles (not even
of length two): In fact, the existence of a vertex having an incoming and an outgoing
edge contradicts the property that only unburned vertices can be turned to burned by
a burned neighbor. Facing a directed acyclic graph, we can therefore locate a set of
sources (i.e., vertices of in-degree zero) that here must coincide with {𝑠0, . . . , 𝑠𝑇 }.

We run now the following procedure which returns an updated edge-status
𝑦′𝑢,𝑣 ∈ {0, 1} satisfying for all (𝑢, 𝑣) ∈ �̂� 𝑦′𝑢,𝑣 ≤ 𝑦𝑢,𝑣: Initially set 𝑦′𝑢,𝑣 := 𝑦𝑢,𝑣. Then,
iteratively, for 𝑑 = 1, . . . , 𝑇 , execute the following: For each vertex 𝑣 ∈ 𝑉 being reach-
able from a seed 𝑠𝑖 via a directed length-𝑑 path do the following: Pick the seed 𝑠𝑖∗

with the minimum index 𝑖∗ permitting such a directed path (𝑠𝑖∗ , 𝑢1, 𝑢2, . . . , 𝑢𝑑−1, 𝑣).
Then, overwrite 𝑦′𝑢,𝑣 := 0 for all 𝑢 ∈ 𝑁 (𝑣) \ {𝑢𝑑−1}. After termination of this pro-
cedure, we obtain that �̂� |𝑦′ := (𝑉, �̂� |𝑦′) is a forest of arborescences (𝐴𝑠0 , . . . , 𝐴𝑠𝑇)
whose roots are given by the seeds of the process. As all finally-burned vertices in 𝑋

got burned in timestep 𝑇 the latest, the distance from 𝑠𝑖 to any vertex in 𝐴𝑠𝑖 can be
at most 𝑇 − 𝑖. Moreover, 𝑦 meets the capacity constraints of 𝜃 for each vertex 𝑣 ∈ 𝑉 ,
i.e.,

∑
𝑤∈𝑁 (𝑣) 𝑦𝑣,𝑤 ≤ 𝜃𝑣, and hence 𝑦′, as a thinned-out version of 𝑦, does so as well.

1 Potentially a seed reflects the empty vertex selection 𝜀 and this will manifest itself in our models
in that direct source-sink flows are present.

6 E. Iurlano, G. R. Raidl, and M. Djukanović

(ii) =⇒ (i): An admissible burning process can be reconstructed by simply
choosing the sequence of seeds (𝑠0, . . . , 𝑠𝑇) and in iteration 𝑖, for each burned
vertex 𝑣, choosing as next vertices to be burned those being the children of 𝑣 when
𝑣 is seen as a member of its associated arborescence. Here the threshold-respecting
out-degrees of the vertices in the arborescence will automatically imply compatibility
with the thresholds for an admissible 𝜃-burning processes. The number of timesteps
needed for this burning process is bounded from above by 𝑇 , the height-restriction
on the arborescence rooted in 𝑠0. By construction, all 𝑣 ∈ 𝑋 are therefore burned at
most after termination of timestep 𝑇 . ⊓⊔

Proposition 2 For 𝐺 = (𝑉, 𝐸) and 𝜃𝑣 := deg(𝑣), 𝑣 ∈ 𝑉 , we have b𝜃 (𝐺) = 𝑏(𝐺).

Given 𝐺 = (𝑉, 𝐸), 𝜃 and 𝑇 , finding the maximum penetration over all 𝑃 ∈
B𝜃,𝑇 (𝐺) may clearly be seen as a special case of the problem asking, for a pre-
specified arbitrary parameter vector of heights 𝐻 := (ℎ1, . . . , ℎ𝑄), 𝑄 ≤ |𝑉 |, to find
a sequence of 𝑄 arborescences maintaining these heights, respecting the thresholds
𝜃 and yielding maximum penetration. For the 1-tuple 𝐻 = (ℎ) we call it the problem
of finding a Maximum Coverage Arborescence with max-Degree 𝜃 and max-Height
ℎ, abbreviated MCADH(𝐺, 𝜃, ℎ).

3 Mixed integer linear programming formulations

In the following, given the maximum time-index 𝑇 , we address the problem of
finding a sequence of seeds (𝑠0, . . . , 𝑠𝑇) for a 𝜃-burning process leading to maximum
penetration in a given graph 𝐺 = (𝑉, 𝐸) with threshold parameter 𝜃. The idea is
to make use of Proposition 1 and to find a collection of pairwise vertex-disjoint
arborescences 𝐴0, . . . , 𝐴𝑇 of the graph meeting all height and threshold constraints
and maximizing the number of vertices comprised by the collection.

For the following we consider �̂�∗ = (𝑉 ∪{𝑝, 𝑞}, �̂� 𝑝
𝑞), a transformed version of �̂�,

whose vertex set includes an auxiliary new source vertex 𝑝 respectively a new sink
vertex 𝑞 and whose edge set �̂� 𝑝

𝑞 := �̂� ∪ {(𝑝, 𝑣), (𝑣, 𝑞) : 𝑣 ∈ 𝑉} ∪ {(𝑝, 𝑞)} models
extended connectivity. In view of a MILP, we introduce variables 𝑦𝑡𝑢,𝑣 ∈ {0, 1} for
𝑡 = 0, . . . , 𝑇 and (𝑢, 𝑣) ∈ �̂�

𝑝
𝑞 modeling for (𝑢, 𝑣) ∈ �̂� the presence of the edge (𝑢, 𝑣)

within the arborescence 𝐴𝑡 and modeling auxiliary information for the remaining
edges in �̂�

𝑝
𝑞 .

Moreover, for 𝑡 = 0, . . . , 𝑇 , we declare the continuous variables 𝜑𝑡
𝑢,𝑣, (𝑢, 𝑣) ∈ �̂�

𝑝
𝑞 ,

for modeling a flow, associated to the 𝑡-indexed commodity, which starts at the
source 𝑝, spreads through the arborescence 𝐴𝑡 (on the activation edges selected by
𝑦𝑡), augments in volume after every transition, and finally enters the sink 𝑞. We use
this commodity flow approach to formulate constraints controlling the height of 𝐴𝑡 .
For doing so, we use the additional notation �̂�𝑞 := �̂� ∪ {(𝑣, 𝑞) : 𝑣 ∈ 𝑉}; moreover,
note that in the following deg(·) and 𝑁 (·) apply to the original, undirected graph
𝐺 = (𝑉, 𝐸) without any additional vertices.

The Graph Burning Problem under Constrained Diffusion 7

max
𝑇∑︁
𝑡=0

∑︁
(𝑢,𝑣) ∈�̂�

𝑦𝑡𝑢,𝑣 +
𝑇∑︁
𝑡=0

∑︁
𝑣∈𝑉

𝑦𝑡𝑝,𝑣 (1)

s.t.
∑︁
𝑣∈𝑉

𝑦𝑡𝑝,𝑣 + 𝑦𝑡𝑝,𝑞 = 1 ∀𝑡 (2)∑︁
𝑣∈𝑁 (𝑤)

𝑦𝑡𝑣,𝑤 + 𝑦𝑡𝑝,𝑤 ≤ 1 ∀𝑡,∀𝑤 ∈ 𝑉 (3)

𝑦𝑡𝑣,𝑤 ≤ 𝑦𝑡𝑝,𝑣 +
∑︁

𝑢∈𝑁 (𝑣)\{𝑤}
𝑦𝑡𝑢,𝑣 ∀𝑡,∀(𝑣, 𝑤) ∈ �̂�𝑞 (4)

𝑦𝑡𝑢,𝑣 ≤
∑︁

𝑤∈𝑁 (𝑣)\{𝑢}
𝑦𝑡𝑣,𝑤 + 𝑦𝑡𝑣,𝑞 ∀𝑡,∀(𝑢, 𝑣) ∈ �̂� (5)

𝑦𝑡𝑣,𝑞 ≤ 1 − 𝑦𝑡𝑣,𝑤 ∀𝑡,∀(𝑣, 𝑤) ∈ �̂� (6)∑︁
𝑤∈𝑁 (𝑣)

𝑦𝑡𝑣,𝑤 ≤ 𝜃𝑣 ∀𝑡,∀𝑣 ∈ 𝑉 (7)

𝑦𝑡𝑣,𝑤 + 𝑦𝑡𝑤,𝑣 ≤ 1 ∀𝑡,∀{𝑣, 𝑤} ∈ 𝐸 (8)
𝜑𝑡
𝑝,𝑣 = 𝑦𝑡𝑝,𝑣 ∀𝑡,∀𝑣 ∈ 𝑉 ∪ {𝑞} (9)

0 ≤ 𝜑𝑡
𝑣,𝑤 ≤ 𝑇 − 𝑡 + 1 ∀𝑡,∀(𝑣, 𝑤) ∈ �̂� (10)

0 ≤ 𝜑𝑡
𝑣,𝑞 ≤ 𝑇 − 𝑡 + 2 ∀𝑡,∀𝑣 ∈ 𝑉 (11)

𝜑𝑡
𝑣,𝑤 ≤ (𝑇 − 𝑡 + 2)𝑦𝑡𝑣,𝑤 ∀𝑡,∀(𝑣, 𝑤) ∈ �̂�

𝑝
𝑞 (12)

(𝑇 − 𝑡 + 2) (𝑦𝑡𝑣,𝑤 − 1) + 𝜑𝑡
𝑢,𝑣 + 1 ≤ 𝜑𝑡

𝑣,𝑤 ∀𝑡,∀(𝑢, 𝑣, 𝑤) ∈ 𝑃3, (13)

where 𝑃3 :=
{
(𝑢′, 𝑣′, 𝑤′) ∈ K : 𝑢′ ≠ 𝑤′, (𝑢′, 𝑣′) ∈ �̂� 𝑝 , (𝑣′, 𝑤′) ∈ �̂�𝑞

}
with K := (𝑉 ∪ {𝑝}) ×𝑉 × (𝑉 ∪ {𝑞})

𝑇∑︁
𝑡=0

𝑦𝑡𝑣,𝑤 ≤ 1 ∀(𝑣, 𝑤) ∈ �̂�
𝑝
𝑞 (14)

∑︁
𝑣∈𝑁 (𝑤)

𝑇∑︁
𝑡=0

𝑦𝑡𝑣,𝑤 +
𝑇∑︁
𝑡=0

𝑦𝑡𝑝,𝑤 ≤ 1 ∀𝑤 ∈ 𝑉 (15)

𝑦𝑡𝑣,𝑤 ∈ {0, 1} ∀𝑡,∀(𝑣, 𝑤) ∈ �̂�
𝑝
𝑞 (16)

𝜑𝑡
𝑣,𝑤 ∈ Q ∀𝑡,∀(𝑣, 𝑤) ∈ �̂�

𝑝
𝑞 (17)

Here, “∀𝑡,” quantifies over all 𝑡 ∈ {0, . . . , 𝑇} corresponding to different com-
modities. Constraints (2)–(17) are individually defined for each commodity 𝑡, and
they enforce the subsequently stated properties, together describing an intermediate
“quasi-arborescence” 𝐴𝑡

itmd := (𝑉, �̂� 𝑝
𝑞) |𝑦𝑡 indicated by the 𝑦𝑡 -values. Constraint (2)

assures that the source points via a uniquely activated edge (𝑝, 𝑣) to exactly one
vertex in 𝑣 ∈ 𝑉 ∪ {𝑞}; this vertex 𝑣 is supposed to become the root of 𝐴𝑡

itmd. In (3)
the uniqueness of predecessors in 𝐴𝑡

itmd is enforced (except for 𝑞). The absence of
cycles will be implied by the augmenting flow passing through the graph. The fact
that a non-source vertex not receiving activation from some incoming edge cannot

8 E. Iurlano, G. R. Raidl, and M. Djukanović

provide an outgoing activation is reflected by (4). Constraint (5) makes sure that ev-
ery non-sink vertex receiving incoming activation must also forward this activation
to at least one successor. Constraint (6) enforces that whenever a vertex activates a
non-sink successor, then it cannot simultaneously activate the sink. Constraints (7)–
(8) guarantee that the threshold constraints are fulfilled and that activation is never
bidirectional (asymmetry).

In (9)–(13) the management of the flow through the activated edges is addressed.
Constraints (9)–(11) establish that the flow leaving the source precisely agrees with
the edge-activation status respectively that the flow may not exceed the prescribed
upper bound on the height of the arborescence 𝐴𝑡 . The fact that no flow can pass
through an inactivated edge is reflected in (12), whereas (13) implies that vertices in
𝑉 that receive incoming activation and incoming flow 𝑓 transport at least flow 𝑓 + 1
on each of its edges giving outgoing activation.

Finally, constraints (14) respectively (15) enforce a non-mixing respectively a
non-incident behavior of the different commodities. More precisely, (14) ensures
that if an edge is activated according to some commodity 𝑡, then it remains non-
activated for all other commodities. Similarly, (15) guarantees that if a vertex has
an incoming activating edge according to a commodity, then it has no incoming
activating edges according to all other commodities.

After removing from 𝐴𝑡
itmd the single edge leaving 𝑝 as well as all edges leading

to 𝑞, we obtain a proper arborescence inside �̂� of height at most 𝑇 − 𝑡. The flow is
thus responsible for tracking the depth of each node and therefore limiting the height
of the arborescence; cannot exceed a limit of 𝑇 − 𝑡 as it never exceeds the value of
𝑇 − 𝑡 + 2 for 𝐴𝑡

itmd which is two units higher.
The objective function (1) uses the fact that the number of vertices in arborescence

𝐴𝑡 is the count of edges plus one and is stated in such a manner that also corner cases,
yielding height two or one for 𝐴𝑡

itmd, are handled correctly. A supportive illustration
for (1)–(17) is given in Fig. 1.

Fig. 1 The MILP (1)–(17) with an own commodity (i.e., an own color in the illustration) per
arborescence. 𝑇 = 2 and thresholds 𝜃𝑣 := ⌊deg(𝑣)/2⌋ for 𝑣 ∈ {1, . . . , 10} are assumed.

The Graph Burning Problem under Constrained Diffusion 9

We now adapt our previous formulation towards an alternative one that only
requires a single “universal” commodity implicitly carrying information on 𝑇 + 1
commodities. We rely here on single collections of binary activation variables 𝑦,
respectively flow variables 𝜑. This adaptation comes at the price that for each
𝑤 ∈ 𝑉 additional binary variables ℓ𝑡𝑤, 𝑡 ∈ {0, . . . , 𝑇}, are used. They indicate which
commodity 𝑡 is actually passing through 𝑤, whenever 𝑦𝑣,𝑤 activates a 𝑤-incident
edge (𝑣, 𝑤) ∈ �̂� .

We again use an auxiliary graph

�̂�
(𝑝0 ,..., 𝑝𝑇)
(𝑞0 ,...,𝑞𝑇) := (𝑉 ∪ {𝑝0, . . . , 𝑝𝑇 } ∪ {𝑞0, . . . , 𝑞𝑇 }, �̂� (𝑝0 ,..., 𝑝𝑇)

(𝑞0 ,...,𝑞𝑇)),

this time having 𝑇 + 1 sources 𝑝0, . . . , 𝑝𝑇 respectively sinks 𝑞0, . . . , 𝑞𝑇 and directed
edges in

�̂�
(𝑝0 ,..., 𝑝𝑇)
(𝑞0 ,...,𝑞𝑇) := �̂� (𝑞0 ,...,𝑞𝑇) ∪ ({𝑝0, . . . , 𝑝𝑇 } ×𝑉) ∪ {(𝑝0, 𝑞0), . . . , (𝑝𝑇 , 𝑞𝑇)},

where
�̂� (𝑞0 ,...,𝑞𝑇) := �̂� ∪ (𝑉 × {𝑞0, . . . , 𝑞𝑇 }).

In this setting our alternative model reads as follows.

max
∑︁

(𝑢,𝑣) ∈�̂�

𝑦𝑢,𝑣 +
𝑇∑︁
𝑡=0

∑︁
𝑣∈𝑉

𝑦𝑝𝑡 ,𝑣 (18)

s.t.
∑︁
𝑣∈𝑉

𝑦𝑝𝑡 ,𝑣 +
𝑇∑︁
𝑧=0

𝑦𝑝𝑡 ,𝑞𝑧 = 1 ∀𝑡, (19)∑︁
𝑣∈𝑁 (𝑤)

𝑦𝑣,𝑤 + 𝑦𝑝𝑡 ,𝑤 ≤ 1 ∀𝑡,∀𝑤 ∈ 𝑉 (20)

𝑦𝑣,𝑤 ≤
𝑇∑︁
𝑡=0

𝑦𝑝𝑡 ,𝑣 +
∑︁

𝑢∈𝑁 (𝑣)\{𝑤}
𝑦𝑢,𝑣 ∀(𝑣, 𝑤) ∈ �̂� (𝑞0 ,...,𝑞𝑇) (21)

𝑦𝑢,𝑣 ≤
∑︁

𝑤∈𝑁 (𝑣)\{𝑢}
𝑦𝑣,𝑤 +

𝑇∑︁
𝑡=0

𝑦𝑣,𝑞𝑡 ∀(𝑢, 𝑣) ∈ �̂� (22)

𝑦𝑣,𝑞𝑡 ≤ 1 − 𝑦𝑣,𝑤 ∀𝑡,∀(𝑣, 𝑤) ∈ �̂� (23)∑︁
𝑤∈𝑁 (𝑣)

𝑦𝑣,𝑤 ≤ 𝜃𝑣 ∀𝑣 ∈ 𝑉 (24)

𝑦𝑣,𝑤 + 𝑦𝑤,𝑣 ≤ 1 ∀{𝑣, 𝑤} ∈ 𝐸 (25)

𝜑𝑝𝑡 ,𝑣 = 𝑦𝑝𝑡 ,𝑣 ∀𝑡,∀𝑣 ∈ 𝑉 ∪ {𝑞0, . . . , 𝑞𝑇 } (26)
0 ≤ 𝜑𝑢,𝑣 ≤ 𝑇 + 1 ∀(𝑢, 𝑣) ∈ �̂� (27)
0 ≤ 𝜑𝑣,𝑞𝑡 ≤ 𝑇 − 𝑡 + 2 ∀𝑡,∀𝑣 ∈ 𝑉 (28)
𝜑𝑣,𝑤 ≤ (𝑇 + 2)𝑦𝑣,𝑤 ∀(𝑣, 𝑤) ∈ �̂� (𝑞0 ,...,𝑞𝑇) (29)

10 E. Iurlano, G. R. Raidl, and M. Djukanović

(𝑇 + 2) (𝑦𝑣,𝑤 − 1) + 𝜑𝑢,𝑣 + 1 ≤ 𝜑𝑣,𝑤 ∀𝑡,∀(𝑢, 𝑣, 𝑤) ∈ 𝑃3, (30)

where 𝑃3 :=
{
(𝑢′, 𝑣′, 𝑤′) ∈ K : 𝑢′ ≠ 𝑤′, (𝑢′, 𝑣′), (𝑣′, 𝑤′) ∈ �̂�

(𝑝0 ,..., 𝑝𝑇)
(𝑞0 ,...,𝑞𝑇)

}
with K := (𝑉 ∪ {𝑝0, . . . , 𝑝𝑇 }) ×𝑉 × (𝑉 ∪ {𝑞0, . . . , 𝑞𝑇 }),

𝑦𝑝𝑡 ,𝑣 ≤ ℓ𝑡𝑣 ∀𝑡,∀𝑣 ∈ 𝑉 (31)
𝑇∑︁
𝑡=0

ℓ𝑡𝑣 ≤ 1 ∀𝑣 ∈ 𝑉 (32)

(ℓ𝑡𝑣 − 1) + 𝑦𝑣,𝑤 ≤ ℓ𝑡𝑤 ∀𝑡,∀(𝑣, 𝑤) ∈ �̂� (33)
𝑦𝑣,𝑞𝑡 ≤ ℓ𝑡𝑣 ∀𝑡,∀𝑣 ∈ 𝑉 (34)

𝑦𝑣,𝑤 ∈ {0, 1} ∀(𝑣, 𝑤) ∈ �̂�
(𝑝0 ,..., 𝑝𝑇)
(𝑞0 ,...,𝑞𝑇) (35)

𝜑𝑣,𝑤 ∈ Q ∀(𝑣, 𝑤) ∈ �̂�
(𝑝0 ,..., 𝑝𝑇)
(𝑞0 ,...,𝑞𝑇) (36)

ℓ𝑡𝑣 ∈ {0, 1} ∀𝑡,∀𝑣 ∈ 𝑉 (37)

Again, “∀𝑡,” quantifies over all 𝑡 ∈ {0, . . . , 𝑇}. This alternative formulation is
illustrated in Fig. 2. We remark that formulation (18)–(37) can be strengthened

Fig. 2 Relying on a single commodity, the MILP (18)–(37) enforces propagation of vertex labels
(indicated by colors) to successors. Edges pointing to 𝑞𝑡 , 𝑡 = 0, . . . , 𝑇 , have an edge-capacity of
𝑇 − 𝑡 + 2 imposed for their through-passing flow. 𝑇 = 2 and thresholds 𝜃𝑣 := ⌊deg(𝑣)/2⌋ for
𝑣 ∈ {1, . . . , 10} are assumed.

similarly as done in in [10] by the fact that vertices on any arborescence must
maintain a certain maximum distance to their respective root. More precisely, we
can impose

𝑦𝑝𝑡 ,𝑣 + ℓ𝑡𝑤 ≤ 1 ∀𝑡, ∀{𝑣, 𝑤} ∈ {{𝑣′, 𝑤′} ⊆ 𝑉 : dist(𝑣′, 𝑤′) > 𝑇 − 𝑡}. (38)

Similarly, to formulation (1)–(17) we may add the constraints

The Graph Burning Problem under Constrained Diffusion 11

𝑦𝑡𝑝,𝑣 + 𝑦𝑡𝑤,𝑧 ≤ 1 ∀𝑡, ∀(𝑣, 𝑤, 𝑧) ∈ D𝑡 (39)

with D𝑡 := {(𝑣′, 𝑤′, 𝑧′) ∈ 𝑉3 : dist(𝑣′, 𝑤′) ≥ 𝑇 − 𝑡, 𝑧′ ∈ 𝑁 (𝑤′)}.

To implement the last two constraints, a precalculation of the distances between
all pairs of vertices is required, which can be done by Johnson’s algorithm.

Remark 1 Both of our models rely on a fixed maximum time-index 𝑇 . If we are
interested in calculating 𝑏𝜃 , or more precisely in finding a shortest sequence of
arborescences yielding full penetration, in principle, we can start with 𝑇 = 0 and
determine—by a MILP solver—if the property already holds. If this is not the case we
iteratively repeat the procedure with incremented 𝑇-value, until a desired sequence
of arborescences is found. To reduce the number of solver calls, it is conceivable to
perform a binary search on the minimum value for 𝑇 , see also [10, Algorithm 1].

4 A heuristic approach

As we will see in the computational results, the proposed MILP formulations do not
scale well to large 𝜃-GBP or even MCADH instances with hundreds of vertices due
to in particular the high number of activation and flow variables. Thus, we propose
a faster heuristic approach, which is, as we will see, able to produce solutions of
reasonable quality also for large-sized instances. A typical greedy approach in the
setting of the 𝜃-GBP would be to iteratively find arborescences of decreasing heights
and to place them onto the input graph. After the placement of an arborescence, all
used vertices are eliminated from the working copy of the input graph before the next
arborescence is derived with the bound on the height decreased by one. The proce-
dure terminates after having reached the bound zero for the height. Note that it may
happen that all nodes are already covered earlier, in which case we assume here that
all remaining arborescences are empty. The core task in this heuristic framework con-
cerns the solution of the intermediate one-arborescence problem MCADH(𝐺, 𝜃, ℎ),
as introduced in Section 2. We propose to achieve this by iteratively extending an
initial one-vertex arborescence 𝐴 by finding the most promising current leaf 𝑤 of 𝐴
and strategically appending as many further vertices as the threshold of 𝑤 allows us.
This growing process is guided by a greedy scoring function quantifying how useful
it is to append to a leaf 𝑤 of 𝐴 a neighbor 𝑧 ∈ 𝑁 (𝑤) (according to the adjacency of
the original graph 𝐺) which is not yet in the arborescence. The scoring function we
use is

LN(𝐴, 𝑤; 𝑧) := 𝑑 (𝑤) · 𝜃′ (𝑧)
max𝑦∈𝑉 𝜃′ (𝑦) + (𝑇 − 1 − 𝑑 (𝑤)) · ec𝐺−(𝐴∪{𝑤,𝑧}) (𝑧),

where 𝑑 (𝑤) denotes the depth of 𝑤 inside 𝐴. Value 𝜃′ (𝑧) refers to the remaining
effective threshold of node 𝑧 taking into account that some neighbors of 𝑧 may
already be incorporated into the arborescence; thus this threshold for the count of
neighbors that might be started to burn via diffusion can already be smaller. Lastly,

12 E. Iurlano, G. R. Raidl, and M. Djukanović

ec𝐺−(𝐴∪{𝑤,𝑧}) (𝑧) denotes the eigencentrality of 𝑧 after excluding the edge {𝑤, 𝑧} and
the vertices of the so-far built arborescence 𝐴 from 𝐺.

The (renormalized) value of 𝜃′ (𝑧) and the eigencentrality of 𝑧—both attaining
values in the interval [0, 1]—are linearly combined by weights assuring that leaves
whose current height is far from the maximum height 𝑇 receive reward from a good
eigencentrality, and gradually, as the heights of the leaves increase, their (renormal-
ized) 𝜃′-value receives more importance. On purpose, in the most extremal case the
eigencentrality does not even contribute to LN.

Eventually we want to find a leaf 𝑤 of 𝐴 for which

LeafScore(𝐴, 𝑤) := max
𝑃⊆𝑁 (𝑤)\𝐴
|𝑃 | ≤ 𝜃 ′ (𝑤)

∑︁
𝑧∈𝑃

LN(𝐴, 𝑤; 𝑧) (40)

is a maximum. When this maximizer 𝑤 is found, the arborescence 𝐴 is extended
towards all vertices in the set 𝑃 that was itself responsible for maximizing (40).

We start the whole construction by initializing 𝐴 with a vertex having highest
eigencentrality, apply aforementioned process as long as an extension is possible,
and return this maximal arborescence as result for the MCADH instance. We refer
later to the approach carried out iteratively for 𝑡 = 𝑇,𝑇 − 1, . . . , 1, 0 as Greedy
One Arborescence at a Time (GOAT). To verify the potential of this heuristic, we
concurrently also realize the placements of single arborescences by a respective
MILP (18)–(37) with a generous (see Section 5) time limit for solving.

5 Computational results

The MILP and GOAT approaches proposed in Section 3 have been implemented in
Julia 1.11.1. The Gurobi solver2 in version 10.0.3 is used to solve the MILPs. A
cluster with an Intel(R) Xeon(R) E5-2640 v4 CPU with 2.40GHz and 160GB RAM
running Ubuntu 18.04.6 LTS was used to run all experiments on a single thread.

We rely on the benchmark instances from [10, Table 3]. Here, we show results
only for every fourth instance of these benchmark set due to space limitations. The
results for all instances can be found online3. As thresholds we use 𝜃𝑣 := ⌊𝑣/2⌋,
𝑣 ∈ 𝑉 , comparable to the so-called majority thresholds for the Target Set Selection
Problem [14]. The following approaches are considered in the comparisons: (i)
the MILP (1)–(17) (labeled as MCF); (ii) the MILP (1)–(17) strengthened by (39)
(labeled as MCF-s); (iii) the MILP (18)–(37) (labeled as SCF); (iv) the MILP (18)–
(37) strengthened by (38) (labeled as SCF-s); (v) M600, the GOAT version realizing
placements of single arborescences via the MILP solver with a time limit of 600
seconds; (vi) the original GOAT approach. A time limit of 1000 seconds is given

2 https://www.gurobi.com

3 https://www.ac.tuwien.ac.at/research/problem-instances/#Graph_Burning_
Problem

https://www.gurobi.com
https://www.ac.tuwien.ac.at/research/problem-instances/#Graph_Burning_Problem
https://www.ac.tuwien.ac.at/research/problem-instances/#Graph_Burning_Problem

The Graph Burning Problem under Constrained Diffusion 13

to Gurobi to solve MCF, MCF-s, SCF, SCF-s models. No time limit is set for the
original GOAT approach.

Table 1 is structured as follows: each column corresponds to a selected instance,
labeled with its respective name. The first three rows provide key characteristics of
each instance, including the number of vertices, the number of edges, and the standard
deviation of vertex degrees. The subsequent rows present the results for MCF, MCF-
s, SCF, SCF-s, M600, and GOAT, evaluated for 𝑇 ∈ {2, 3}. For the GOAT approach,
both the objective values (GOAT-obj) and execution times (GOAT-time [s]) are
provided in separate rows. The best results for each instance are highlighted in bold.
Concerning the dual bounds produced by the MILPs, up to single exceptions, they
coincide with the trivial values given by the graph order, and therefore are not
reported here.

Table 1 Comparison of approaches for 𝑇 ∈ {2, 3}. The entries “/” indicate encountered memory
overflow errors.

k
a
r
a
t
e
-
c
l
u
b

p
o
l
b
o
o
k
s

i
a
-
e
n
r
o
n
-
o
n
l
y

s
p
h
e
r
e
3

c
-
f
a
t
5
0
0
-
1

w
e
b
-
p
o
l
b
l
o
g
s

D
D
1
9
9

l
a
t
t
i
c
e
3
D

l
a
t
t
i
c
e
2
D

i
a
-
f
b
-
m
e
s
s
a
g
e
s

T
V
s
h
o
w

|𝑉 | 34 105 143 258 500 643 841 1000 1089 1266 3892
|𝐸 | 78 441 623 768 4459 2280 1902 2700 2112 6451 17262
std(deg) 3.88 5.47 6.08 0.30 1.31 11.46 1.47 0.69 0.34 13.24 12.6

𝑇 = 2
MCF 34 60 85 18 40 39 15 18 11 98 9
MCF-s 34 49 107 18 35 7 10 8 7 14 /
SCF 33 62 57 18 43 133 14 17 11 11 15
SCF-s 34 41 106 17 9 55 17 3 3 3 /
M600 32 48 51 18 46 32 15 18 11 200 27
GOAT-obj 25 62 109 18 47 283 26 18 11 697 204
GOAT-time[𝑠] 0.01 0.01 0.02 0.01 0.03 0.24 0.02 0.01 0.02 21.73 27.52

𝑇 = 3
MCF 34 98 71 49 64 227 33 28 26 90 8
MCF-s 34 97 127 48 30 130 10 13 9 4 /
SCF 34 102 128 50 44 146 20 50 26 41 11
SCF-s 34 87 136 30 4 35 4 4 4 4 /
M600 34 103 131 45 81 230 33 57 26 756 62
GOAT-obj 21 99 138 47 89 402 55 56 26 1062 626
GOAT-time[𝑠] 0.01 0.03 0.06 0.02 0.08 0.67 0.08 0.07 0.07 42.88 30.73

The following observations can be made from the reported results.
• For 𝑇 = 2, the best approach in terms of the delivered (heuristic) solutions is the

GOAT approach as it almost consistently outperforms the other approaches and
requires significantly less runtime. For nine out of eleven instances, it finds the

14 E. Iurlano, G. R. Raidl, and M. Djukanović

best solutions. The second best approach is MCF which finds best solution in four
cases. Formulation MCF seems to be more effective than SCF. Concerning the
strengthened MILP versions, the derived cuts helped for small instances where
overly better primal bounds are obtained than by the original MILPs. However,
the consideration of these cuts has a notable negative effect on the final results in
the case of the largest instances. The effectivity of the MILPs hardly depends on
the sparsity of the graphs. Finally, it can be seen that the M600 approach scales
better than the MILPs.

• For 𝑇 = 3, the best approach in terms of obtained solutions is again GOAT; it is
also fastest as all its runs require less than one minute. GOAT delivers the best
solutions on seven (out of eleven) instances while consistently outperforming
other approaches on the largest instances. The second best approach is M600
which delivers best solution on four instances. Again, for the densest graphs, the
produced primal bounds of the MILPs are rather weak and not useful in practice.

6 Conclusion

We introduced a generalized version of the well-studied graph burning problem
under a more realistic diffusion process of information spreading among neighboring
vertices. The diffusion process here is constrained by adding a capacity threshold to
each vertex that limits the number of neighboring vertices to be possibly affected
by a burned vertex in the subsequent iteration. This problem is linked to the task
of finding a shortest sequence of vertex-disjoint arborescences with specific heights
and capacity constraints on their out-degrees. Following this observation, two MILP
models based on network flows were proposed. As these exact approaches are limited
in their practical applicability, a first heuristic also is proposed to solve in particular
also larger problem instances. It is a greedy approach that relies on iteratively creating
arborescences. Choosing which vertex to add to an arborescence is the most important
decision herein. It is realized by linearly combining the renormalized remaining
capacity and the eigencentrality of a considered vertex; those vertices with a better
score are preferred to be prolonged. While the recent work [6] remarkably indicates
that the burning number can be computed optimally for large graphs, we observe
that after the inclusion of the threshold constraints, the problem seems to become
considerably more difficult. Our experimental evaluation attests the heuristic a high
effectiveness as it outperforms all other approaches. The MILP models perform
reasonably well only on small-sized and sparse graphs.

Our greedy-based approach still neglects the aspect of “communication” between
the different arborescences. In future work, one may address their simultaneous con-
struction. We plan to consider the connectivity, in particular the number and topology
of the arising connected components, to enhance the approach. Furthermore, several
open problems arise in the context of the introduced generalized (𝜃-)burning process:

(i) The complexity for classes of thresholds (as general as possible) is still to be
analyzed: Here, it would already be interesting to settle the question if for each

The Graph Burning Problem under Constrained Diffusion 15

scalar 𝛼 ∈ (0, 1), the thresholds 𝜃 (·) := ⌊𝛼 deg(·)⌋ imply NP-completeness
for the problem of determining equality of the 𝜃-burning number and a given
number 𝛽𝜃 ∈ N; settling the hardness of finding the maximum penetration for a
given maximum timestep𝑇 would be interesting under this proportional thresh-
old model, too. Moreover, constant thresholds are also worth to be examined
from this point of view.

(ii) From the perspective of fire spread, the 𝜃-burning number expresses a worst-
case that we are interested in precalculating. However, it might be also relevant
to consider the setting where a number of unburned neighbors picked uniformly
at random are chosen to receive the status burned—at the same time, we might
want to assume a random choice of the seeds. This yields a different parameter
of vulnerability and coming up with bounds on the expected penetration over
all processes obeying these assumptions is an interesting challenge.

(iii) An interesting follow-up problem would be: Given a budget 𝐵 ∈ N, try to find
a vector of threshold “reducers” (𝑟𝑣)𝑣∈𝑉 with 0 ≤ 𝑟𝑣 ≤ 𝜃𝑣 and

∑
𝑣∈𝑉 𝑟𝑣 ≤ 𝐵

such that for 𝜃′ := (𝜃𝑣 − 𝑟𝑣)𝑣∈𝑉 the respective value of 𝑏𝜃 ′ is minimum, i.e.,
find a budget-maintaining way to contain the worst-case of fire diffusion as
much as possible.

Acknowledgements We thank Johannes Varga for vivid discussions. This research was funded in
part by (i) the program VGSCO of the Austrian Science Fund (FWF) [10.55776/W1260-N35], (ii)
the bilateral project funded by the Ministry of Civil Affairs of Bosnia and Herzegovina [1259074]
and Austria’s Agency for Education and Internationalization (OeAD) [BA05/2023]. Moreover,
M. Djukanović is partially supported by the Ministry of Scientific and technological development
and higher education of the Serb Republic with the project “Utilizing deep learning to enhance the
efficiency of optimization algorithms”.

References

1. Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., Roshanbin, E.: Burning a graph is hard.
Discrete Applied Mathematics 232, 73–87 (2017)

2. Bonato, A.: A survey of graph burning. Contributions to Discrete Mathematics 16(1), 185–197
(2021)

3. Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social contagion. In:
Algorithms and Models for the Web Graph: 11th International Workshop. LNCS, vol. 8882,
pp. 13–22. Springer (2014)

4. Bonato, A., Kamali, S.: Approximation algorithms for graph burning. In: Theory and Appli-
cations of Models of Computation: 15th Annual Conference. LNCS, vol. 11436, pp. 74–92.
Springer (2019)

5. de C. Pereira, F., de Rezende, P.J., Yunes, T., Morato, L.F.B.: A row generation algorithm for
finding optimal burning sequences of large graphs. In: 32nd Annual European Symposium
on Algorithms. LIPIcs, vol. 308, pp. 94:1–94:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik (2024)

6. de C. Pereira, F., de Rezende, P.J., Yunes, T., Morato, L.F.B.: Solving the graph burning
problem for large graphs. arXiv preprint arXiv:2404.17080 (2024)

7. Farokh, Z.R., Tahmasbi, M., Tehrani, Z.H.R.A., Buali, Y.: New heuristics for burning graphs.
arXiv preprint arXiv:2003.09314 (2020)

16 E. Iurlano, G. R. Raidl, and M. Djukanović

8. García-Díaz, J., Cornejo-Acosta, J.A.: A greedy heuristic for graph burning. arXiv preprint
arXiv:2401.07577 (2024)

9. García-Díaz, J., Pérez-Sansalvador, J.C., Rodríguez-Henríquez, L.M.X., Cornejo-Acosta, J.A.:
Burning graphs through farthest-first traversal. IEEE Access 10, 30395–30404 (2022)

10. García-Díaz, J., Rodríguez-Henríquez, L.M.X., Pérez-Sansalvador, J.C., Pomares-Hernández,
S.E.: Graph burning: Mathematical formulations and optimal solutions. Mathematics 10(15),
2777 (2022)

11. Gautam, R.K., Kare, A.S.: Faster heuristics for graph burning. Applied Intelligence 52(2),
1351–1361 (2022)

12. Günneç, D., Raghavan, S., Zhang, R.: Least-cost influence maximization on social networks.
INFORMS Journal on Computing 32(2), 289–302 (2020)

13. Hiller, M., Koster, A.M., Triesch, E.: On the burning number of 𝑝-caterpillars. In: Graphs
and Combinatorial Optimization: from Theory to Applications, AIRO, vol. 5, pp. 145–156.
Springer (2021)

14. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social
network. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. pp. 137–146. Association for Computing Machinery (2003)

15. Lieskovský, M., Sgall, J., Feldmann, A.E.: Approximation algorithms and lower bounds for
graph burning. In: Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques. LIPIcs, vol. 275, pp. 9:1–9:17. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik (2023)

16. Liu, H., Hu, X., Hu, X.: Burning number of caterpillars. Discrete Applied Mathematics 284,
332–340 (2020)

17. Murakami, Y.: The burning number conjecture is true for trees without degree-2 vertices.
Graphs and Combinatorics 40(4), 82 (2024)

18. Norin, S., Turcotte, J.: The burning number conjecture holds asymptotically. Journal of Com-
binatorial Theory, Series B 168, 208–235 (2024)

19. Šimon, M., Huraj, L., Dirgová Luptáková, I., Pospíchal, J.: Heuristics for spreading alarm
throughout a network. Applied Sciences 9(16), 3269 (2019)

20. Wu, F., Huberman, B.A.: Novelty and collective attention. Proceedings of the National
Academy of Sciences 104(45), 17599–17601 (2007)

	The Graph Burning Problem under Constrained Diffusion
	Enrico Iurlano[0000-0001-7528-0834] and Günther R. Raidl[0000-0002-3293-177X] and Marko Djukanović[0000-0003-1358-3789]
	Introduction
	Constraints on the diffusion process
	Mixed integer linear programming formulations
	A heuristic approach
	Computational results
	Conclusion
	References
	References

