Probabilistic User Models

Bayesian Inference

Results 000000 Conclusion o

# Learning to Predict User Replies in Interactive Job Scheduling<sup>1</sup>

### Johannes Varga<sup>a</sup>, Günther R. Raidl<sup>a</sup>, Tobias Rodemann<sup>b</sup>

<sup>a</sup>Institute of Logic and Computation, TU Wien, Vienna, Austria

<sup>b</sup>Honda Research Institute Europe, Offenbach, Germany

May 6, 2024

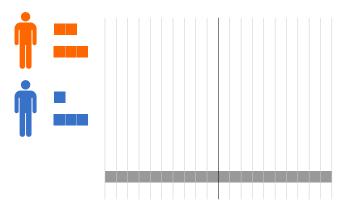
<sup>&</sup>lt;sup>1</sup>J. Varga acknowledges the financial support from Honda Research Institute Europe.

Probabilistic User Models

Bayesian Inference

Results

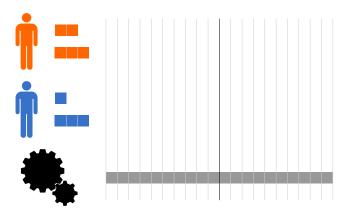
Conclusion O



Probabilistic User Models

Bayesian Inference

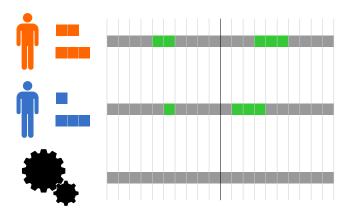
Results 000000 Conclusion O



Probabilistic User Models

Bayesian Inference

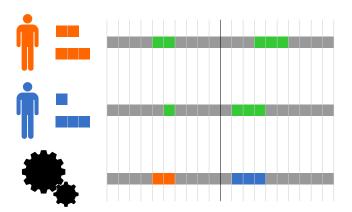
Results 000000 Conclusion o



Probabilistic User Models

Bayesian Inference

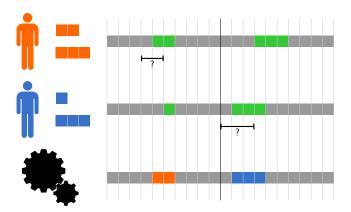
Results 000000 Conclusion o



Probabilistic User Models

Bayesian Inference

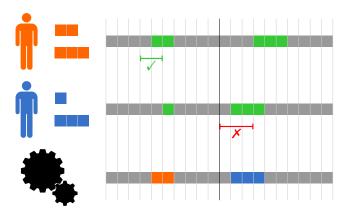
Results 000000 Conclusion o



Probabilistic User Models

Bayesian Inference

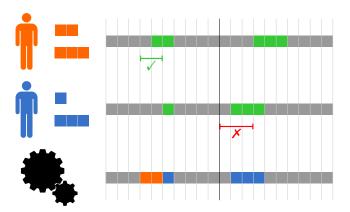
Results 000000 Conclusion o



Probabilistic User Models

Bayesian Inference

Results 000000 Conclusion o



Results 000000 Conclusion o

# Scheduling Setting

Core problem:

- Discrete time planning horizon of multiple days
- Multiple users
- Multiple jobs per user
- Multiple machines
- Schedule jobs non-preemptively on machine

Objective:

- time dependent costs  $c_{it}$  for using the machine i at timestep t
- penalty  $q_j$  for not scheduling a job j
- not scheduling a job is more expensive than scheduling it

Results 000000 Conclusion O

# Scheduling setting

User availabilities:

- Limit job running times
- Only partially known
- Complement knowledge with interaction

Interaction:

- *B* rounds of interaction
- each with up to *b* queries
- Query: Time interval
- Reply: Yes/no

Results 000000 Conclusion o

## Prediction task

### Criteria for queries:

- 1. Good response likely  $\longrightarrow$  Model users in probabilistic way
- 2. Improve the schedule  $\longrightarrow$  Optimize

Train Sample:

- Proposed time intervals I<sup>prop</sup>
- Accepted time intervals I<sup>acc</sup>
- Rejected time intervals I<sup>rej</sup>
- Test Sample: additionally
  - Potential queries I<sup>pred</sup>
  - Labels  $\hat{I}^{\text{pred}}: I^{\text{pred}} o \{ \text{false}, \text{true} \}$

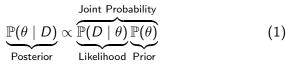
One model for all users and days

Probabilistic User Models

Bayesian Inference

Results 000000 Conclusion

# Bayesian Learning<sup>2</sup> and Probabilistic Programming<sup>3</sup> Bayes theorem:



Probabilistic program: Calculate joint (log) probability

Advantages:

- Sample efficient
- Very flexible
- $\rightarrow$  Model . . .
  - ... bias from proposed intervals
  - ... uncertainty of training samples
  - Uncertainty measure

<sup>2</sup>Schoot et al. 2021.

<sup>3</sup>Meent et al. 2018; Wingate, Stuhlmüller, and Goodman 2011.

Probabilistic User Models

Bayesian Inference

Results 000000 Conclusion O

### Markov Model<sup>4</sup>

Model availabilites with Markov process

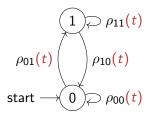


Figure: Two-state Markov Chain

Use time-independent and time-dependent transition probabilities

<sup>&</sup>lt;sup>4</sup>Varga et al. 2023.

Probabilistic User Models

Bayesian Inference

Results

Conclusion

## Time Interval Model

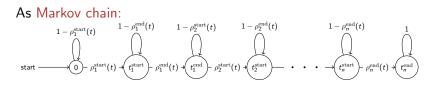
*n* availability intervals  $[t_i^{\text{start}}, t_i^{\text{end}}]$ , i = 1, ..., n throughout the day Rounded normally distributed endpoints:

$$\mu_i^{ ext{start}} \sim ext{Round(Normal(}\mu_i^{ ext{start}}, \sigma_i^{ ext{start}}), [1, t^{ ext{max}}])$$
 (2)

$$t_i^{\text{end}} \sim \text{Round}(\text{Normal}(\mu_i^{\text{end}}, \sigma_i^{\text{end}}), [1, t^{\max}])$$
 (3)

Condition: Ordered

$$t_1^{\text{start}} < t_1^{\text{end}} + 1 < t_2^{\text{start}} < \ldots < t_n^{\text{end}} + 1$$
 (4)



Probabilistic User Models

Bayesian Inference

Results 000000 Conclusion

### Probabilistic Program

**Algorithm 1:** Probabilistic program to condition on training samples  $S^{\text{train}}$ .

```
Input: Training samples S<sup>train</sup>
 1 sample \theta \sim \text{Prior(Model)};
 2 for s^{\text{train}} = (I^{\text{prop}}, I^{\text{acc}}, I^{\text{rej}}) in S^{\text{train}} do
          sample T^{\text{avail}*} \sim \text{Model}(\theta) ;
 3
          for [t_1, t_2] in I^{\text{prop}} do
 4
               I \leftarrow \text{Subintervals}(T^{\text{avail}*}, t_2 - t_1 + 1);
 5
               sample [t'_1, t'_2] \sim \text{Uniform}(I);
 6
               observe t'_1 = t_1 and t'_2 = t_2;
 7
 8
          end
          for [t_1, t_2] in l^{\text{acc}} do
 g
               observe [t_1, t_2] \subseteq T^{\text{avail}*};
10
          end
11
          for [t_1, t_2] in I^{rej} do
12
               observe [t_1, t_2] \not\subset T^{\text{avail}*};
13
          end
14
15 end
```

Probabilistic User Models

Bayesian Inference

Results 000000 Conclusion

## Inference Procedure

**Algorithm 2:** Model-independent part of the sampling procedure.

Input: Training samples 
$$S^{\text{train}} = \{s_1^{\text{train}}, \dots, s_{|S^{\text{train}}|}^{\text{train}}\},\$$
  
 $n^{\text{samples}} \in \mathbb{N}$   
Output: Sets of parameters  $\{\theta_1, \dots, \theta_{n^{\text{samples}}}\}$  distributed  
according to the posterior distribution.  
1  $T_k^{\text{avail}*} \leftarrow T \quad \forall k \in \{1, \dots, |S^{\text{train}}|\};\$   
2  $\theta \leftarrow \text{InitParameters(Model)};\$   
3 for  $j$  in  $\{1, \dots, n^{\text{samples}}\}$  do  
4  $\mid T^{\text{avail}*} \leftarrow \text{SampleTavail}(\theta, T^{\text{avail}*}, S^{\text{train}});\$   
5  $\mid \theta \leftarrow \text{SampleParameters}(\theta, T^{\text{avail}*});\$   
6  $\mid \theta_k \leftarrow \theta;\$   
7 end  
8 return  $\{\theta_1, \dots, \theta_{n^{\text{samples}}}\};\$ 

Probabilistic User Models

Bayesian Inference

Results 000000 Conclusion

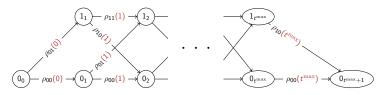
# Sample $T^{\text{avail}*}$

 $\theta$  fixed, account for  $I^{\rm prop},~I^{\rm acc},~I^{\rm rej}$  For each training sample

- 1. Generate probability graph ( $I^{\text{prop}} \triangleq I^{\text{acc}}$ )
- 2. Sample random path  $\rightarrow$  set of availabilities
- 3. Account for  $I^{\text{prop}} \rightarrow$  Metropolis Hastings

Probability graph

- Unroll Markov chain of model  $\Rightarrow$  Paths  $\leftrightarrow$  availability sets
- Account for  $\mathit{I}^{\mathrm{prop}},\,\mathit{I}^{\mathrm{acc}}$  and  $\mathit{I}^{\mathrm{rej}}$  by manipulating graph
- Calculate (conditional) probability of next state for each state



Conclusion O

## Sample Parameters

Markov models:

- Each transition: Bernoulli distribution
- Transitions known (Tavail\* is fixed)
- $\rightarrow$  Sample transition probabilities from beta distribution

Time interval model:

- $t_i^{\text{start}}$ ,  $t_i^{\text{end}}$ : Rounded normally distributed
- $t_i^{\text{start}}$ ,  $t_i^{\text{end}}$  known (for each training sample)
- $\rightarrow$  Sample mean and variance from Normal inverse  $\chi^2$  distribution  $^5$ 
  - Correct with Metropolis Hastings

<sup>&</sup>lt;sup>5</sup>Gelman et al. 1995, Chapter 3.

Results •00000 Conclusion o

### Datasets

### Collect datasets:

- Four instances of scheduling problem with
  - five machines
  - 30 users
  - four jobs per user ightarrow 120 jobs
- ightarrow Four weeks training data
  - Simulate and record interaction (5 interaction rounds)
  - Test data: Additionally compute queries (all possible short intervals) and labels

### Two datasets:

- Generated user availabilities: two intervals with normally distributed start time and duration
- User availabilities based on Dutch Time-use-Survey<sup>6</sup>

<sup>&</sup>lt;sup>6</sup>Sociaal en Cultureel Planbureau 2005.

Conclusion O

## Computing Environment

- Julia 1.10.0<sup>7</sup>
- Probabilistic programming framework: Gen.jl<sup>8</sup>
- AMD Ryzen 9 5900X
- Markov models: 1000 iterations, use samples 500:10:1000
- Time interval model: 100 iterations, use samples 50:100
- Train times < 70*s*, Test times < 40*s*

<sup>&</sup>lt;sup>7</sup>Bezanson et al. 2017.

<sup>&</sup>lt;sup>8</sup>Cusumano-Towner et al. 2019.

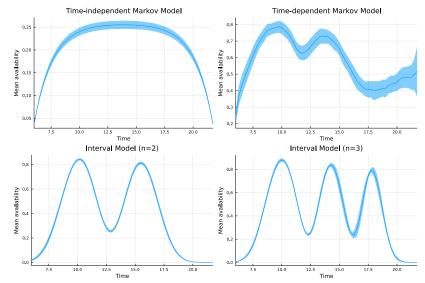
Probabilistic User Models

Bayesian Inference

Results

Conclusion

### Average User Availabilities

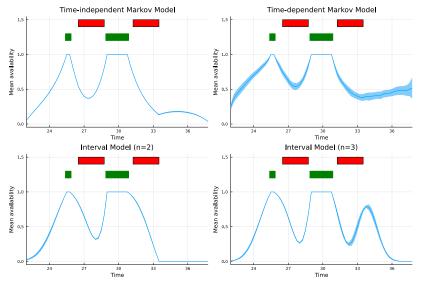


Probabilistic User Models

Bayesian Inference

Results 000●00 Conclusion

## Average User Availabilities After Interaction



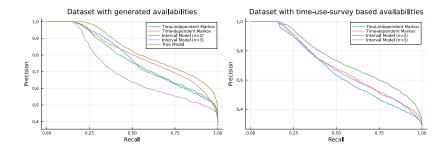
Probabilistic User Models

Bayesian Inference

Results

Conclusion

## Precision-Recall Curves



Conclusion 0

## Varying the Number of Rounds for Test Samples

#### Table: Area-under-curve of precision recall plots.

| Number<br>of<br>Rounds | Time-<br>independent<br>Markov | Time-<br>dependent<br>Markov | Interval<br>Model (n=2)             | Interval<br>Model (n=3) |
|------------------------|--------------------------------|------------------------------|-------------------------------------|-------------------------|
| 0                      | $0.608\pm0.001$                | $0.655\pm0.009$              | $\textbf{0.718} \pm \textbf{0.003}$ | $0.661 \pm 0.012$       |
| 1                      | $0.622\pm0.001$                | $0.664\pm0.009$              | $\textbf{0.724} \pm \textbf{0.003}$ | $0.667\pm0.012$         |
| 2                      | $0.638\pm0.001$                | $0.672\pm0.009$              | $\textbf{0.732} \pm \textbf{0.002}$ | $0.675\pm0.011$         |
| 3                      | $0.649\pm0.001$                | $0.682\pm0.008$              | $\textbf{0.739} \pm \textbf{0.002}$ | $0.684\pm0.011$         |
| 4                      | $0.662\pm0.001$                | $0.690\pm0.008$              | $\textbf{0.747} \pm \textbf{0.002}$ | $0.691\pm0.011$         |
| 5                      | $0.672\pm0.001$                | $0.697\pm0.008$              | $\textbf{0.753} \pm \textbf{0.002}$ | $0.697\pm0.011$         |



# Conclusion and Future Work

Bayesian learning of three user models for interactive scheduling problem

Time-dependent Markov and time interval model (n = 2) work best

Also good performance before any interaction

Future work

- Vary number of intervals in interval model
- Learn differences between days and users
- Active learning
- Recognize drift in user behavior

### References I

- Bezanson, Jeff et al. (2017). "Julia: A fresh approach to numerical computing". In: *SIAM Review* 59.1, pp. 65–98.
- Cusumano-Towner, Marco F. et al. (2019). "Gen: A General-purpose Probabilistic Programming System with Programmable Inference". In: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI 2019. New York, NY, USA: ACM, pp. 221–236.
- Gelman, Andrew et al. (1995). *Bayesian data analysis*. New York: Chapman and Hall/CRC.
- Meent, Jan-Willem van de et al. (2018). An introduction to probabilistic programming. Preprint arXiv:1809.10756.
- Schoot, Rens van de et al. (2021). "Bayesian statistics and modelling". In: *Nature Reviews Methods Primers* 1.1, p. 1.

## References II

 Sociaal en Cultureel Planbureau (2005). *Tijdsbestedingsonderzoek 2005 - TBO 2005*. Version V2. DOI: 10.17026/dans-znn-5xvz. URL: https://doi.org/10.17026/dans-znn-5xvz.
 Varga, Johannes et al. (2023). "Interactive Job Scheduling with Partially Known Personnel Availabilities". In: OLA 2023: *Optimization and Learning*. Ed. by B. Dorronsoro et al. Vol. 1824. Communications in Computer and Information Science. Springer, pp. 236-247.

## References III

Wingate, David, Andreas Stuhlmüller, and Noah Goodman (2011). "Lightweight implementations of probabilistic programming languages via transformational compilation". In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. Ed. by Geoffrey Gordon, David Dunson, and Miroslav Dudík. Vol. 15. PMLR, pp. 770–778.