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Scheduling Setting

Core problem:

• Discrete time planning horizon of multiple days

• Multiple users

• Multiple jobs per user

• Multiple machines

• Schedule jobs non-preemptively on machine

Objective:

• time dependent costs cit for using the machine i at timestep t

• penalty qj for not scheduling a job j

• not scheduling a job is more expensive than scheduling it
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Scheduling setting

User availabilities:

• Limit job running times

• Only partially known

• Complement knowledge with interaction

Interaction:

• B rounds of interaction

• each with up to b queries

• Query: Time interval

• Reply: Yes/no
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Prediction task

Criteria for queries:

1. Good response likely −→ Model users in probabilistic way

2. Improve the schedule −→ Optimize

Train Sample:

• Proposed time intervals I prop

• Accepted time intervals I acc

• Rejected time intervals I rej

Test Sample: additionally

• Potential queries I pred

• Labels Î pred : I pred → {false, true}

One model for all users and days
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Bayesian Learning2 and Probabilistic Programming3

Bayes theorem:

P(θ | D)︸ ︷︷ ︸
Posterior

∝
Joint Probability︷ ︸︸ ︷
P(D | θ)︸ ︷︷ ︸
Likelihood

P(θ)︸︷︷︸
Prior

(1)

Probabilistic program: Calculate joint (log) probability

Advantages:

• Sample efficient

• Very flexible

→ Model . . .
• . . . bias from proposed intervals
• . . . uncertainty of training samples

• Uncertainty measure
2Schoot et al. 2021.
3Meent et al. 2018; Wingate, Stuhlmüller, and Goodman 2011.
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Markov Model4

Model availabilites with Markov process

0start

1

ρ01(t) ρ10(t)

ρ00(t)

ρ11(t)

Figure: Two-state Markov Chain

Use time-independent and time-dependent transition probabilities

4Varga et al. 2023.
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Time Interval Model

n availability intervals [tstarti , tendi ], i = 1, . . . , n throughout the day

Rounded normally distributed endpoints:

tstarti ∼ Round(Normal(µstart
i , σstart

i ), [1, tmax]) (2)

tendi ∼ Round(Normal(µend
i , σend

i ), [1, tmax]) (3)

Condition: Ordered

tstart1 < tend1 + 1 < tstart2 < . . . < tendn + 1 (4)

As Markov chain:

0start tstart1 tend1 tstart2 tstartn tendnρstart1 (t) ρend1 (t) ρstart2 (t) ρendn (t)

1− ρstart1 (t)
1− ρend1 (t) 1− ρstart2 (t) 1− ρend2 (t) 1− ρendn (t) 1

8 / 19



Introduction Probabilistic User Models Bayesian Inference Results Conclusion

Probabilistic Program
Algorithm 1: Probabilistic program to condition on training
samples S train.

Input: Training samples S train

1 sample θ ∼ Prior(Model) ;
2 for strain = (I prop, I acc, I rej) in S train do
3 sample T avail∗ ∼ Model(θ) ;
4 for [t1, t2] in I prop do
5 I ← Subintervals(T avail∗, t2 − t1 + 1) ;
6 sample [t ′1, t

′
2] ∼ Uniform(I) ;

7 observe t ′1 = t1 and t ′2 = t2 ;

8 end
9 for [t1, t2] in I acc do

10 observe [t1, t2] ⊆ T avail∗ ;
11 end
12 for [t1, t2] in I rej do
13 observe [t1, t2] ⊈ T avail∗ ;
14 end

15 end
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Inference Procedure

Algorithm 2: Model-independent part of the sampling proce-
dure.

Input: Training samples S train = {strain1 , . . . , strain|Strain|},
nsamples ∈ N

Output: Sets of parameters {θ1, . . . , θnsamples} distributed
according to the posterior distribution.

1 T avail∗
k ← T ∀k ∈ {1, . . . , |S train|} ;

2 θ ← InitParameters(Model) ;

3 for j in {1, . . . , nsamples} do
4 T avail∗ ← SampleTavail(θ, T avail∗, S train) ;

5 θ ← SampleParameters(θ, T avail∗) ;
6 θk ← θ ;

7 end
8 return {θ1, . . . , θnsamples} ;
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Sample T avail∗

θ fixed, account for I prop, I acc, I rej

For each training sample

1. Generate probability graph (I prop =̂ I acc)

2. Sample random path → set of availabilities

3. Account for I prop → Metropolis Hastings

Probability graph

• Unroll Markov chain of model ⇒ Paths ↔ availability sets

• Account for I prop, I acc and I rej by manipulating graph

• Calculate (conditional) probability of next state for each state
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Sample Parameters

Markov models:

• Each transition: Bernoulli distribution

• Transitions known (T avail∗ is fixed)

→ Sample transition probabilities from beta distribution

Time interval model:

• tstarti , tendi : Rounded normally distributed

• tstarti , tendi known (for each training sample)

→ Sample mean and variance from Normal inverse χ2

distribution5

• Correct with Metropolis Hastings

5Gelman et al. 1995, Chapter 3.
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Datasets

Collect datasets:
• Four instances of scheduling problem with

• five machines
• 30 users
• four jobs per user → 120 jobs

→ Four weeks training data

• Simulate and record interaction (5 interaction rounds)

• Test data: Additionally compute queries (all possible short
intervals) and labels

Two datasets:

• Generated user availabilities: two intervals with normally
distributed start time and duration

• User availabilities based on Dutch Time-use-Survey6

6Sociaal en Cultureel Planbureau 2005.
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Computing Environment

• Julia 1.10.07

• Probabilistic programming framework: Gen.jl8

• AMD Ryzen 9 5900X

• Markov models: 1000 iterations, use samples 500:10:1000

• Time interval model: 100 iterations, use samples 50:100

• Train times < 70s, Test times < 40s

7Bezanson et al. 2017.
8Cusumano-Towner et al. 2019.
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Average User Availabilities
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Average User Availabilities After Interaction
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Precision-Recall Curves
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Varying the Number of Rounds for Test Samples

Table: Area-under-curve of precision recall plots.

Number
of
Rounds

Time-
independent
Markov

Time-
dependent
Markov

Interval
Model (n=2)

Interval
Model (n=3)

0 0.608 ± 0.001 0.655 ± 0.009 0.718 ± 0.003 0.661 ± 0.012
1 0.622 ± 0.001 0.664 ± 0.009 0.724 ± 0.003 0.667 ± 0.012
2 0.638 ± 0.001 0.672 ± 0.009 0.732 ± 0.002 0.675 ± 0.011
3 0.649 ± 0.001 0.682 ± 0.008 0.739 ± 0.002 0.684 ± 0.011
4 0.662 ± 0.001 0.690 ± 0.008 0.747 ± 0.002 0.691 ± 0.011
5 0.672 ± 0.001 0.697 ± 0.008 0.753 ± 0.002 0.697 ± 0.011
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Conclusion and Future Work

Bayesian learning of three user models for interactive scheduling
problem

Time-dependent Markov and time interval model (n = 2) work best

Also good performance before any interaction

Future work

• Vary number of intervals in interval model

• Learn differences between days and users

• Active learning

• Recognize drift in user behavior
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