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Scheduling Setting

Core problem:
® Discrete time planning horizon of multiple days
® Multiple users
® Multiple jobs per user
® Multiple machines
® Schedule jobs non-preemptively on machine
Objective:
® time dependent costs c;; for using the machine J at timestep t
® penalty g; for not scheduling a job j

® not scheduling a job is more expensive than scheduling it
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Scheduling setting

User availabilities:

® Limit job running times

® Only partially known

e Complement knowledge with interaction
Interaction:

® B rounds of interaction

® each with up to b queries

® Query: Time interval

® Reply: Yes/no
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Prediction task

Criteria for queries:
1. Good response likely ~— Model users in probabilistic way
2. Improve the schedule ~— Optimize

Train Sample:
® Proposed time intervals /PP
® Accepted time intervals /2¢¢

® Rejected time intervals [

Test Sample: additionally
¢ Potential queries /Pred
® Labels jPred . jpred _y ffalse, true}

One model for all users and days
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Bayesian Learning® and Probabilistic Programming?

Bayes theorem:

Joint Probability

! e
P(6 | D) o< P(D | 0) P(0) (1)
—— N
Posterior Likelihood Prior

Probabilistic program: Calculate joint (log) probability
Advantages:

® Sample efficient

® Very flexible

— Model ...
® ... bias from proposed intervals
® .. uncertainty of training samples
® Uncertainty measure

2Schoot et al. 2021.
3Meent et al. 2018; Wingate, Stuhlmiiller, and Goodman 2011.
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Markov Model*

Model availabilites with Markov process

0 p11(t)

por(t) p1o(t)

start @ poo(t)

Figure: Two-state Markov Chain

Use time-independent and time-dependent transition probabilities

*Varga et al. 2023.
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Time Interval Model
n availability intervals [£5't, t224] i = 1 ... n throughout the day
Rounded normally distributed endpoints:
t59%  Round (Normal (u5™'t, o%rt) 1, t™2X]) (2)
t24 ~ Round (Normal (u$"?, o), [1, £%]) (3)
Condition: Ordered

gitart < pend g gttt o« cpend g (4)

As Markov chain:

sta rt 17/‘ Stm 17/’ onl(t

1—p™
start (;) )bmt t) 4& end(t) g star L(t) & ‘g[)" d(t) &
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Probabilistic Program

Algorithm 1: Probabilistic program to condition on training
samples Strain,

Input: Training samples Stain
1 sample 6 ~ Prior(Model) ;
2 for strain — (/prop Jacce /rej) in Strain do
3 sample T2V ~ Model (6) ;

4 for [t1, tp] in /PP do

5 | + Subintervals(T2vl* t, —t; +1) ;
6 sample [t{, t}] ~ Uniform(/) ;
7 observe t{ =ty and th = tp ;

8 end

9 for [t1, ] in /2°° do

10 ‘ observe [t;, tp] C Tavail*

11 end

12 for [t1, to] in /' do

13 | observe [t;, 1] ¢ T2,

14 end
15 end
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Inference Procedure

Algorithm 2: Model-independent part of the sampling proce-
dure.

Input: Training samples S = {sfrain rgil;;nl}

nsamples eN
Output: Sets of parameters {01, ..., 0, samples } distributed
according to the posterior distribution.
Tavaills o T vk e {1,...,|S"an|};
f < InitParameters(Model) ;
for j in {1,..., n®amples) do
Ta.lel* — Sa.mpleTavall(H, Tavail*' Strain) :
0 < SampleParameters (6, Tavailxy .
9/( — 0 ;
end
return {01, ..., 0 sampies } ;
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Sample T&vail

0 fixed, account for [ProP_ Jacc [rej

For each training sample
1. Generate probability graph (/P™P £ [acc)
2. Sample random path — set of availabilities
3. Account for /P*°P — Metropolis Hastings
Probability graph
® Unroll Markov chain of model = Paths <+ availability sets
e Account for [PTP [3¢ and ™) by manipulating graph
¢ Calculate (conditional) probability of next state for each state

o o)

% ot .,

9"”
@ poo(0 /Joo poo(t™*)
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Sample Parameters

Markov models:
® Each transition: Bernoulli distribution
® Transitions known ( T#3i* s fixed)
— Sample transition probabilities from beta distribution

Time interval model:
o pstart gend: Roynded normally distributed
o pstart gend known (for each training sample)
— Sample mean and variance from Normal inverse \?
distribution®
® Correct with Metropolis Hastings

®Gelman et al. 1995, Chapter 3.
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Datasets

Collect datasets:
® Four instances of scheduling problem with

® five machines
® 30 users
® four jobs per user — 120 jobs

— Four weeks training data
e Simulate and record interaction (5 interaction rounds)

® Test data: Additionally compute queries (all possible short
intervals) and labels

Two datasets:

® Generated user availabilities: two intervals with normally
distributed start time and duration

e User availabilities based on Dutch Time-use-Survey®

6Sociaal en Cultureel Planbureau 2005.

Conclusion
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Computing Environment

Julia 1.10.07

Probabilistic programming framework: Gen.jl®

AMD Ryzen 9 5900X

Markov models: 1000 iterations, use samples 500:10:1000
Time interval model: 100 iterations, use samples 50:100
® Train times < 70s, Test times < 40s

"Bezanson et al. 2017.

8Cusumano-Towner et al. 2019.
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Precision

Probabilistic User Models
(e]e)

Precision-Recall Curves

Dataset with generated availabilities

Bayesian Inference
0000

Results
0000e0

Dataset with time-use-survey based availabilities

10
——— Time-independent Markov. ——— Time-independent Markov
——— Time-dependent Markov
Interval Model (n=2)
Interval Model (n=3)
08
<
o
@
v}
9 o6
&
04
0.00 025 050 075 1.00 0.00 0.25 050 075 100
Recall Recall

Conclusion
o]

17/19



Results
00000@

Varying the Number of Rounds for Test Samples

Table: Area-under-curve of precision recall plots.

Number Time- Time- Interval Interval

of independent dependent Model (n=2) Model (n=3)
Rounds Markov Markov

0 0.608 + 0.001  0.655 + 0.009 0.718 + 0.003 0.661 + 0.012
1 0.622 + 0.001 0.664 + 0.009 0.724 + 0.003 0.667 + 0.012
2 0.638 + 0.001  0.672 = 0.009 0.732 + 0.002 0.675 + 0.011
3 0.649 + 0.001 0.682 + 0.008 0.739 + 0.002 0.684 + 0.011
4 0.662 + 0.001  0.690 + 0.008  0.747 + 0.002 0.691 + 0.011
5 0.672 + 0.001  0.697 + 0.008 0.753 + 0.002 0.697 + 0.011
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Conclusion and Future Work

Bayesian learning of three user models for interactive scheduling
problem

Time-dependent Markov and time interval model (n = 2) work best
Also good performance before any interaction

Future work
® Vary number of intervals in interval model
® | earn differences between days and users
® Active learning

® Recognize drift in user behavior
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