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Abstract

Make traffic great again. That is the central goal of the electric autonomous dial-a-ride
problem (E-ADARP). The principal idea is to use self-driving cars that are fueled by
electricity, which then can just be ordered by a customer to a certain location to pick
them up and drop them off at another specified location. During the trip additional
customers can also be picked up. enabling ride sharing, or, if the introduced detour
is too great, they can be served after the previous customer is dropped off. However,
the complexity of the E-ADARP leads to a steep performance decrease with increasing
problem size. Especially the route planning for the vehicles hinders timely discovery of
E-ADARP solutions. This thesis therefore explores the usage of machine learning (ML)
to reduce the computational complexity of a given E-ADAR-Problem by removing parts
of the search space before actually solving the problem and consequently accelerating the
solving process. Specifically, this thesis identifies features representing high quality areas
of the search space, creates datasets based on these features, trains for different variants
of a Support Vector Model and tests both their individual predictive power as well as
how they contribute to a speed-up of a given algorithm for the E-ADARP. The results
show great run time reductions of the solving process while barely reducing solution
quality or even improving it.
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CHAPTER 1
Introduction

Electric autonomous vehicles (EAV) are a powerful and prospective answer for current
challenges in traffic and public transport, especially as a combined fleet in urban areas.
The resulting routing problem for a fleet of this particular structure is called the electric
autonomous dial-a-ride problem (E-ADARP), which plans a route for each EAV, picking
up and dropping off customers at their requested locations.
So, why would such a fleet of EAVs be helpful in the first place? First off, a network
of these EAVs keeps travel individual while reducing both the high cost that comes
with owning a car and the time wasted with the car just being parked somewhere. E.g.,
a typical day for a working-class individual could be driving to work in the morning,
working for eight hours, driving home, doing arbitrary things back at home, and going
to sleep. As is visible, the car is not used most of the time. A fleet of self-driving
vehicles tackles this by being available for the next customer right after having finished
dealing with the first. Next, this approach further increases the efficiency by being
able to carry more than one passenger at a time, even with different drop-off locations.
This improvement leads to a reduction of congestion. Lastly, because of the increase in
efficiency and the usage of electric vehicles, the environmental impact is reduced.

However, to realistically be able to plan and set routes for a greater number of EAVs,
the computational complexity of the E-ADARP demands an efficient solving process.
Therefore, various heuristics are being used, including deterministic annealing [SDP23]
and large neighborhood search (LNS) [BRL24]. Yet, to further enhance the performance
for big problem sizes, the search space can be pruned, as proposed in [AGS19]. And here,
machine learning (ML) can help with improving these complex pruning decisions. This
thesis, therefore, explores an ML-based pruning approach through identifying structures in
existing solutions for given problem instances of the E-ADARP, and using this knowledge
of the structure of solutions to remove parts of the problem instances that are likely
not contained in close-to-optimal solutions beforehand. This starts off with an extensive
analysis of existing data, followed up by a development of four variants of Support
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1.1. Problem Definition

Vector Machines, including the definition of both features and labels, based on a weak
supervision approach. Next, these models will be put to the test on current standard
problem instances to assess the individual performance of each model, as well as their
contribution to the speed-up of the solving process of the given instances. The results
show that a considerable speed-up is possible while losing little solution quality or even
improving it.

Before delving deeper into the pruning process, first off, the definition of the underlying
electric autonomous dial-a-ride problem is given, which is directly adopted from the
works of [BKG19] and [BRL24].

1.1 Problem Definition
The E-ADARP is defined on a directed graph G = (V, A), with vertex set V that
represents all locations part of the instance, and arc set A = (i, j) : i, j ∈ V, i ̸= j. Graph
G is complete in its original definition; however, the preprocessing steps, including the
ML pruning explained later, change this. With that, there exists a fleet of nK vehicles,
denoted by K = 1, . . . , nK , which provide service for n customer requests within a
planning horizon of T plan time units. The set of locations, V = N ∪ O ∪ F ∪ S, is
composed of the following:

• N = P ∪ D is the set of all customer related locations, with:

– P = {1, . . . , n}, representing the pickup locations and
– D = {n + 1, . . . , 2n}, representing the drop-off locations.
– Each combined pair (i, i + n) represents the i-th request, with pickup location

i ∈ P and drop-off location i + n ∈ D. Additionally, there exists a maximum
user-ride time ui.

• O is the set of all origin depots. Each vehicle k ∈ K has an assigned origin depot
location ok ∈ O, where it starts service at the beginning of T .

• F is the set of all destination depots. Each vehicle k ∈ K has an assigned destination
depot location fk ∈ F , where it arrives at the end of service to finish.

• S is the set of all available charging stations. In addition to that, each s ∈ S has a
charging rate αs, specifying the amount of energy charged per time unit.

For the temporal dimension, each i ∈ V has an earliest possible service time wstart
i and a

latest possible service time wend
i . Further, pickup and drop-off locations (so the locations

that make up requests) have a service duration di, which represents customers entering
or leaving the vehicle and other interactions. Next, each vehicle has a load, representing
the amount of customers it is carrying at the moment, and a maximum load capacity
Ck. This load increases by li at i ∈ P , and decreases by li−n at i ∈ D. Each vehicle has
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1.1. Problem Definition

a maximum battery capacity of Q and an initial battery level Bk,1 at the start of the
planning horizon. Lastly, each arc (i, j) ∈ A is associated with a travel time ti,j and a
battery consumption βi,j . An example of such a graph can be seen in Figure 1.1.

Figure 1.1: Example of a graph

A route of a vehicle is then a combination of possible locations i ∈ V starting at an
origin depot and ending at a destination depot. Therefore, an E-ADARP solution would
be a composition of these nk vehicle routes with also fixing a service start time tserv

i

at each location/node i of the route. For a solution to be feasible, it then also has to
serve every request exactly once: For each request i = 1, . . . , n there exists one route
that visits pickup location i and drop-off location i + n in this order. Additionally, the
maximum user ride time and maximum battery capacity can not be exceed, the given
time windows not violated and for each vehicle the battery may not run out during the
route. Because the E-ADARP also takes the electricity consumption into account the
usage of charging stations is required. As a consequence of the constraints and insertion
of charging stations, additional algorithms become necessary to both evaluate the routes,
to ensure all constraints are met, and place the charging stations at efficient positions in
the route. Examples of these algorithms can be seen in [BRL24].
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1.2. Objective

1.2 Objective
E-ADARP then aims at determining a feasible solution which minimizes following
objective function:

min wrouting ∑︂
k∈K

∑︂
(i,j)∈A

ti,jxk,i,j + wexcess ∑︂
i∈P

texcess
i . (1.1)

This therefore is a weighted combination of the total travel time over all routes and the
total user excess ride time for all customers. Then wrouting and wexcess are the weighting
factors between these two addends. Next, xk,i,j is a binary decision variable representing
if vehicle k travels from location i directly to j. To calculate the user excess ride time
texcess
i for request i ∈ P following formula is used:

texcess
i = tserv

i+n − tserv
i − di − ti,i+n.

That is the difference between the actual ride time of the customers of request i and the
travel time ti,i+n it would take travelling directly from pickup to drop-off-location of the
customer.

1.3 Research Questions
In the context of the now defined E-ADARP the research question is: To what extent can
machine learning speed-up route planning of the E-ADARP through pruning the search
space before searching for the best solution using a state-of-the art solving heuristic?
For specification, a reduction/pruning of the search space here means removing some
of the possible options during the search for the best solution. While possibilities for
the reduction are plenty (including focusing on whole routes, combinations of requests,
insertions of single requests etc.) the main focus will be on the simplest approach by
trying to remove singular arcs (i, j) ∈ A before the solving process. While it is also
possible to dynamically remove arcs during the solving process of a heuristic (e.g., an
LNS), this will not be addressed here. Other options, including whole routes and single
requests, will also be analyzed, yet not further considered during the pruning process.
As basis for the analysis an algorithm and its implementation developed by Bresich et
al. ([BRL24]) will be used. In the cited paper they presented two variants of an LNS to
solve the E-ADARP, of which the better performing was chosen for further study. This
thesis will continue in first understanding the data and structure of both instances and
solutions of the instances to set a necessary basis for the ML models.
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CHAPTER 2
Data Analysis

The overarching narrative of data analysis here is to detect structures of already existing
solutions, and use this knowledge to first ensure that there exist features that would
enable an ML model to classify data points, and secondly, use these features to train the
ML model. The process starts with solution generation, which uses the mentioned LNS by
Bresich et al. These solutions are calculated via an heuristic but are of high quality and
for many instances even the best found until now [BRL24]. Next, these solutions, which
are a possible subset of its instances, are compared with the corresponding complete
instances visually and statistically on different levels of depth. For example, a solution S
consists of a number of routes R = {r1, r2, ..., rm}, each containing a number of locations
ni with 1 ≤ i ≤ m which are connected by arcs (i, j) ∈ A′. Set A′ represents the arcs that
are part of the solution S. As the instance G is originally a complete graph, A′ ⊂ A. Now,
each arc has features, including arc length or relative location, that can be compared.
The goal is then to detect those features of an arc that have a reduced range of values
for arcs (i, j) ∈ A′ compared to all arcs (i, j) ∈ A. That is, arcs part of the solution have
a certain structure that not all other arcs share. This can then be used by an ML model
to classify between arcs of “high quality”-so arcs being part of a solution-and arcs of “low
quality”. This approach can be expanded for any part of the instance/solution, including
complete routes and single requests. As a sidenote, the following analysis will mainly
focus on instances of medium size as for the biggest instances the solutions were not of
high enough quality. Additionally, the smallest instances were not of interest as the focus
of the pruning is a speed-up of instances that benefit from that.

2.1 Arcs
As already defined, an instance is represented by a directed complete graph G = (V, A)
with every arc {(i, j) : i, j ∈ V, i ≠ j} holding following features that will be analyzed.
The interest is here to classify between “good” and “bad” arcs. As the instances are
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originally complete, a linear rise of customers leads to a quadratic rise in arcs, which
heavily impacts run time. If one would be able to decide beforehand if an arc would
possibly be part of a solution, one could remove many arcs before the execution of the
solving algorithm which tackles this problem.

2.2 Distance
Each arc {(i, j) : i, j ∈ V, i ̸= j} is defined by the two locations i and j which it connects.
Now again, every location i has an assigned geographical coordinate vector i = (i1, i2). As
a consequence each arc can be seen as a displacement vector in a two dimensional space
connecting two position vectors representing the locations. On this mathematical basis
the distance between each location to each other location can be quantified and, depending
on which measurement of distance is used, assigned as feature to the corresponding arc.
Further, this is an arc specific but not a location specific feature as-at least before the
pruning process-every location is connected with every other location and therefore has
|V |−1 distances to |V |−1 other locations. Next, the analyzed measurements for distance
with definition and the respective results.

• Euclidean distance: As the classical measurement for distance, the Euclidean
distance here for each i, j ∈ V with i = (i1, i2) and j = (j1, j2) as the position
vectors is defined as

d(i, j) =
√︂

(j1 − i1)2 + (j2 − i2)2

To now assess its usefulness as a feature, the Euclidean distances of the arcs, which
were part of a solution of a given instance, were plotted against all Euclidean lengths
of all arcs of the instance which can be seen, as an example, in Figure 2.1. To avoid
overpopulating the thesis with plots, the remaining plots of other instances will not
be depicted. Moreover, if a feature varies in structure across different instances, this
will, of course. be addressed. The same approach also holds true for the remaining
part of this thesis.

Figure 2.1: Example plot Euclidean distance
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As visible in the example plot, yet also holding true for all instances, arcs part
of the solution tend to be shorter in terms of Euclidean distance with exceptions
however being relatively long. Therefore, the distribution of Euclidean distances for
arcs part of the solution is not equal to the one of all arcs, which qualify this feature
(while not being perfect) for the ML model. In addition to that, this plot structure
repeats itself in similar fashion for all measurements of distances to follow.

• Similarity based on cos α: As the next measurement of distance α here is the
angle between the two displacement vectors defined through i and j. Therefore i and
j are here not interpreted as position vectors but displacement vectors. Note, that,
even though cos α is not a true distance measurement, it is used here as such by
interpreting higher similarity as being closer together. Further, this measurement,
in contrast to the Euclidean distance, is independent of the lengths of both i and j.
Following, the similarity based on cos α is here defined as:

dcos α(i, j) = iT j√︂
(iT i)(jT j)

= iT j
∥i∥ · ∥j∥

The results can be exemplarily seen in Figure 2.2. In terms of interpretation, a
cosinus value of 1 is given, when the displacement vector of both locations have
exactly the same angle, which means they are minimized in proximity to one
another, and -1 when the angle is 180◦ and the two locations are as far apart as
possible. Note for the distance, the smaller of the two possible angles is always used.
Because of that, for an angle greater than 180◦, the explementary angle would be
smaller than 180◦ and is used instead. While it can be seen in the plot that most
locations part of the solution are close to a value of 1 and therefore are relatively
close to each other, a shorter distance between locations in the solution seems to
be less prevalent compared to other distance measurements. As a consequence, the
similarity based on cos α performs worst of the distance metrics.

Figure 2.2: Example plot similarity based on cos α
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2.2. Distance

• Manhattan distance: The Manhattan distance is a simpler and more robust
alternative to the Euclidean distance and defined here as:

dM (i, j) = |i1 − j1| + |i2 − j2|

Similarly, the results also resemble those obtained with Euclidean distance, as can
be seen in the example plot 2.3, and make this metric usable as a feature. Just
as in the plots for Euclidean distance, here the distances of the arcs part of the
solution are plotted against all arcs part of the instance.

Figure 2.3: Example plot Manhattan distance

• α-Nearness: Another analyzed distance measurement used in the context of
graphs, the α-Nearness, is defined here as follows: Consider a weighted, undirected
graph G1 = (V, E1), where V is the set of vertices and E1 is the set of undirected
arcs between each vertex in V . Each arc ei,j ∈ E1 has a weight w(ei,j) equal to the
d(i, j) between locations i, j ∈ V with assigned position vector i and j. Note the
earlier definition of d(i, j) under Euclidean distance. Let T be a minimum spanning
tree of G1 and T(i,j) be a minimum spanning tree that includes the arc (i, j) ∈ E1.
Then the α−Nearness is the difference between the sum of weights in the minimum
spanning tree T and the sum of weights of the minimum spanning tree including
an arc T(i,j) [HK70]:

dα(i, j) =
∑︂
e∈T

w(e) −
∑︂

e∈T(i,j)

w(e).

Now, this distance measurement can be applied to each arc in the instance graph.
As analysis, if α-Nearness is sensible as a feature, the α-Nearness of arcs part of the
solution was plotted against all arcs in the instance, which can be seen in Figure 2.4.
The feature performs similarly to the Euclidean and Manhattan distances, which
again makes it usable for the training of the ML model.
Based on the analysis until now, Euclidean distance, Manhattan distance and
α-Nearness perform similar and best. These features, however, are dependent on
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2.2. Distance

Figure 2.4: Example plot α-Nearness

the instance as another bigger instance in a greater geographical dimension would,
e.g., also lead to a greater overall Euclidean distances, Manhattan distances and
α-Nearness. This could lead to varying performance for different instances. As a
consequence, the Euclidean distance relative to the variance of Euclidean distances
and Euclidean distance relative to the total distance of arcs were also tested. The
definitions for both metrics are given as:

– Euclidean distance relative to variance s2

ds2(i, j) = d(i, j)
s2

with

s2 = 1
n − 1

∑︂
(i,j)∈A

(d(i, j) − dist)2

and
dist =

∑︁
(i,j)∈A d(i, j)

|V |

– Euclidean distance relative to total distance of arcs:

dtot(i, j) = d(i, j)∑︁
(i,j)∈A d(i, j)

This is mentioned only for completeness, as the visualization, while executed, looks
equivalent to the one of the standard Euclidean distance, just with smaller values on
the y-axis, and all instances used in the thesis are of equal geographical size. Still,
accounting for different variance or total distance over all routes might improve
the performance of the feature. This relativization was not done for the remaining
distance metrics because the original metrics performed comparably anyways, and
the given time frame did not allow further analysis in this direction.
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2.3 Spatial Position
In this next section, the thesis will consider a consequence of each arc having a distance
value: The neighborhood between locations. Thus, as the graph is originally complete, a
location has an arc to each other location, each with a given distance. Neighborhood
here then is just a sorting of the locations based on these distances. Therefore, each
location has one nearest neighbor, a second nearest neighbor and so forth. Based on that,
two possible features were analyzed, starting with:

• Nearness based on neighborhood: For a given arc (i, j) the nearness based on
neighborhood is here defined as:

neari,j = |{k ∈ V \ {i, j}|dist(i, k) < dist(i, j)}|

This nearness value neari,j is then assigned to arc {(i, j) : i, j ∈ V, i ̸= j}. In simple
terms this resembles, starting from location i, how many locations are closer to i
than j.

• k-nearest neighbors: Another similar variant to the nearness based on neighbor-
hood is to see if, for an arc (i, j), j is part of the k-nearest neighbors to i. To be
exact, this checks if j ∈ Nk(i) with

Nk(i) = {j ∈ V, k ≤ |{l ∈ V, dist(i, l) ≤ dist(i, j)}|}

These two features were analyzed combined via plotting, an example of which can
be seen in Figure 2.5. This plot is to be interpreted like follows: On the x-axis, the

Index of location

D
is

ta
nc

e
to

ne
xt

lo
ca

ti
on

Figure 2.5: Example plot 20-nearest neighbors

indexes of the locations and on the y-axis the distance from each location to its
subsequent location in the solution is plotted. Consequently, each point represents
an arc (i, j) with the index of i on the x-axis and the distance from i to j on the
y-axis. Further, each grey point is an arc (i, j) where j /∈ Nk(i) and each red point
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an arc (i, j) where j ∈ Nk(i). In this example k = 20, however also k = 3, k = 5,
k = 10, k = 40, k = 60, k = 80, k = 100 were tested. First, to qualify the feature of
k-nearest neighbors as feasible, the number of red points should be clearly greater
than k as this would indicate that neighboring locations tend to be more inside the
neighborhood than outside. Yet, even up to k = 100, arcs remain with the second
location being outside the 100 nearest neighbors of the first, and while the number
of red points is greater than k, it is overall visible that the feature, independent of
k, does not perform particularly well. The same conclusion can then also be taken
for nearness based on neighborhood. That is because, here, even for big k values,
there were still many points outside the k-nearest neighbors range, indicating that
the feature will not perform well when differentiating between arcs part of the
solution and arcs which are not.

2.4 Temporal Position
In the last section of analyzed features concerning singular arcs, another dimension next
to the dimension of place is considered: time. First off, here the time it takes a vehicle
to get from location A to location B is directly tied with the distance between the two
locations. Therefore, this will not be further considered as a feature. Next, as mentioned,
every location i has an earliest possible service start time wstart

i and a latest possible
service start time wend

i assigned to it. The analysis of how these values help in the
classification process is done via following features. The overall idea is that closer time
windows are favorable.

• Difference of earliest service start times of locations: For an arc (i, j) with
i, j ∈ V this is

dstart
(i,j) = wstart

i − wstart
j .

Then again to analyze this feature all dstart
(i,j) , with (i, j) being part of a route of

a solution, are plotted against all dstart
(k,l) with k, l ∈ V, k ≠ l. An example can be

seen in Figure 2.6. Each plotted point represents dstart
(i,j) of (i, j) with grey points

representing the remaining arcs while colorful points are part of the solution (each
different color represents a different route). Also note the black points which
represent arcs part of the solution that connect to a charging station, origin depot,
or destination depot. This is done because the time windows of these locations
span over the whole planning horizon T , which sometimes leads to great differences
but is an edge case that cannot be generalized. Therefore, those values should be
seen independently from the remaining dstart

(i,j) . Based on this interpretation, it is
clearly visible that the difference in earliest service start times of arcs part of the
solution follows a certain pattern. This aligns with the idea mentioned earlier that
time windows closer together (here the earliest service start times) are favorable
and shows that this feature works nicely.
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Figure 2.6: Example plot Difference earliest service start times

In fact, every feature concerning time windows analyzed here performed similarly
well continuing with:

• Difference of the latest service start times of locations: For an arc (i, j)
with i, j ∈ V this is

dend
(i,j) = wend

i − wend
j

and looking at the example plot Figure 2.7, again with all instances having an alike
plot, a similar result can be seen. Additionally, the interpretation and analysis of
the plot also stay the same.

Figure 2.7: Example plot Difference latest service start times

Lastly, the remaining two features analyzed in the time window context where first

• The mean of both differences: For an arc (i, j) with i, j ∈ V this is

dmean
(i,j) =

dstart
(i,j) + dend

(i,j)
2

and second,

12



2.5. Single Requests

• Overlappingness which is here defined as the difference between the latest service
time of the first location and the earliest service time of the second location. For
an arc (i, j) with i, j ∈ V this is

dov
(i,j) = wend

i − wstart
j .

Now again, both the analysis of dmean
(i,j) and dov

(i,j) was equal to the one of dstart
(i,j) with

similar results. In addition to that, two example plots can be seen in Figure 2.8a
and Figure 2.8b.

(a) Example plot dmean
(i,j) (b) Example plot dov

(i,j)

This concludes the data analysis concerning arcs, yet one is not to leave empty-handed.
Especially the features about time windows and distance performed well in the initial
analysis and in actuality, most features addressed here were also tested during the training
of the ML models.

2.5 Single Requests
Following the analysis of arcs, this section will have a closer look at single requests. A
request consists of two locations i ∈ P and n + i ∈ D and the customer is picked up at i
to be dropped off again at n + i within the maximum user ride time. While the study of
arcs had a removal of arcs before the execution of the solving algorithm in mind, the idea
here is to limit the possible insertion positions of the connected locations. Here, it should
be added that each i ∈ P and j ∈ D has to be part of a route and also, each location is
fixed geographically and in terms of time windows. As a consequence, possible insertion
positions are not actually different positions but just different relative to which route the
location and at which place in the route the location is added to.

• Specifically, it first was considered if some insertion positions of location i + n can
be ruled out beforehand, given an already route assigned location i ∈ P .

13



2.6. Routes

• As a second option, it was also analyzed if some insertion positions of location i
can be ruled out beforehand, given a route R it should be assigned to.

The first feature was ruled out after the first inspection because on average there are only
0.5354 locations between a request pair of locations. With a variance of 0.5285 and a
maximum number of locations between pickup and drop-off location pair of 3, there are
not enough possible insertion positions left to reduce the number further. The second
feature was ruled out as well: While initial analysis showed that predicting the correct
insertion position of a location i based on wstart

i , wend
i and i = (i1, i2) works well, the

heuristic process takes too long to deliver a speed-up compared to the original approach.
To be exact, for the analysis, each location of a complete route of a solution was removed,
heuristically inserted based on the parameters above and lastly the difference between
the original and predicted insertion position was calculated. Based on that, the predicted
and original positions were on average 0.9788 in the route apart and therefore similar.
The heuristic took the vector iheuristic = (wstart

i , wend
i , i1, i2) of the location i, which was

to be inserted, and found location j with vector jheuristic = (wstart
j , wend

j , j1, j2) closest to
iheuristic. The predicted insertion position of i then is the previous position of j. The
basis for that heuristic is found in the results of the arc analysis, as there, it was already
perceptible that neighboring locations have similar time windows and are rather close
together. The sequential nature of the routes in terms of time windows can be also seen
in Figure 2.9.

As this simple heuristic already is too slow, this feature was also not further considered
for the development of ML models.

2.6 Routes
Finally, in the last section of the data analysis routes will be the point of interest. The
ideas of this approach are based on the work of F. Arnold and K. Sörensen, trying to
distinguish between good and bad route structures mathematically [AS19]. Further, the
goal here is to find structures in the routes of a solution to either be able to assign single
requests to a reduced number of routes, or even a single route. This is in contrast to the
current approach, which tries all possible routes, and is equivalent to both knowing, how
routes “typically” look like, and ensuring, that only routes of this “typical” structure are
created by only allowing requests to be added to fitting routes. However, for the current
instances, it was not yet possible to find a usable feature or even usable structure in the
data which renders this approach unproductive:

• Geographical location: First off, the geographical location was assessed with
the idea that different routes are distributed in different areas of the instance.
However, this is not the case as can be seen in Figure 2.10. The plot represents the
geographical grid of the instance with colorful points being part of the route and the
black points part of any other route. Consequently, the plot shows the geographical
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Figure 2.9: Example plot sequential time windows

position of every location of the given instance. Given this interpretation, it is
visible, that all routes are mostly distributed through the whole instance which
makes this feature alone useless.

• Time windows: Next, time windows alone show also little potential. This is
because most routes span over the whole time horizon T plan and additionally no
other structure that differs between routes was found. How time windows are
distributed throughout routes can again be seen in Figure 2.9.

• Principal Component Analysis: After the analysis of time windows and ge-
ographical locations alone did not bring any interesting results, a combination
of these features was considered. This was executed via a Principal Component
Analysis (PCA) with four dimensions: wstart

i , wend
i and i1, i2 for i = (i1, i2). Again,

also this combination showed no patterns that would help in the training of an ML
model as can be seen in Figure 2.11. The colorful points once more depict locations
part of the given route of the solution and the black points are all remaining
locations. The four dimensions are reduced to two by just showing the first two
components of the PCA.
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Figure 2.10: Example plot geographical location

Figure 2.11: Example plot Principal Component Analysis
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• Solutions as a whole: Finally, for the opportunity to find some other patterns
that not yet have been discovered, all routes of the solutions of all instances were
visualized. This can be seen in Figure 2.12. For interpretation, each subplot
resembles the geographical grid of the same instance and shows a different route of
the same solution. Next,

– each blue point is a pickup location,
– each orange point a drop-off location
– and each green point a charging station, origin depot or destination depot.

In addition to that, each arrow connects two neighboring locations in the route.
Therefore, following the arrows, starting with the origin depot, will lead along the
route exactly in the same order as the EAV would drive. Lastly, the grey lines
connect corresponding pickup- and drop-off locations from the same request. While
the plots again confirm the global geographical distribution of routes, they also
partly explain why. Looking closer at the structure, this global distribution is
mostly caused by the corresponding pickup- and drop-off locations of the same
request. These two locations are often in different areas of the instance, so they
force the routes to take on this structure. In accordance with that, many of the
longest arcs part of the solution are direct connections between the two locations
of one request. Even though this opens up new ideas concerning differentiation
between these forced longer arcs and the remaining ones, this was not yet analyzed
further.

Figure 2.12: Example plot complete route

In conclusion: As of now, no features or patterns were found that could be used in
the later process of training ML models.
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This wraps up the current standing of the data analysis. In summary, features of arcs
especially concerning distance and time windows looked promising while features of routes
and single requests showed little potential. Thus, only the removal of arcs will be further
considered and worked with.
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CHAPTER 3
Machine Learning Models

After better understanding the underlying data and extracting possible features, now
the basic idea is to take an instance G = (V, A), calculate a feature vector for every arc
(i, j) ∈ A in the graph, remove the worst arcs based on the predictions of the machine
learning model, and use this newly created instance for the later solving process. Through
that, arcs that would not have been in the solution anyway are never considered and
during every iteration of a solving algorithm, several possible, yet not interesting, options
for insertion are left out.

Crucially, here it is only considered to strictly classify between including the arc in the
further search or not and the task therefore is binary classification.

3.1 Model Choice
First off, for the model choice, four variants of Support Vector Models were analyzed: a
non-linear Support Vector Machine (SVM), a Support Vector Regression (SVR), a linear
SVM and a linear SVM with a Nystroem transformer.

3.1.1 Motivation

The selection of Support Vector Models is justified by their strong performance in previous,
similar work (see, e.g., [FAC23], [AS19]) and their simplicity and speed, which align with
the goal of accelerating the process. Since the task involves binary classification, any
variant of SVM naturally presents itself as a sensible option.
The specific cases of a linear SVM and a linear SVM with a Nystroem transformer were
added later, as the original, non-linear model required too much time for its predictions.
While the linear SVM qualifies itself by being the fastest SVM variant, the addition of the
Nystroem transformer aims at improving the prediction quality relative to the linear SVM
without becoming as slow as the non-linear SVM. In contrast, an SVR cannot be used
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directly for classification. Nonetheless, this model was included for two reasons: first, the
easier application of the heuristically calculated data, and second, the anticipation that it
might be possible to assign a “quality” value to each arc instead of directly classifying it.
The first reason will be discussed further in Section 3.3, while the second could form the
basis for a probability-oriented pruning strategy, where arcs of lower quality are used less
frequently instead of being removed entirely. However, this probability-based approach
will not be explored further in this thesis. Consequently, the continuous results of the
SVR have to be discretized.

3.1.2 Model Description

With the choice of each model justified, each will now be described in more depth.

• non-linear SVM: The non-linear SVM resembles a classic SVM model without
additional restrictions. This especially includes unrestricted decisions regarding
the kernel and stands in contrast to the linear SVM option. Specifically, the radial
basis function (RBF)-, polynomial- and sigmoid kernel were considered as they are
the most commonly used. Additionally, for the polynomial kernel, only a degree of
3 was tested[CV95].

• SVR: To enable the SVR for classification, a threshold value was used, which
classifies all arcs with a predicted value lower than the threshold into the negative
class, and those with a higher predicted value into the positive class. For the kernel
function, only an RBF kernel was used, as it is the most popular option [DBK+97].

• linear SVM: As the simplest SVM variant, the linear SVM assumes that the data
is already linearly separable without mapping it into a higher dimensional space.
Thus, the linear SVM has no need for a kernel function. [BGV92].

• linear SVM with Nystroem transformer: Lastly, as already mentioned, the
combined model of a linear SVM and a Nystroem transformer aims to combine the
speed of the linear SVM with the improved predictive capabilities of the non-linear
SVM (see [WS00] and [YLM+12] for more on the Nystroem transformer). This
is achieved using the Nystroem transformer, which projects data points into a
higher-dimensional feature space, similar to the kernel function in a non-linear
SVM. However, instead of computing the kernel matrix using all data points, it
approximates the matrix using a subset of them. After the transformation, the
maximum-margin hyperplane separating the two classes of data points can be found.
This last step is executed via the linear SVM and happens equally for the non-linear
SVM. As a consequence, the combined model can be used as an approximated
replacement of the non-linear SVM. Again, only the RBF kernel was examined as
the kernel function to be approximated.

Continuing with these selected models, every ML training needs datasets, the creation of
which will be examined next. A dataset consists of a number of arcs, assigning each arc
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both a feature vector, which the ML model uses to predict the class of the arc, and a
label, which the ML model uses to evaluate its prediction.

3.2 Features
This section delves into the combination of features used for the training of all earlier-
mentioned model options. This starts with the results of the Data Analysis 2 from which
following features are taken:

d(i, j) dα(i, j)
dstart

(i,j) dend
(i,j)

dmean
(i,j) dov

(i,j)
N5(i) neari,j

with i, j ∈ V and i = (i1, i2) and j = (j1, j2) being the corresponding location vectors.
Note that due to the similar nature of d(i, j) and dM (i, j), dM (i, j) was not further
considered for simplicity reasons and instead N5(i) and neari,j were tested in the training
as well.

Additionally, for the sake of further exploration, the subsequent features were also
implemented.

• Distance to the closest origin depot: This is defined for arc (i, j) as

dmin
origin(i, j) = min

o∈O
d(mid(i,j), o)

with o = (o1, o2) being the location vector of o ∈ O and mid(i,j) = i+j
2 .

• Distance to the furthest away origin depot: This is defined for arc (i, j) as

dmax
origin(i, j) = max

o∈O
d(mid(i,j), o).

• Distance to the center of origin depots: This is defined for arc (i, j) as

dcenter
origin (i, j) = d(mid(i,j), corigin)

with corigin =
(︃∑︁

o∈O
o1

n ,

∑︁
o∈O

o2
n

)︃
.

• Distance to the closest destination depot: This is defined for arc (i, j) as

dmin
dest(i, j) = min

d∈D
d(mid(i,j), d)

with d = (d1, d2) being the location vector of d ∈ D.
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• Distance to the furthest away destination depot: This is defined for arc (i, j)
as

dmax
dest(i, j) = max

d∈D
d(mid(i,j), d).

• Distance to the center of destination depots: This is defined for arc (i, j) as

dcenter
dest (i, j) = d(mid(i,j), cdest)

with cdest =
(︃∑︁

d∈D
d1

n ,

∑︁
d∈D

d2
n

)︃
.

• i ∈ S: As charging stations play a vital part in planning, the idea was to see if
including the information that the arc is connected to a charging station could
affect the prediction. Consequently, the subsequent three features check if any
location of the arc (i, j) is a charging station.

• j ∈ S

• i, j ∈ S

This completes all features used during the training of all ML models. In addition to
that, the feature vectors stay the same for all datasets and are calculated for all arcs of
the instances noted in 4.1. To complete the datasets the labeling remains.

3.3 Labels
As of now, only the instances, but no solutions, were used to create the datasets. This
changes with the labeling process and leads to a central problem. First off, in theory each
arc that would be part of any optimal solution Sopt should be labeled in the positive class,
and else in the negative class, which represents the distinction between arcs of “good”
quality and “bad” quality. To be exact, each data point would be assigned a value of 1 or
0 as a label. Note, that there could be more than one optimal solution and the set of arcs
in the positive class could be greater than the number of arcs in one optimal solution.
However, as already addressed, the complexity of the E-ADARP makes calculating any
Sopt in a reasonable time for more than five cars infeasible. Consequentially, the solutions
to the instances are based on heuristics (e.g. the LNS-heuristic of [BRL24] which is
used here) and not optimal. To deal with these “unclean” labels, a weak supervision
approach is used: Instead of calculating one solution for a given instance, 100 solutions
are calculated. Then, for the SVMs, three possibilities were tested: The data point of an
arc (i, j) is assigned a label of 1 if this arc appears at least in one of the 100 solutions,
two of the 100 solutions or three of the 100 solutions and else 0. Thus, three distinct
datasets were created based on these thresholds, which were then used by the linear
SVM, non-linear SVM, and linear SVM with Nystroem transformer. For the SVR, the
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labels were created by first calculating a weighting ρk for each of the 100 solutions of one
instance like follows:

ρk = 1 − ef̂
k
obj∑︁100

k=1 ef̂
k
obj

with f̂
k
obj = fk

obj

minl∈{1,..,100}f l
obj

and fk
obj being the objective function value (so the solution

quality) for the kth-solution of the given instance. Then the label for the data point of
arc (i, j) ∈ A is

γi,j =
100∑︂
k=1

ρkxk
i,j

with xk
i,j being the decision variable if the arc (i, j) is part of the solution k. Here see

also [FAC23]. This calculation of labels is better at addressing the varying and imperfect
quality of solutions showcasing the advantage of the SVR as it works with continuous
labels. With this fourth dataset, which is only used by the SVR, finalized and the models
defined, it is now time to evaluate their performance.
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CHAPTER 4
Experimental Analysis

The machine learning models were implemented and trained in Python 3.11 with scikit-
learn and cross-validated with GridSearchCV. The four datasets were created over all arcs
of all instances defined in [RCL07] which were then enhanced with E-ADARP-specific
features as detailed in [BKG19] resulting in a total of 10 instances which can be seen in
Table 4.1.

Table 4.1: Instance from [RCL07]

Instances Number of Cars Number of Requests Number of Arcs

a5-60 5 60 18,496
a6-48 6 48 12,996
a6-60 6 60 19,044
a6-72 6 72 26,244
a7-56 7 56 17,424
a7-70 7 70 25,600
a7-84 7 84 35,344
a8-64 8 64 22,500
a8-80 8 80 33,124
a8-96 8 96 45,796

This leads to 256,568 combined arcs/data points for training and testing over all instances.
As most arcs of an instance are not part of a solution all datasets were subsampled after
label assignment and the number of data points with positive labels was leveled with the
number of data points with negative labels. Following subsampling, each dataset was
divided in a uniform random manner, with 80% allocated for training and 20% reserved
for testing. Next, the 100 solutions of each instance were calculated on a 13th Gen Intel
Core i9-13900H 2.60 GHz with 16.0 GB of RAM based on the LNS of [BRL24] with a
maximum of 30000 iterations.
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4.1 Parameters
The GridSearch of the SVR tested the regularization parameter C with the values 0.01,
0.1, 1, 10, and 100, the Epsilon insensitive ϵ with the values 0.01, 0.1, 0.5, 1, for the kernel
function only the RBF kernel and γ with 1

nfeatures
, 1

nfeatures∗var(X) , 0.001, 0.01, 0.1 and 1
with nfeatures being the number of features and var(X) being the variance of the feature
matrix X. As a scoring metric for evaluation, the negative mean squared error is used.
For the non-linear SVM the RBF-, polynomial-, and sigmoid kernel functions are tested
with possible C values 0.1, 1, 10, and 100. Moreover, for he polynomial- and sgmoid
kernel the bias term r was set to 0.0. For γ 1

nfeatures
and 1

nfeatures∗var(X) is considered.
Further, the linear SVM uses the same C values as the non-linear SVM. Lastly, the linear
SVM with Nystroem transformer approximates the RBF kernel with possible γ values of
0.5, 0.75, and 1.0 and a possible number of landmarks of 10, 20, and 30. The linear SVM
with Nystroem transformer again uses the same possible C values.

4.2 Comparison of Original and Pruned Variant
To analyze if the pruning of the instance leads to a speed-up, the solutions of the original
LNS approach are compared with the solutions of the approach that beforehand prunes
the instances with the ML models. In contrast to the testing and evaluation of the ML
models themselves, as mentioned earlier, which was conducted only on the instances of
[RCL07], the examination of potential speed-up was performed on both the instances in
[RCL07] and the larger instances from [Lim23], shown in Table 4.2.

Table 4.2: Instances from [Lim23]

Instances Number of Cars Number of Requests Number of Arcs

a180-3600 180 3600 57,229,225
a200-4000 200 4000 70,644,025
a220-4400 220 4400 85,470,025
a240-4800 240 4800 101,707,225
a260-5200 260 5200 119,355,625

To better adapt the models for different types of instances either the weightings of the
positive and negative class for the loss function (for the non-linear SVM and linear SVM
with Nystroem transformer) or the threshold value (for the linear SVM and SVR) are
adapted and, for each instance, varying options were compared. The usage of these
thresholds enables the linear SVM and SVR to only be trained once for each of its possible
datasets (see 3.3) and then just be adapted for each instance by changing the threshold.
On the contrary, the other models, adapted by weightings, have to be retrained for each
weightings combination, which would lead to multiple similar but not identical models.
However, looking ahead, the same weightings were used for all instances which were best
solved by a SVM that was tuned via weightings and therefore only one model of each
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variant was needed for the final results. This comparison was executed on single cores
of 2.4 GHz Intel Xeon E5-2640 v4 processors with a memory limit of 30 GB. For each
weighting combination/threshold value of each model for each instance, 20 solutions were
computed while for the original approach for each instance, 50 solutions were computed.
In addition to that, the solving process of the smaller instances was set to stop after 30000
iterations while the solving process of the bigger instances stopped after 900 seconds.

With the experimental environment set, the next step is to sum up the results.
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CHAPTER 5
Results

This chapter Results is split into two parts. The first outlines the performance of the
tested ML models by themselves and the second reviews if and how much speed-up the
usage of these ML models delivers.

5.1 Machine Learning Models
While an interesting feature α-Nearness was simply to computationally expensive for
further testing and had to be left out.

5.1.1 Non-linear SVM

The best SVM model was based on an RBF kernel with a C value of 100, γ of 0.0001,
and dataset based on an arc appearing at least once over all 100 solutions. The best
combination of features was d(i, j), dstart

(i,j) , dend
(i,j), dmean

(i,j) , dov
(i,j), N5(i) and neari,j . With

these settings, the model performed quite well with an accuracy of 0.892, and additionally
the confusion matrix and a classification report can be seen in Table 5.1 and Table 5.2.
The quality of the non-linear SVM is also visible in its ROC curve in Figure 5.1. Note,
that class “1” is the positive class and represents arcs that were part of the solution while
“0” is the negative class and represents arcs not part of the solution.

Table 5.1: Confusion Matrix non-linear SVM

Predicted 0 Predicted 1
Actual 0 696 136
Actual 1 42 775
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Table 5.2: Classification Report non-linear SVM

Class Precision Recall F1-score Support
0.0 0.94 0.84 0.89 832
1.0 0.85 0.95 0.90 817
Accuracy 0.89
Macro avg 0.90 0.89 0.89 1649
Weighted avg 0.90 0.89 0.89 1649

Figure 5.1: ROC curve of the non-linear SVM

5.1.2 SVR

The best SVR model had a coefficient of determination r2 of 0.220, a mean squared error
of 496.939 with a C value of 100, ϵ of 1 and γ of 1 and therefore did not really perform
up to expectation. The best combination of features was d(i, j), dstart

(i,j) , dend
(i,j), dmean

(i,j) , dov
(i,j)

and neari,j . The performance can also be seen in Figure 5.2 with heteroscedasticity and
patterns indicating the low quality of the model.
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Figure 5.2: Residuals plot of the SVR

5.1.3 Linear SVM

The best linear SVM model used a C value of 1 and the dataset based on an arc
appearing at least once over all 100 solutions, achieving an accuracy of 0.704 with the
feature combination d(i, j), dstart

(i,j) , dend
(i,j), dmean

(i,j) , dov
(i,j) and neari,j . Equal to the non-linear

SVM, the confusion matrix and a classification report can be seen in Table 5.3 and
Table 5.4, and the ROC curve in Figure 5.3. However, the accuracy barely decreases to
0.681 if only d(i, j) and dmean

(i,j) are used. This is crucial for the big instances as here even
a linear SVM would take too long for prediction using a big feature vector.

Table 5.3: Confusion Matrix linear SVM

Predicted 0 Predicted 1
Actual 0 560 272
Actual 1 216 601

29



5.1. Machine Learning Models

Table 5.4: Classification Report linear SVM

Class Precision Recall F1-score Support
0.0 0.72 0.67 0.70 832
1.0 0.69 0.74 0.71 817
Accuracy 0.704
Macro avg 0.71 0.70 0.70 1649
Weighted avg 0.71 0.70 0.70 1649

Figure 5.3: ROC curve of the linear SVM

5.1.4 Linear SVM with Nystroem Transformer

For the last model the best parameters were a γ of 0.5 with 30 landmarks and a C value
of 100. Combined with the features d(i, j), dstart

(i,j) , dend
(i,j), dmean

(i,j) , dov
(i,j) and neari,j and,

once more, the dataset based on an arc appearing at least once over all 100 solutions
the accuracy reached 0.885. More metrics can be found in Table 5.5 and Table 5.6 and
the corresponding ROC curve can be seen in Figure 5.4. Similar to the linear SVM the
performance is comparable when using only d(i, j) and dmean

(i,j) with an accuracy of 0.875.
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Table 5.5: Confusion Matrix linear SVM w. Nystroem

Predicted 0 Predicted 1
Actual 0 696 136
Actual 1 54 763

Table 5.6: Classification Report linear SVM w. Nystroem

Class Precision Recall F1-score Support
0.0 0.93 0.84 0.88 832
1.0 0.85 0.93 0.89 817
Accuracy 0.88
Macro avg 0.89 0.89 0.88 1649
Weighted avg 0.89 0.88 0.88 1649

Figure 5.4: ROC curve of the linear SVM w. Nystroem

In conclusion, the non-linear SVM and linear SVM with the Nystroem transformer
performed well with similar results while the non-linear SVM was slightly better. The
simplification of the linear SVM also reduced the predictive quality while not completely
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removing it and lastly, the SVR did not show any potential.

5.2 Speed-up
Based on these results, this section analyzes how the run time and solution quality
change, when the models are used to prune the instance before the execution of the
search algorithm.

First off, the SVR was briefly tested, however only on the smaller instances form [RCL07].
For the threshold values 0.5, 0.7, and 0.8 were tested which is equivalent to removing
50, 30 and 20 percent of arcs. After the pruning process, the LNS was unable to find
a solution for four out of the nine tested instances, yet the run time of the still solved
instances was, on average, reduced by 23 percent while the objective function value on
average increased by about 14.6 percent in comparison to the original approach. Hence,
for the instances that stay feasible, the process of pruning does speed-up the search for
the best solution considerably, in comparison to the approach without pruning, while
losing a percentage-based smaller amount of solution quality.

Continuing with the non-linear SVM, this model was simply too computationally inefficient
for the bigger instances, taking over an hour to predict all arcs for each instance in 4.2.
Additionally, the non-linear SVM did not bring any improvements in solution quality for
the smaller instances compared to the linear SVM with the Nystroem transformer, yet
took longer for the prediction process. As a consequence, the non-linear SVM is simply
inferior to the linear SVM with the Nystroem transformer in the context of this thesis.

The speed-up results of the linear SVM were also outperformed by the linear SVM with
the Nystroem transformer for the smaller instances, however, surprisingly the linear SVM
performed best for the bigger instances. The exact numbers can be seen in Table 5.7
which shows the objective values of the original and pruning based approach together
with the absolute and percentage-based differences. Moreover, for each instance the best
threshold is listed. As the threshold is originally 0, which would represent a point being
on the decision hyperplane of the linear SVM, values under 0 here increase positively
classified arcs while values over 0 increase negatively classified arcs. As visible, the pruned
variant outperforms the original approach through out all big instances in the same time
frame showcasing the potential of this new ML-based pruning approach. It should also
be mentioned, that these results were achieved using the already addressed simplified
version of the linear SVM using only the two features d(i, j) and dmean

(i,j) .

Table 5.7: Comparison between Original Best Obj and Pruned Best Obj

Statistic Original Pruned Difference % Diff.

a180-3600 Threshold: -0.0375
Mean 34266.974 29534.439 -4732.536 -13.81%
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Statistic Original Pruned Difference % Diff.

Median 33910.605 29502.244 -4408.361 -13.00%
Variance 1091591.561 18278.221 -1073313.340 -98.33%
a200-4000 Threshold: 0.0375
Mean 38266.942 32612.527 -5654.415 -14.78%
Median 38138.933 32598.412 -5540.521 -14.53%
Variance 730781.581 22741.802 -708039.779 -96.89%
a220-4400 Threshold: 0.075
Mean 42196.016 35830.309 -6365.707 -15.09%
Median 42254.584 35808.616 -6445.968 -15.26%
Variance 312921.066 15177.805 -297743.261 -95.15%
a240-4800 Threshold: 0.1
Mean 46621.734 39067.042 -7554.692 -16.20%
Median 46733.811 39043.950 -7689.860 -16.45%
Variance 136119.368 37917.011 -98202.357 -72.14%
a260-5200 Threshold: 0.175
Mean 50453.999 42340.159 -8113.839 -16.08%
Median 50459.760 42321.612 -8138.148 -16.13%
Variance 49800.225 30185.222 -19615.003 -39.39%

Lastly, the linear SVM with the Nystroem transformer performed best for the smaller
instances. Using the pruning based approach the mean objective function values increased
by a maximum of four percent while the mean run time improved by at least 35 percent.
The exact results can be seen in Table 5.8, Table 5.9 and are also exemplarily visualized
in Figure 5.5. The used weighting for all instances was 1 for the positive class and 0.5 for
the negative class.

Table 5.8: Comparison between Original Best Obj and Pruned Best Obj Across Instances

Instance Statistic Original Pruned Difference % Diff.

a5-60 Mean 697.882 718.499 20.618 2.95%
Median 699.068 718.277 19.210 2.75%

Variance 14.360 30.591 16.232 113.04%
a6-48 Mean 511.412 522.113 10.701 2.09%

Median 509.890 521.429 11.539 2.26%
Variance 10.363 3.601 -6.762 -65.25%

a6-60 Mean 695.909 710.444 14.535 2.09%
Median 695.700 709.986 14.286 2.05%

Variance 8.463 13.027 4.565 53.94%
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5.2. Speed-up

Instance Statistic Original Pruned Difference % Diff.

a6-72 Mean 785.194 823.949 38.755 4.94%
Median 784.997 823.402 38.405 4.89%

Variance 30.040 36.833 6.793 22.61%
a7-56 Mean 625.040 635.738 10.698 1.71%

Median 624.386 635.036 10.650 1.71%
Variance 14.794 31.528 16.734 113.12%

a7-70 Mean 769.354 786.104 16.750 2.18%
Median 769.311 786.517 17.206 2.24%

Variance 26.811 28.781 1.970 7.35%
a7-84 Mean 901.949 938.440 36.491 4.05%

Median 899.968 938.735 38.766 4.31%
Variance 36.676 29.949 -6.727 18.34%

a8-64 Mean 645.669 661.534 15.865 2.46%
Median 644.395 659.900 15.505 2.41%

Variance 21.085 62.075 40.990 194.40%
a8-80 Mean 820.359 840.384 20.026 2.44%

Median 819.674 840.296 20.623 2.52%
Variance 29.863 27.092 -2.770 -9.28%

a8-96 Mean 1067.734 1099.629 31.895 2.99%
Median 1067.735 1097.854 30.119 2.82%

Variance 52.837 63.174 10.337 19.56%

Table 5.9: Comparison between Original Total Time and Pruned Total Time Across
Instances

Instance Statistic Original Pruned Difference % Diff.

a5-60 Mean 29.800 19.086 -10.714 -35.95%
Median 29.757 19.327 -10.431 -35.05%

Variance 1.714 0.931 -0.783 -45.70%
a6-48 Mean 27.454 16.254 -11.201 -40.80%

Median 27.698 16.202 -11.496 -41.51%
Variance 1.370 0.744 -0.626 -45.70%

a6-60 Mean 27.238 16.554 -10.683 -39.22%
Median 27.289 16.442 -10.847 -39.75%

Variance 1.248 0.737 -0.511 -40.97%
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5.2. Speed-up

Instance Statistic Original Pruned Difference % Diff.

a6-72 Mean 36.508 22.275 -14.234 -38.99%
Median 36.721 22.497 -14.224 -38.73%

Variance 2.494 1.364 -1.130 -45.31%
a7-56 Mean 27.590 16.481 -11.109 -40.26%

Median 27.577 16.418 -11.159 -40.46%
Variance 1.320 0.481 -0.839 -63.55%

a7-70 Mean 33.022 20.604 -12.418 -37.61%
Median 33.241 20.551 -12.691 -38.18%

Variance 2.278 0.862 -1.416 -62.14%
a7-84 Mean 39.660 24.004 -15.656 -39.48%

Median 40.039 24.025 -16.014 -40.00%
Variance 2.652 1.084 -1.568 -59.12%

a8-64 Mean 34.922 21.222 -13.700 -39.23%
Median 34.990 21.394 -13.596 -38.86%

Variance 2.036 1.662 -0.375 -18.41%
a8-80 Mean 40.479 23.679 -16.799 -41.50%

Median 40.696 23.812 -16.884 -41.49%
Variance 2.025 0.858 -1.167 -57.61%

a8-96 Mean 46.010 27.042 -18.968 -41.23%
Median 46.137 26.662 -19.476 -42.21%

Variance 3.672 1.128 -2.544 -69.27%

Figure 5.5: Results of smaller instances
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CHAPTER 6
Conclusion

In conclusion, removing arcs with an ML model from a given E-ADARP instance before
executing a solving algorithm on the instance heavily improves run time and can even
improve the solution quality for growing instance size. Starting with the data analysis,
which uncovered several potent features, a necessary basis for the development of ML
models was set. In the following chapter, four options for the ML model were investigated
and both labels and features were defined. Based on this raw build, an experimental
environment to test these options was set and in the last chapter, both the performance
of the models on their own and their contribution to the speed-up of the solving of the
E-ADARP were put forward. Now, based on these results, it can be said that machine
learning can speed-up route planning in E-ADARP by pruning the search space before
searching for the best solution using LNS (large neighbourhood search).
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CHAPTER 7
Future Work

As for the future, this ML-based approach still holds a lot of potential. An interesting
idea is the already mentioned exchange of the hard binary classification process towards a
probability-based approach, that also sometimes allows edges of low quality to be selected
during the construction of a solution. Further, while the structure of routes was shown
to be complicated in the data analysis, there still arose some patterns, like most long
arcs being forced by far-apart locations of the same request. Diving deeper into the
data and making these patterns usable, could enable the training of new ML models,
that determine if a request is compatible with a whole route. Especially with growing
route length, this could lead to great time savings. Finally, the usage of ML in parts of
algorithms does not have to be reduced to the pruning beforehand. Other possibilities
like the selection of destroy and repair operators for the LNS can be just as powerful.
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