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Abstract. We consider a practical extension of the classical dial-a-ride
problem (DARP) called the electric autonomous DARP where electric
and autonomous vehicles provide service for transportation requests with
time windows. The planning and scheduling of routes that minimize
not only the vehicles’ travel cost but also the user excess ride time
while considering charging requirements and operational constraints is
a challenging optimization problem. In a previous work, we proposed a
large neighborhood search (LNS) with a novel route evaluation approach
that heuristically inserts charging stops on-the-fly as needed. Here, we
go into more detail regarding the preprocessing procedure for reducing
the size of instances as well as the tuning of certain LNS parameters. We
further investigate this solving approach by evaluating its performance
on different configurations of common benchmark instances, illustrating
its successful application throughout. An analysis of the performance and
impact of different repair operators provides further insights and reveals
improvement opportunities.

Keywords: Dial-a-ride problem · Electric autonomous vehicles · Large
neighborhood search.

1 Introduction

One consequence of the growth in urban population are rising mobility demands
and associated challenges such as traffic congestion and greenhouse gas emissions.
This leads to an increasing interest in on-demand transportation and ride-sharing
services as a flexible, affordable, and environment-friendlier alternative not only
to privately owned cars but also classic public transportation services. In this
context, a transportation request of a user or customer consists of a pickup and
a drop-off location together with a service time window for either one. Designing
minimum cost tours for a fleet of vehicles to serve a set of such requests is the
goal of the dial-a-ride problem (DARP). In the standard DARP [5], the total
length of the routes is to be minimized while serving all requests and satisfying
⋆ This project is financially supported by Honda Research Institute Europe GmbH.
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operational constraints concerning in particular time windows, route durations,
and user ride times. Consideration of different objectives and constraints leads
to diverse variants of the DARP as studied in the literature, see e.g., [8,11].

In this work, we consider specifically the electric autonomous dial-a-ride
problem (E-ADARP) as first introduced by Bongiovanni et al. [2]. The E-ADARP
is a challenging but highly practically relevant extension to the DARP, where
electric autonomous vehicles (EAVs) are employed. The adoption of autonomous
vehicles without human drivers removes the restrictions on route durations and
allows for continuous service. In addition to the ride-sharing, electric vehicles
(EVs) are another step towards environment-friendlier mobility but their charging
requirements have to be taken into account. Route schedules now generally need
to include stops at charging stations to (partially) recharge the electric vehicles’
batteries and constraints regarding the battery capacity and state of charge (SOC)
must be fulfilled. Extending the already NP-hard standard DARP with these
and further constraints as well as with the consideration of user inconvenience
by including user excess ride times in the objective function further increases the
problem’s practical solving complexity substantially.

Bongiovanni et al. [2] proposed a mixed integer linear programming (MILP)
based approach for the E-ADARP, which they successfully applied to instances
with up to five vehicles and 50 customers. As this exact approach has substantial
difficulties to scale to larger instances and therefore has only limited practical
relevance, Su et al. [15] proposed a deterministic annealing (DA) metaheuristic for
solving the E-ADARP. This approach applies an exact route evaluation scheme
of linear time complexity based on a forward labeling algorithm. The authors
introduce, as a central aspect, the concept of a battery-restricted fragment, which
represents a subsequence of pickup and drop-off locations for which the minimum
user excess ride time can be independently optimized. Large neighborhood search
(LNS) [12] is a metaheuristic that is frequently applied with great success to
diverse DARP variants. So did Bongiovanni et al. [1] for the E-ADARP. Moreover,
Limmer [9] proposed a bilevel LNS (BI-LNS) variant in which the outer level
employs multiple operators to schedule the charging of the EVs first and the
inner level greedily inserts customer requests into the routes. This approach is
highly scalable, solves instances with up to thousands of requests in reasonable
time, and yields on large and very large benchmark instances results that are
mostly superior to the earlier approaches.

In a previous work [3], we followed this line of research and developed an
LNS for the E-ADARP that combines and significantly extends concepts from
the mentioned earlier works. As an alternative to directly dealing with charging
stops in the destroy and repair operators of the LNS, we proposed a novel route
evaluation procedure that inserts charging stops as needed on-the-fly while also
determining respective charging times. As a baseline approach, we formulated
the charging station insertion subproblem as a MILP, but we also proposed a
computationally more efficient heuristic. The performance of these approaches
was studied on two sets of benchmark instances and the heuristic version yielded
new state-of-the-art results for most instances.
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In this work, we investigate the heuristic approach further and provide more
information on our preprocessing of E-ADARP instances and the tuning of im-
portant LNS parameters. We consider additional configurations of the benchmark
instances for evaluation and the results illustrate the general applicability of our
approach as it finds (new) best solutions for almost all instances. The impact
of different repair operators is analyzed, allowing for identification of the best
performing one as well as of improvement opportunities.

2 Electric Autonomous Dial-A-Ride Problem

In the E-ADARP as originally defined in [2], n customer requests have to be
served by nK EAVs, given as set K = {1, . . . , nK}, within a planning horizon of
T plan time units. The problem is modeled on a complete directed graph G = (V,A)
where all considered geographic locations constitute the vertex set V = N ∪O ∪
F ∪ S and the arc set A is defined as A = {(i, j) : i, j ∈ V, i ̸= j}. Location
subset N = P ∪ D consists of all customer pickup locations P = {1, . . . , n}
and their corresponding drop-off locations D = {n + 1, . . . , 2n} such that the
i-th request is given by a pair (i, i+ n). Each request i ∈ P is associated with
a maximum user ride time ui that has to be respected. The route of each
vehicle k ∈ K starts at an origin depot ok ∈ O and ends at a destination
depot fk ∈ F , with |O| = |F | = nK . Available charging station (CS) locations
are denoted by set S, and each station s ∈ S is assigned a charging rate αs,
specifying the amount of energy charged per time unit.

Earliest and latest possible service start times wstart
i and wend

i are given
for each vertex i ∈ V and together they constitute the corresponding time
window [wstart

i , wend
i ]. The service duration di is nonnegative at customer loca-

tions i ∈ N and zero at all other locations. The change in load li of a vehicle
serving a location i is positive at pickups, negative at drop-offs, and zero otherwise.
The maximum load capacity of a vehicle k ∈ K is denoted by Ck, and Q is the
homogeneous battery capacity of each vehicle. A vehicle k starts from its origin
depot with an initial battery level Bk,1 and has to arrive at its destination depot
with a minimum battery level γQ, where γ ∈ [0, 1] is the minimum battery level
ratio. Traveling an arc (i, j) ∈ A consumes βi,j battery and takes ti,j time, such
that the triangle equality holds for both.

The route of a vehicle is a path from its origin to its destination depot,
optionally going through pickup, drop-off, and charging station locations, and
a corresponding schedule assigns a service start time tservi to each node i of the
route. The set of nK vehicle routes together with their schedules constitute an
E-ADARP solution, which is called feasible if it additionally satisfies the following
constraints. The maximum capacity Ck of an EAV cannot be exceed at any time
and its battery level has to be within [0, Q] at all times. Besides, each charging
station can only be visited by empty EAVs and at most once over all routes.

The goal is to find a feasible solution that minimizes the following weighted
sum objective considering the total travel time and total user excess ride time
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over all routes and requests:

minwrouting
∑
k∈K

∑
(i,j)∈A

ti,jx
k
i,j + wexcess

∑
i∈P

texcessi (1)

with weight factors wrouting and wexcess and binary decision variables xk
i,j denoting

sequential visits of vehicle k to locations i and j. The difference between the
actual ride time of a user i ∈ P and their minimum travel time ti,i+n is called
the user excess ride time; i.e., texcessi = tservi+n − tservi − di − ti,i+n.

3 Preprocessing

To reduce the complexity of E-ADARP instances, we employ two techniques
proposed by Dumas et al. [6] for the pickup and delivery problem (PDP) with
time windows and by Cordeau [4] for the DARP: time window tightening and
arc elimination. Time window tightening is used to possibly reduce the span of
given time windows. We use the extended rules for the E-ADARP given in [15]
with the difference that we also take into account potentially already given time
windows for charging stations as well as depots when considering these types
of locations. We would also like to point out an inaccuracy in one of the rules
in [15] for depots i ∈ O ∪ F : wend

i := min(wend
i ,max(wend

j + di + tj,i)) ∀j ∈ D

should be wend
i := min(wend

i ,max(wend
j + dj + tj,i)) ∀j ∈ D.

Arc elimination removes arcs that cannot be part of a feasible solution due
to time window, ride time, and other constraints. As a base, we use the rules
from [7] for the PDP with time windows and electric vehicles and enhance them
by accounting for the existence of multiple origin and destination depots. We also
employ a new rule based on vehicle loads that eliminates an arc (i, j) between
two pickup nodes i and j if the sum of the demands of requests i and j exceeds
the maximum vehicle capacity: li + lj > maxk∈K(Ck). Additional path-based
elimination rules from [4,6] enable further arc removals as well as the disclosure
of incompatible request pairs, which cannot be part of the same route. This
information allows for immediate rejection of certain insertion positions of a
request into a route during the LNS repair process and thus a speedup thereof.

4 Large Neighborhood Search

In this section, we briefly describe our proposed large neighborhood search based
solution approach for solving the E-ADARP but refer to [3] for more details. An
initial solution is obtained by first creating for each vehicle a route from its origin
to its destination depot and then feasibly inserting as many requests as possible
with the time window order based repair operator described below. The resulting
solution is feasible except that some requests may still be unserved. In each
iteration, random removal [14] is used to pick and delete κ served requests from
the routes, which are then tried to be reinserted by one of three repair operators.
(a) A classic greedy heuristic [14] repeatedly evaluates every possible combination
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of inserting the pickup and drop-off locations of every unserved request into each
route and selects the option with a minimum cost increase each time. (b) A
less computationally intensive variant is used in the second operator, where the
unserved requests i ∈ P are sorted and inserted in their cheapest feasible position
in non-decreasing order of wstart

i . (c) The third operator works in the same way
except that a random order is applied to potentially escape local optima. During
the repair and when evaluating candidate routes, their costs are increased by a
random noise term to promote diversification as also seen in [9,14].

On-The-Fly (OTF) Charging Station Insertion. The employed LNS opera-
tors do not deal with the insertion of charging stations (CSs) into the (candidate)
routes but instead, this is done on-the-fly as needed during the route evaluation,
which also handles the scheduling including the computation of charging times.
We refer to [3] for a detailed description including the formulation of the corre-
sponding charging station insertion and evaluation subproblem as a mixed integer
linear program and only outline the time-efficient heuristic solving approach in
the following. First, all charging stops are removed from the route at hand, before
iterating twice over all its stops. This is done once in a forward- and once in a
backward-pass during which all necessary information is computed to determine
potential time window and battery constraint violations as well as the range of
possible CS insertion positions. If a charging stop is needed, all combinations of
available CSs and insertion positions are tested for feasibility. If there is at least
one option satisfying the battery constraints, the one with the shortest incurred
detour is selected, otherwise we pick the one where the vehicle can charge the
most energy. After insertion of the respective charging stop into the route, all
affected data is updated and the procedure is repeated, thus, further CSs are
possibly inserted, until the (in-)feasibility of the route is determined. For details,
we refer to [3].

5 Experimental Analysis

The proposed approach was implemented in Julia 1.10.0 with Gurobi 10.0.31

in single-threaded mode as MILP solver. All tests were run on single cores of
2.4GHz Intel Xeon E5-2640 v4 processors with a memory limit of 20GB and
a time limit of 300 s. We employ two sets of DARP benchmark instances by
Cordeau2 [4] and Ropke3 [13], which are enhanced with E-ADARP features and
follow the naming scheme “anK–n”, where nK is the number of vehicles and
n the number of requests. The weights in the objective function (1) are set to
wrouting = 0.75 and wexcess = 0.25 as in [2,9,15]. We consider three different
minimum final battery level ratios γ ∈ {0.1, 0.4, 0.7} and a restriction to one visit
per CS, ns = 1, as stated in the original problem definition. For each instance,
our LNS is run 30 times for each configuration.
1 https://www.gurobi.com
2 https://luts.epfl.ch/wpcontent/uploads/2019/03/e_ADARP_archive.zip
3 Available under https://github.com/HRI-EU/e_adarp_material

https://www.gurobi.com
https://luts.epfl.ch/wpcontent/uploads/2019/03/e_ADARP_archive.zip
https://github.com/HRI-EU/e_adarp_material
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Table 1: Results on Cordeau and Ropke instances with different values for γ and
with limited CS visits (ns = 1).
Instance γ = 0.1 γ = 0.4 γ = 0.7

BKS OTF Heuristic BKS OTF Heuristic BKS OTF Heuristic
Obj min Obj mean Obj sd Obj min Obj mean Obj sd Obj min Obj mean Obj sd

Cordeau

a2-16 237.38 237.38 237.38 0.00 237.38 237.38 237.38 0.00 240.66 240.66 240.66 0.00
a2-20 279.08 279.08 279.08 0.00 280.70 280.70 280.70 0.00 293.27 293.27 293.27 0.00
a2-24 346.21 346.21 346.21 0.00 347.04 349.20 349.20 0.00 353.18 353.18 353.18 0.00
a3-18 236.82 236.81* 236.81 0.00 236.82 236.81* 236.81 0.00 240.58 240.58 240.58 0.00
a3-24 274.80 274.80 274.80 0.00 274.80 274.80 274.80 0.00 275.97 275.97 275.97 0.00
a3-30 413.27 413.27 413.27 0.00 413.34 413.37 413.37 0.00 424.93 424.93 426.12 1.59
a3-36 481.17 481.17 482.18 1.37 483.06 483.06 485.92 2.78 494.04 494.04 497.18 2.61
a4-16 222.49 222.49 222.49 0.00 222.49 222.49 222.49 0.00 223.13 223.13 223.13 0.00
a4-24 310.84 310.84 310.84 0.00 311.03 311.03 311.03 0.00 316.65 316.65 316.65 0.00
a4-32 393.96 393.95* 393.95 0.00 394.26 394.26 394.26 0.00 397.87 397.87 397.87 0.00
a4-40 453.84 453.84 454.46 1.95 453.84 453.84 454.84 1.87 467.72 467.72 474.47 6.23
a4-48 554.54 554.54 555.38 0.73 554.60 554.60 556.98 1.49 575.35 575.62 579.63 2.40
a5-40 414.51 414.50* 414.99 0.91 414.51 414.50* 415.12 1.05 418.75 418.75 421.16 3.25
a5-50 559.17 559.17 562.18 2.40 560.41 559.51* 564.41 3.44 589.61 589.61 596.09 3.87

Ropke

a5-60 691.83 683.87* 687.42 2.50 688.16 685.51* 690.63 2.94 NA NA NA NA
a6-48 506.72 506.45* 506.77 0.21 506.85 506.45* 506.84 0.30 517.12 517.12 521.62 2.95
a6-60 692.00 690.29* 693.54 2.14 692.69 690.29* 693.16 2.31 714.16 714.16 731.45 10.02
a6-72 777.44 762.16* 770.69 3.77 771.97 765.64* 776.00 4.47 NA NA NA NA
a7-56 613.10 612.53* 614.70 2.30 613.66 612.78* 615.27 2.51 636.56 636.56 649.37 10.43
a7-70 760.90 756.27* 761.16 3.23 761.62 756.46* 760.21 2.03 816.64 816.64 840.59 16.29
a7-84 889.38 874.57* 883.45 4.79 886.19 878.99* 890.18 7.23 NA NA NA NA
a8-64 641.99 632.21* 637.93 3.89 637.95 632.95* 639.02 3.05 639.06 639.06 651.33 6.63
a8-80 803.52 793.64* 802.86 4.42 793.17 794.04 800.85 5.13 837.79 837.79 862.75 15.14
a8-96 1053.11 1032.76* 1041.59 4.74 1048.72 1036.22* 1047.47 5.62 NA NA NA NA

LNS Parameter Tuning. Identifying suitable and robust parameter settings
is crucial for the performance of the proposed LNS-based approach, so we use a
selection of ten representative instances from the Cordeau and Ropke sets and
the open source tool SMAC34 [10] for automated tuning. Here, we consider the
degree of destruction κ that specifies the number of elements selected in the
destroy operator and the noise rate η, which controls how much noise is used for
the route evaluation in the repair operators as the noise is randomly sampled from
[−ηtmax, ηtmax] with tmax = maxi,j∈V ti,j . Both parameters are simultaneously
tuned by running 10000 trials of our LNS algorithm with possible value ranges
of [3, 96] for κ and [0.00, 0.05] for η, leading to a final configuration of κ = 15
and η = 0.014.

Results. An overview of the performance of our LNS with the on-the-fly (OTF)
insertion heuristic regarding the different minimum battery level ratios is given
in Table 1. Columns “BKS” show the best known solution values considering
results reported in [2,3,9,15]. For our approach, we list minimum and average
objective values as well as the standard deviations (sd) over all feasible runs.

4 https://github.com/automl/SMAC3

https://github.com/automl/SMAC3
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(b) γ = 0.7.

Fig. 1: Average run time in seconds of the different LNS repair operators over 30
runs for each instance with limited CS visits (ns = 1).

Results with an asterisk (*) indicate newly found best objective values and
bold numbers highlight cases, where the mean objective value coincides with
the (new) best known objective value, i.e., where the OTF heuristic yielded the
best solution every time. The latter is the case for at least half of the Cordeau
instances irrespective of the employed γ-value, although an instance generally
becomes harder to solve with increasing values for γ resulting in higher objective
values. This illustrates the applicability of our approach over different instance
configurations. The results further show that the OTF heuristic is able to find
the best solutions for almost all instances and configurations and how it excels
especially on the Ropke instances. The impact of the different minimum battery
level ratios on the objective values and the solvability is also higher on these
larger instances. For the largest tested value of γ = 0.7, none of the considered
approaches, including ours, could solve four of the instances in any trial, as
denoted by values “NA”, whereas our OTF heuristic solved all other instances in
every trial. This strongly suggests that the respective four instances are infeasible.

Besides, we also investigate the performance of the LNS and the contribution
of the different repair operators in terms of the mean run time as well as
the average number of improvements over all runs for an instance, where an
improvement denotes a new best solution during the search process. As the
repair method is selected uniformly at random in each iteration, all operators
are applied about equally often. The results for the smallest and largest tested
γ-values are illustrated in Figures 1 and 2 for the run time and the improvements
respectively, where “tws order” stands for the time window start based operator.
From Figures 1a and 1b, we conclude that the value of γ does not substantially
influence the time spent in each operator. As expected, the greedy operator
is consistently the computationally most expensive one whereas the other two
have similarly low run times. Figure 2 shows that all operators exhibit a similar
performance regarding the mean number of improvements with the random
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(a) γ = 0.1.
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(b) γ = 0.7.

Fig. 2: Average number of improvements of the different LNS repair operators
over 30 runs for each instance with limited CS visits (ns = 1).

Table 2: Performance of LNS repair operators over all instances and runs with a
feasible initial solution for different values for γ.
Operator γ = 0.1 γ = 0.7

Runs Applications Improve-
ments

Avg. obj
gain

Avg. obj
gain / impr

Time
[s] Runs Applications Improve-

ments
Avg. obj

gain
Avg. obj

gain / impr
Time
[s]

greedy 659 216576.59 8.90 -0.000169 -3.21 182.72 172 269917.33 2.87 -0.000047 -3.61 193.76
tws order 659 216592.04 9.58 -0.000166 -2.75 50.98 172 269907.62 3.36 -0.000059 -3.86 46.83
random order 659 216554.78 11.27 -0.000178 -2.57 54.52 172 269891.45 4.63 -0.000060 -2.96 48.05

order based one being slightly more successful in most cases. Thus, investing
more time in the greedy operator does not seem to pay off. We also observe a
difference in the pattern of the overall performance for the different instance
configurations. In both subfigures, the mean number of improvements is lower
for smaller instances, which is due to these instance generally being solved in
less iterations. For larger instances, there is an increase in improvements with
the number of vehicles and requests respectively in Figure 2a, which indicates
consistent improvements during the LNS. In Figure 2b with the larger γ however,
the number of improvements drops regarding a steady number of vehicles while
increasing the amount of requests. As pairing this γ-configuration with more
requests results in harder instances and considering that the overall number
of LNS iterations does not decline compared to the easier configuration, the
observations here suggest that our operators might get stuck in local optima
earlier, leaving room for further improvement in this regard.

To gain more insights, we employ further performance metrics for the repair
operators such as the average objective gains per application and per improvement.
These and the previous metrics are reported in Table 2 over all instances and runs
where the construction heuristic yields a feasible initial solution. We consider this
restriction to avoid bias in our data towards operators finding the first feasible
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solution, which represents a disproportional large objective gain in our approach.
The results show that the mean objective gain per application is in general quite
low, which is due to a high number of performed LNS iterations compared to
relatively few achieved improvements. Regarding this metric, the random order
based operator performs the best, which is in contrast to its performance in
terms of average gain per improvement where it achieves the lowest value of all
operators. For the greedy operator, we observe again that it finds on average less
improvements but when it does, the gain is often higher and especially so for
γ = 0.1. Considering the larger γ-value, the time window order based operator
yields the highest mean gain per improvement despite consuming the least time.

6 Conclusions and Future Work

In this work, we considered the electric autonomous dial-a-ride problem and
further investigated our LNS-based solving approach with an on-the-fly charging
station insertion heuristic. We detailed our preprocessing procedure for reducing
E-ADARP instance sizes by adapting and extending reduction rules from the
literature. For the performance evaluation, we considered various configurations
of minimum battery level ratios, which influence the hardness and solvability of
instances. The new results confirm our previous findings on the general success
of the OTF heuristic and especially so on larger instances with up to 96 requests
and eight EAVs. We observed that the repair operator which considers requests
for insertion in a random order performs best in terms of the average number of
improvements but yields the lowest objective gain per improvement. Regarding
the latter metric, the greedy and time window order based operators achieve the
best results depending on the employed γ-value.

In the future, we want to further improve the scalability of our approach to
tackle huge instances with possibly thousands of requests, e.g., by sparsifying the
underlying graph, restricting the neighborhoods, or employing more advanced
methods for selecting the destroy sets. Utilization of machine learning techniques
could be a promising research direction for this.

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.
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